Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
π‘Ÿ 𝑝 = π‘Ÿ 𝐴𝐡. 𝐢 =
π‘Ÿπ΄π΅ βˆ’ π‘Ÿπ΄πΆ π‘Ÿπ΅πΆ
1 βˆ’ π‘Ÿπ΄πΆ
2
1 βˆ’ π‘Ÿπ΅πΆ
2
π‘Ÿ 𝐴𝐡 = βˆ’0.369 π‘Ÿ 𝐴𝐢 = 0.918
π‘Ÿ 𝐡𝐢 = βˆ’0.245
π‘Ÿ 𝑝 = π‘Ÿ 𝐴𝐡. 𝐢 =
(βˆ’0.369) βˆ’ (0.918)(βˆ’0.245)
1 βˆ’ 0.9182
1 βˆ’ βˆ’0.245 2
π‘Ÿ 𝑝 = π‘Ÿ 𝐴𝐡. 𝐢 =
βˆ’0.1441
0.499
π‘Ÿ 𝑝 = π‘Ÿ 𝐴𝐡. 𝐢 = βˆ’0.375
π‘Ÿ 𝐴𝐡. 𝐢
𝑯 𝟎 = 𝝆 𝑨𝑩. π‘ͺ
π’‚π’ˆπ’‚π’Šπ’π’”π’•
𝑯 𝟏 β‰  𝝆 𝑨𝑩. π‘ͺ
≀
>
𝒕 =
𝒓 𝒑 𝒏 βˆ’ 𝒗
𝟏 βˆ’ 𝒓 𝒑
𝟐
rp = partial correlation computed on sample, rAB.C
n = sample size,
v = total number of variables ...
rp
df = n – v
𝒕 =
𝒓 𝒑 𝒏 βˆ’ 𝒗
𝟏 βˆ’ 𝒓 𝒑
𝟐
𝒕 =
βˆ’πŸŽ. πŸ‘πŸ•πŸ“ 𝟏𝟎 βˆ’ πŸ‘
𝟏 βˆ’ βˆ’πŸŽ. πŸ‘πŸ•πŸ“ 𝟐
=
βˆ’πŸŽ. πŸ—πŸ—πŸ
𝟎. πŸ—πŸπŸ•
= 𝟏. πŸ”πŸ—
df/
Ξ± (2 tail)
0.1 0.05 0.02 0.01
1 6.3138 12.7065 31.8193 63.6551
2 2.9200 4.3026 6.9646 9.9247
3 2.3534 3.1824 4.5407 5....
≀
≀
𝑦 = 𝛽0 + 𝛽1 π‘₯
π’š = 𝜷 𝟎 + 𝜷 𝟏 𝒙
π’šπ’Š = 𝜷 𝟎 + 𝜷 𝟏 π’™π’Š+βˆˆπ’Š
yi
π’šπ’Š = 𝜷 𝟎 + 𝜷 𝟏 π’™π’Š+βˆˆπ’Š
X
Y
xi
π‘†π‘™π‘œπ‘π‘’ = 𝛽1
πΌπ‘›π‘‘π‘’π‘Ÿπ‘π‘’π‘π‘‘
= 𝛽0
π‘‚π‘π‘ π‘’π‘Ÿπ‘£π‘’π‘‘ π‘‰π‘Žπ‘™π‘’π‘’ π‘œπ‘“
π‘Œ π‘“π‘œπ‘Ÿ 𝑋𝑖
π‘ƒπ‘Ÿπ‘’π‘‘π‘–π‘π‘‘π‘’π‘‘ π‘‰π‘Žπ‘™π‘’π‘’ π‘œπ‘“
π‘Œ π‘“π‘œπ‘Ÿ 𝑋𝑖
βˆˆπ‘–
π‘…π‘Žπ‘›π‘‘π‘œπ‘š πΈπ‘Ÿπ‘Ÿ...
