Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Hydrogen as a Fuel<br />Low Carbon:  Innovation, Opportunities and Training <br />Presented by: Dirk Kok<br />
Agenda<br />An Urgent Case<br />History of Hydrogen<br />What is a Fuel Cell?<br />Different fuel cells<br />Future of Fue...
An Urgent Case<br />
An Urgent Case<br />
An Urgent Case<br />BBC Breakfast 07-012-2009<br />The Climate Conference in Copenhagen, Denmark<br />Higher targets are n...
King report<br />60% emissions reduction<br />Evolutionary improvements guaranteed with current development<br />80%<br />...
History<br />1839 – Sir William Robert Grove<br />“Gas Voltaic Battery” - 1st Fuel Cell  <br />1937 – Baur and Preis<br />...
History<br />1960’s – Grubb and Niedrach (GE)<br />PEM Fuel Cell invented<br />1967 – GM Electrovan<br />1 driver + 1 pass...
History<br />Today: <br />Major OEMs have demonstration or lease versions<br />ICE and Fuel Cell vehicles<br />Price per k...
Health and Safety<br />After 1 minute<br />After 3 seconds<br /><ul><li>Odourless gas
It is very flammable
Hydrogen burns with a flame that is hard to see
It is lighter than air (unlike petrol which ‘pools’)</li></li></ul><li>The good and the Bad<br />1937 - Hindenburg Disaste...
What is a Fuel Cell<br />A fuel cell is a device that converts energy from one form into another<br />It converts the ‘Che...
What is a Fuel Cell<br />2H24H+ + 4e-<br />O2+ 4H+ + 4e-           2H2O<br />Electrons<br />Electrolyte<br />Reactionthat ...
The science of a fuel cell<br />Oxygen Side<br />O2<br />O2<br />O2<br />O2<br />O<br />O<br />H2O<br />Electrolyte <br />...
Cell Construction<br />Hydrogen<br />Oxygen in<br />Cooling area<br />Water in<br />Water in<br />Hydrogen<br />Oxygen Out...
Cell Construction<br />Cooling area<br />Hydrogen in<br />Hydrogen out<br />Silicon separation<br />
Inside the cell<br />
Inside the cell<br />
Different