𝛽1 =
π‘₯ βˆ’ π‘₯ 𝑦 βˆ’ 𝑦
π‘₯ βˆ’ π‘₯ 2 =
π‘₯𝑦 βˆ’ 𝑛 π‘₯ 𝑦
π‘₯2 βˆ’ 𝑛 π‘₯2
=
π‘₯𝑦 βˆ’
π‘₯ 𝑦
𝑛
π‘₯2 βˆ’
π‘₯ 2
𝑛
𝛽1 =
𝑆𝑆 π‘₯𝑦
𝑆𝑆 π‘₯π‘₯
𝛽0 = 𝑦 βˆ’ 𝛽1 π‘₯ =
𝑦
𝑛
βˆ’ 𝛽1
π‘₯
𝑛
x y x2 xy
1 4 1 4
3 2 9 6
4 1 16 4
5 0 25 0
8 0 64 0
21 7 115 14
𝛽1 =
π‘₯𝑦 βˆ’
π‘₯ 𝑦
𝑛
π‘₯2 βˆ’
π‘₯ 2
𝑛
=
14 βˆ’
21 βˆ— 7
5
115 βˆ’
21 2
5
=
βˆ’15.4
26.8
= βˆ’0.575
𝛽0 =
𝑦
𝑛
βˆ’ 𝛽1
π‘₯
𝑛
=
7
5
βˆ’ βˆ’0.575
21
7
= 3.81...
π‘¨π’„π’‚π’…π’†π’Žπ’Šπ’„ π‘¨π’„π’‰π’Šπ’†π’—π’†π’Žπ’†π’π’• = 𝜷 𝟎 + 𝜷 𝟏 Γ— π‘°π’π’•π’†π’π’π’Šπ’ˆπ’†π’π’„π’† + ∈ 𝟏
π‘¨π’π’™π’Šπ’†π’•π’š = 𝜷 𝟎 + 𝜷 𝟏 Γ— π‘°π’π’•π’†π’π’π’Šπ’ˆπ’†π’π’„π’† + ∈ 𝟐
∈ 𝟏 ∈ 𝟐
∈ 𝟏 ∈ 𝟐
π‘Ÿ 𝑝 = ∈ 𝟏 ∈ 𝟐
𝒂 + 𝒃 + 𝒄 + 𝒅 = π’—π’‚π’“π’Šπ’‚π’π’„π’† π’Šπ’ 𝑫𝑽
𝒂 + 𝒃 + 𝒄 = π’—π’‚π’“π’Šπ’‚π’π’„π’† π’Šπ’ 𝑫𝑽
π’†π’™π’‘π’π’‚π’Šπ’π’†π’… π’ƒπ’š 𝑰𝑽 𝟏 &𝑰𝑽 𝟐
𝒂 + 𝒄 = π’–π’π’Šπ’’π’–π’†π’π’š π’†π’™π’‘π’π’‚π’Šπ’π’†π’…
π’—π’‚π’“π’Šπ’‚π’π’„π’†
𝒃 = ...
π‘Ίπ’†π’Žπ’Šπ’‘π’‚π’“π’•π’Šπ’‚π’ π‘ͺπ’π’“π’“π’†π’π’‚π’•π’Šπ’π’
π‘Ίπ’†π’Žπ’Šπ’‘π’‚π’“π’•π’Šπ’‚π’ π‘ͺπ’π’“π’“π’†π’π’‚π’•π’Šπ’π’
π’ƒπ’†π’•π’˜π’†π’†π’ 𝑰𝑽 𝟏 𝒂𝒏𝒅 𝑫𝑽
𝒂𝒇𝒕𝒆𝒓 π’„π’π’π’•π’“π’π’π’π’Šπ’π’ˆ 𝒇𝒐𝒓
π’‘π’‚π’“π’•π’Šπ’‚π’π’π’Šπ’π’ˆ 𝒐𝒖𝒕 𝒕𝒉𝒆
π’Šπ’π’‡π’π’–π’†π’π’„π’† 𝒐𝒇 𝑰𝑽 𝟐
π‘Ίπ’†π’Žπ’Šπ’‘π’‚π’“π’•π’Šπ’‚π’ π‘ͺπ’π’“π’“π’†π’π’‚π’•π’Šπ’π’
π’ƒπ’†π’•π’˜π’†π’†π’ 𝑰𝑽 𝟐 𝒂𝒏𝒅 𝑫𝑽
𝒂𝒇𝒕𝒆𝒓 π’„π’π’π’•π’“π’π’π’π’Šπ’π’ˆ 𝒇𝒐𝒓
π’‘π’‚π’“π’•π’Šπ’‚π’π’π’Šπ’π’ˆ 𝒐𝒖𝒕 𝒕𝒉𝒆
π’Šπ’π’‡π’π’–π’†π’π’„π’† 𝒐𝒇 𝑰𝑽 𝟏
π‘Ÿ 𝐡( 𝐴. 𝐢)
𝒓 𝑺𝑷 = 𝒓 𝑩 𝑨.π‘ͺ =
𝒓 𝑨𝑩 βˆ’ 𝒓 𝑨π‘ͺ 𝒓 𝑩π‘ͺ
𝟏 βˆ’ 𝒓 𝑨π‘ͺ
𝟐
π‘Ÿ 𝐴𝐡 = βˆ’0.369 π‘Ÿ 𝐴𝐢 = 0.918
π‘Ÿ 𝐡𝐢 = βˆ’0.245
π‘Ÿ 𝑆𝑃 = π‘Ÿ 𝐡( 𝐴. 𝐢)
=
(βˆ’0.369) βˆ’ (0.918)(βˆ’0.245)
1 βˆ’ 0.9182
π‘Ÿ 𝑆𝑃 = π‘Ÿ 𝐡( 𝐴. 𝐢)
=
βˆ’0.1441
0.3966
π‘Ÿ 𝑆𝑃 = π‘Ÿ 𝐡( 𝐴. 𝐢)
= βˆ’0.363
𝑯 𝟎: 𝝆 𝑺𝑷 = 𝟎
π’‚π’ˆπ’‚π’Šπ’π’”π’•
𝑯 𝟏: 𝝆 𝑺𝑷 β‰  𝟎
≀
>
𝒕 =
𝒓 𝒔𝒑 𝒏 βˆ’ 𝒗
𝟏 βˆ’ 𝒓 𝒔𝒑
𝟐
rp = semi-partial correlation computed on sample, rB(A.C)
n = sample size,
v = total number of v...
rsp
df = n – v
𝒕 =
𝒓 𝒔𝒑 𝒏 βˆ’ 𝒗
𝟏 βˆ’ 𝒓 𝒔𝒑
𝟐
𝒕 =
βˆ’πŸŽ. πŸ‘πŸ”πŸ‘ 𝟏𝟎 βˆ’ πŸ‘
𝟏 βˆ’ βˆ’πŸŽ. πŸ‘πŸ”πŸ‘ 𝟐
= βˆ’πŸ. πŸŽπŸ‘πŸ
df/
Ξ± (2 tail)
0.1 0.05 0.02 0.01
1 6.3138 12.7065 31.8193 63.6551
2 2.9200 4.3026 6.9646 9.9247
3 2.3534 3.1824 4.5407 5....
≀
≀
π’š = 𝜷 𝟎 + 𝜷 𝟏 𝒙+βˆˆπ’Š
βˆˆπ’Š
βˆˆπ’Š
βˆˆπ’Š
RA.BCD…k
k
𝑹 𝑨.𝑩π‘ͺ =
𝒓 𝑨𝑩
𝟐
+ 𝒓 𝑨π‘ͺ
𝟐
βˆ’ πŸπ’“ 𝑨𝑩 𝒓 𝑨π‘ͺ 𝒓 𝑩π‘ͺ
𝟏 βˆ’ 𝒓 𝑩π‘ͺ
𝟐
R A . BC = is multiple correlation between A & linear combination of...
π‘Ÿ 𝐴𝐡 = βˆ’0.369 π‘Ÿ 𝐴𝐢 = 0.918
π‘Ÿ 𝐡𝐢 = βˆ’0.245
𝑅 𝐴. 𝐡𝐢 =
βˆ’0.369 2 + 0.918 2 βˆ’2 βˆ’.369 .918 βˆ’.245
1 βˆ’ βˆ’0.245 2
𝑅 𝐴. 𝐡𝐢 =
0.813
0.94
𝑅 𝐴. 𝐡𝐢 = 0.929
R = 0 R2 = 0
Variance = 0%
R = Β±0.2 R2 = 0.04
Variance = 4%
R = Β±0.4 R2 = 0.16
Variance = 16%
R = Β±0.6 R2 = 0.36
Variance = 36%
R = Β±0.8 R2 = 0.64
Variance = 64%
R = Β±1 R2 = 1
Variance = 100%
𝑹 πŸπ›’ 𝟐
𝑹 𝟐 = 𝟏 βˆ’
𝟏 βˆ’ 𝑹 𝟐
𝒏 βˆ’ 𝟏
𝒏 βˆ’ π’Œ βˆ’ 𝟏
𝑅2 = is adjusted value of R2
k = number of predicted variables
n = sample size
𝑹 𝟐 = 𝟏 βˆ’
𝟏 βˆ’ 𝑹 𝟐
𝒏 βˆ’ 𝟏
𝒏 βˆ’ π’Œ βˆ’ 𝟏
= 𝟏 βˆ’
𝟏 βˆ’ 𝟎. πŸ–πŸ”πŸ“ 𝟏𝟎 βˆ’ 𝟏
𝟏𝟎 βˆ’ 𝟐 βˆ’ 𝟏
= 𝟏 βˆ’
𝟏. πŸπŸπŸ•
πŸ•
= 𝟎. πŸ–πŸπŸ”
𝑹 𝟐 𝑹 𝟐
𝑯 𝟎: 𝝆 𝟐 = 𝟎
π’‚π’ˆπ’‚π’Šπ’π’”π’•
𝑯 𝟏: 𝝆 𝟐 β‰  𝟎
≀
>
𝑭 =
𝒏 βˆ’ π’Œ βˆ’ 𝟏 𝑹 𝟐
π’Œ 𝟏 βˆ’ 𝑹 𝟐
𝑅2
dfnumerator = k
dfdenominator = n-k-1
𝑭 =
𝟏𝟎 βˆ’ 𝟐 βˆ’ 𝟏 𝟎. πŸ–πŸπŸ”
𝟐(𝟏 βˆ’ 𝟎. πŸ–πŸπŸ”)
𝑭 =
𝒏 βˆ’ π’Œ βˆ’ 𝟏 𝑹 𝟐
π’Œ 𝟏 βˆ’ 𝑹 𝟐
𝑭 =
πŸ“. πŸ•πŸ–πŸ‘
𝟎. πŸ‘πŸ’πŸ–
𝑭 = πŸπŸ”. πŸ”πŸ‘πŸ“
𝑑𝑓1 = π‘˜ = 2 𝑑𝑓2 = 10 βˆ’ 2 βˆ’ 1 = 7 𝛼 = 5%
𝐹2,7
𝐢𝑉
= 4.74
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Mpc 006 - 02-03 partial and multiple correlation
Upcoming SlideShare
Loading in …5
×

Mpc 006 - 02-03 partial and multiple correlation

7,448 views

Published on

3.2 Partial Correlation (rp)
3.2.1 Formula and Example
3.2.2 Alternative Use of Partial Correlation
3.3 Linear Regression
3.4 Part Correlation (Semipartial correlation) rsp
3.4.1 Semipartial Correlation: Alternative Understanding
3.5 Multiple Correlation Coefficient (R)

Published in: Education
  • Be the first to comment

Mpc 006 - 02-03 partial and multiple correlation

  1. 1. π‘Ÿ 𝑝 = π‘Ÿ 𝐴𝐡. 𝐢 = π‘Ÿπ΄π΅ βˆ’ π‘Ÿπ΄πΆ π‘Ÿπ΅πΆ 1 βˆ’ π‘Ÿπ΄πΆ 2 1 βˆ’ π‘Ÿπ΅πΆ 2
  2. 2. π‘Ÿ 𝐴𝐡 = βˆ’0.369 π‘Ÿ 𝐴𝐢 = 0.918 π‘Ÿ 𝐡𝐢 = βˆ’0.245
  3. 3. π‘Ÿ 𝑝 = π‘Ÿ 𝐴𝐡. 𝐢 = (βˆ’0.369) βˆ’ (0.918)(βˆ’0.245) 1 βˆ’ 0.9182 1 βˆ’ βˆ’0.245 2 π‘Ÿ 𝑝 = π‘Ÿ 𝐴𝐡. 𝐢 = βˆ’0.1441 0.499 π‘Ÿ 𝑝 = π‘Ÿ 𝐴𝐡. 𝐢 = βˆ’0.375
  4. 4. π‘Ÿ 𝐴𝐡. 𝐢
  5. 5. 𝑯 𝟎 = 𝝆 𝑨𝑩. π‘ͺ π’‚π’ˆπ’‚π’Šπ’π’”π’• 𝑯 𝟏 β‰  𝝆 𝑨𝑩. π‘ͺ
  6. 6. ≀ >
  7. 7. 𝒕 = 𝒓 𝒑 𝒏 βˆ’ 𝒗 𝟏 βˆ’ 𝒓 𝒑 𝟐 rp = partial correlation computed on sample, rAB.C n = sample size, v = total number of variables employed in the analysis
  8. 8. rp df = n – v
  9. 9. 𝒕 = 𝒓 𝒑 𝒏 βˆ’ 𝒗 𝟏 βˆ’ 𝒓 𝒑 𝟐 𝒕 = βˆ’πŸŽ. πŸ‘πŸ•πŸ“ 𝟏𝟎 βˆ’ πŸ‘ 𝟏 βˆ’ βˆ’πŸŽ. πŸ‘πŸ•πŸ“ 𝟐 = βˆ’πŸŽ. πŸ—πŸ—πŸ 𝟎. πŸ—πŸπŸ• = 𝟏. πŸ”πŸ—
  10. 10. df/ Ξ± (2 tail) 0.1 0.05 0.02 0.01 1 6.3138 12.7065 31.8193 63.6551 2 2.9200 4.3026 6.9646 9.9247 3 2.3534 3.1824 4.5407 5.8408 4 2.1319 2.7764 3.7470 4.6041 5 2.0150 2.5706 3.3650 4.0322 6 1.9432 2.4469 3.1426 3.7074 7 1.8946 2.3646 2.9980 3.4995 8 1.8595 2.3060 2.8965 3.3554 9 1.8331 2.2621 2.8214 3.2498 10 1.8124 2.2282 2.7638 3.1693
  11. 11. ≀ ≀
  12. 12. 𝑦 = 𝛽0 + 𝛽1 π‘₯
  13. 13. π’š = 𝜷 𝟎 + 𝜷 𝟏 𝒙
  14. 14. π’šπ’Š = 𝜷 𝟎 + 𝜷 𝟏 π’™π’Š+βˆˆπ’Š yi
  15. 15. π’šπ’Š = 𝜷 𝟎 + 𝜷 𝟏 π’™π’Š+βˆˆπ’Š X Y xi π‘†π‘™π‘œπ‘π‘’ = 𝛽1 πΌπ‘›π‘‘π‘’π‘Ÿπ‘π‘’π‘π‘‘ = 𝛽0 π‘‚π‘π‘ π‘’π‘Ÿπ‘£π‘’π‘‘ π‘‰π‘Žπ‘™π‘’π‘’ π‘œπ‘“ π‘Œ π‘“π‘œπ‘Ÿ 𝑋𝑖 π‘ƒπ‘Ÿπ‘’π‘‘π‘–π‘π‘‘π‘’π‘‘ π‘‰π‘Žπ‘™π‘’π‘’ π‘œπ‘“ π‘Œ π‘“π‘œπ‘Ÿ 𝑋𝑖 βˆˆπ‘– π‘…π‘Žπ‘›π‘‘π‘œπ‘š πΈπ‘Ÿπ‘Ÿπ‘œπ‘Ÿ π‘“π‘œπ‘Ÿ π‘‘β„Žπ‘–π‘  𝑋𝑖 π‘£π‘Žπ‘™π‘’π‘’
  16. 16. 𝛽1 = π‘₯ βˆ’ π‘₯ 𝑦 βˆ’ 𝑦 π‘₯ βˆ’ π‘₯ 2 = π‘₯𝑦 βˆ’ 𝑛 π‘₯ 𝑦 π‘₯2 βˆ’ 𝑛 π‘₯2 = π‘₯𝑦 βˆ’ π‘₯ 𝑦 𝑛 π‘₯2 βˆ’ π‘₯ 2 𝑛 𝛽1 = 𝑆𝑆 π‘₯𝑦 𝑆𝑆 π‘₯π‘₯ 𝛽0 = 𝑦 βˆ’ 𝛽1 π‘₯ = 𝑦 𝑛 βˆ’ 𝛽1 π‘₯ 𝑛
  17. 17. x y x2 xy 1 4 1 4 3 2 9 6 4 1 16 4 5 0 25 0 8 0 64 0 21 7 115 14
  18. 18. 𝛽1 = π‘₯𝑦 βˆ’ π‘₯ 𝑦 𝑛 π‘₯2 βˆ’ π‘₯ 2 𝑛 = 14 βˆ’ 21 βˆ— 7 5 115 βˆ’ 21 2 5 = βˆ’15.4 26.8 = βˆ’0.575 𝛽0 = 𝑦 𝑛 βˆ’ 𝛽1 π‘₯ 𝑛 = 7 5 βˆ’ βˆ’0.575 21 7 = 3.81 π’š = πŸ‘. πŸ–πŸ βˆ’ 𝟎. πŸ“πŸ•πŸ“π’™
  19. 19. π‘¨π’„π’‚π’…π’†π’Žπ’Šπ’„ π‘¨π’„π’‰π’Šπ’†π’—π’†π’Žπ’†π’π’• = 𝜷 𝟎 + 𝜷 𝟏 Γ— π‘°π’π’•π’†π’π’π’Šπ’ˆπ’†π’π’„π’† + ∈ 𝟏 π‘¨π’π’™π’Šπ’†π’•π’š = 𝜷 𝟎 + 𝜷 𝟏 Γ— π‘°π’π’•π’†π’π’π’Šπ’ˆπ’†π’π’„π’† + ∈ 𝟐
  20. 20. ∈ 𝟏 ∈ 𝟐
  21. 21. ∈ 𝟏 ∈ 𝟐 π‘Ÿ 𝑝 = ∈ 𝟏 ∈ 𝟐
  22. 22. 𝒂 + 𝒃 + 𝒄 + 𝒅 = π’—π’‚π’“π’Šπ’‚π’π’„π’† π’Šπ’ 𝑫𝑽 𝒂 + 𝒃 + 𝒄 = π’—π’‚π’“π’Šπ’‚π’π’„π’† π’Šπ’ 𝑫𝑽 π’†π’™π’‘π’π’‚π’Šπ’π’†π’… π’ƒπ’š 𝑰𝑽 𝟏 &𝑰𝑽 𝟐 𝒂 + 𝒄 = π’–π’π’Šπ’’π’–π’†π’π’š π’†π’™π’‘π’π’‚π’Šπ’π’†π’… π’—π’‚π’“π’Šπ’‚π’π’„π’† 𝒃 = 𝒏𝒐𝒏 βˆ’ π’–π’π’Šπ’’π’–π’†π’π’š π’†π’™π’‘π’π’‚π’Šπ’π’†π’… π’—π’‚π’“π’Šπ’‚π’π’„π’†
  23. 23. π‘Ίπ’†π’Žπ’Šπ’‘π’‚π’“π’•π’Šπ’‚π’ π‘ͺπ’π’“π’“π’†π’π’‚π’•π’Šπ’π’
  24. 24. π‘Ίπ’†π’Žπ’Šπ’‘π’‚π’“π’•π’Šπ’‚π’ π‘ͺπ’π’“π’“π’†π’π’‚π’•π’Šπ’π’ π’ƒπ’†π’•π’˜π’†π’†π’ 𝑰𝑽 𝟏 𝒂𝒏𝒅 𝑫𝑽 𝒂𝒇𝒕𝒆𝒓 π’„π’π’π’•π’“π’π’π’π’Šπ’π’ˆ 𝒇𝒐𝒓 π’‘π’‚π’“π’•π’Šπ’‚π’π’π’Šπ’π’ˆ 𝒐𝒖𝒕 𝒕𝒉𝒆 π’Šπ’π’‡π’π’–π’†π’π’„π’† 𝒐𝒇 𝑰𝑽 𝟐
  25. 25. π‘Ίπ’†π’Žπ’Šπ’‘π’‚π’“π’•π’Šπ’‚π’ π‘ͺπ’π’“π’“π’†π’π’‚π’•π’Šπ’π’ π’ƒπ’†π’•π’˜π’†π’†π’ 𝑰𝑽 𝟐 𝒂𝒏𝒅 𝑫𝑽 𝒂𝒇𝒕𝒆𝒓 π’„π’π’π’•π’“π’π’π’π’Šπ’π’ˆ 𝒇𝒐𝒓 π’‘π’‚π’“π’•π’Šπ’‚π’π’π’Šπ’π’ˆ 𝒐𝒖𝒕 𝒕𝒉𝒆 π’Šπ’π’‡π’π’–π’†π’π’„π’† 𝒐𝒇 𝑰𝑽 𝟏
  26. 26. π‘Ÿ 𝐡( 𝐴. 𝐢)
  27. 27. 𝒓 𝑺𝑷 = 𝒓 𝑩 𝑨.π‘ͺ = 𝒓 𝑨𝑩 βˆ’ 𝒓 𝑨π‘ͺ 𝒓 𝑩π‘ͺ 𝟏 βˆ’ 𝒓 𝑨π‘ͺ 𝟐
  28. 28. π‘Ÿ 𝐴𝐡 = βˆ’0.369 π‘Ÿ 𝐴𝐢 = 0.918 π‘Ÿ 𝐡𝐢 = βˆ’0.245
  29. 29. π‘Ÿ 𝑆𝑃 = π‘Ÿ 𝐡( 𝐴. 𝐢) = (βˆ’0.369) βˆ’ (0.918)(βˆ’0.245) 1 βˆ’ 0.9182 π‘Ÿ 𝑆𝑃 = π‘Ÿ 𝐡( 𝐴. 𝐢) = βˆ’0.1441 0.3966 π‘Ÿ 𝑆𝑃 = π‘Ÿ 𝐡( 𝐴. 𝐢) = βˆ’0.363
  30. 30. 𝑯 𝟎: 𝝆 𝑺𝑷 = 𝟎 π’‚π’ˆπ’‚π’Šπ’π’”π’• 𝑯 𝟏: 𝝆 𝑺𝑷 β‰  𝟎
  31. 31. ≀ >
  32. 32. 𝒕 = 𝒓 𝒔𝒑 𝒏 βˆ’ 𝒗 𝟏 βˆ’ 𝒓 𝒔𝒑 𝟐 rp = semi-partial correlation computed on sample, rB(A.C) n = sample size, v = total number of variables employed in the analysis
  33. 33. rsp df = n – v
  34. 34. 𝒕 = 𝒓 𝒔𝒑 𝒏 βˆ’ 𝒗 𝟏 βˆ’ 𝒓 𝒔𝒑 𝟐 𝒕 = βˆ’πŸŽ. πŸ‘πŸ”πŸ‘ 𝟏𝟎 βˆ’ πŸ‘ 𝟏 βˆ’ βˆ’πŸŽ. πŸ‘πŸ”πŸ‘ 𝟐 = βˆ’πŸ. πŸŽπŸ‘πŸ
  35. 35. df/ Ξ± (2 tail) 0.1 0.05 0.02 0.01 1 6.3138 12.7065 31.8193 63.6551 2 2.9200 4.3026 6.9646 9.9247 3 2.3534 3.1824 4.5407 5.8408 4 2.1319 2.7764 3.7470 4.6041 5 2.0150 2.5706 3.3650 4.0322 6 1.9432 2.4469 3.1426 3.7074 7 1.8946 2.3646 2.9980 3.4995 8 1.8595 2.3060 2.8965 3.3554 9 1.8331 2.2621 2.8214 3.2498 10 1.8124 2.2282 2.7638 3.1693
  36. 36. ≀ ≀
  37. 37. π’š = 𝜷 𝟎 + 𝜷 𝟏 𝒙+βˆˆπ’Š
  38. 38. βˆˆπ’Š
  39. 39. βˆˆπ’Š
  40. 40. βˆˆπ’Š
  41. 41. RA.BCD…k k
  42. 42. 𝑹 𝑨.𝑩π‘ͺ = 𝒓 𝑨𝑩 𝟐 + 𝒓 𝑨π‘ͺ 𝟐 βˆ’ πŸπ’“ 𝑨𝑩 𝒓 𝑨π‘ͺ 𝒓 𝑩π‘ͺ 𝟏 βˆ’ 𝒓 𝑩π‘ͺ 𝟐 R A . BC = is multiple correlation between A & linear combination of B and C rAB = is correlation between A and B rAC = is correlation between A and C rBC = is correlation between B and C
  43. 43. π‘Ÿ 𝐴𝐡 = βˆ’0.369 π‘Ÿ 𝐴𝐢 = 0.918 π‘Ÿ 𝐡𝐢 = βˆ’0.245
  44. 44. 𝑅 𝐴. 𝐡𝐢 = βˆ’0.369 2 + 0.918 2 βˆ’2 βˆ’.369 .918 βˆ’.245 1 βˆ’ βˆ’0.245 2 𝑅 𝐴. 𝐡𝐢 = 0.813 0.94 𝑅 𝐴. 𝐡𝐢 = 0.929
  45. 45. R = 0 R2 = 0 Variance = 0% R = Β±0.2 R2 = 0.04 Variance = 4% R = Β±0.4 R2 = 0.16 Variance = 16%
  46. 46. R = Β±0.6 R2 = 0.36 Variance = 36% R = Β±0.8 R2 = 0.64 Variance = 64% R = Β±1 R2 = 1 Variance = 100%
  47. 47. 𝑹 πŸπ›’ 𝟐
  48. 48. 𝑹 𝟐 = 𝟏 βˆ’ 𝟏 βˆ’ 𝑹 𝟐 𝒏 βˆ’ 𝟏 𝒏 βˆ’ π’Œ βˆ’ 𝟏 𝑅2 = is adjusted value of R2 k = number of predicted variables n = sample size
  49. 49. 𝑹 𝟐 = 𝟏 βˆ’ 𝟏 βˆ’ 𝑹 𝟐 𝒏 βˆ’ 𝟏 𝒏 βˆ’ π’Œ βˆ’ 𝟏 = 𝟏 βˆ’ 𝟏 βˆ’ 𝟎. πŸ–πŸ”πŸ“ 𝟏𝟎 βˆ’ 𝟏 𝟏𝟎 βˆ’ 𝟐 βˆ’ 𝟏 = 𝟏 βˆ’ 𝟏. πŸπŸπŸ• πŸ• = 𝟎. πŸ–πŸπŸ”
  50. 50. 𝑹 𝟐 𝑹 𝟐
  51. 51. 𝑯 𝟎: 𝝆 𝟐 = 𝟎 π’‚π’ˆπ’‚π’Šπ’π’”π’• 𝑯 𝟏: 𝝆 𝟐 β‰  𝟎
  52. 52. ≀ >
  53. 53. 𝑭 = 𝒏 βˆ’ π’Œ βˆ’ 𝟏 𝑹 𝟐 π’Œ 𝟏 βˆ’ 𝑹 𝟐 𝑅2
  54. 54. dfnumerator = k dfdenominator = n-k-1
  55. 55. 𝑭 = 𝟏𝟎 βˆ’ 𝟐 βˆ’ 𝟏 𝟎. πŸ–πŸπŸ” 𝟐(𝟏 βˆ’ 𝟎. πŸ–πŸπŸ”) 𝑭 = 𝒏 βˆ’ π’Œ βˆ’ 𝟏 𝑹 𝟐 π’Œ 𝟏 βˆ’ 𝑹 𝟐 𝑭 = πŸ“. πŸ•πŸ–πŸ‘ 𝟎. πŸ‘πŸ’πŸ– 𝑭 = πŸπŸ”. πŸ”πŸ‘πŸ“
  56. 56. 𝑑𝑓1 = π‘˜ = 2 𝑑𝑓2 = 10 βˆ’ 2 βˆ’ 1 = 7 𝛼 = 5% 𝐹2,7 𝐢𝑉 = 4.74

Γ—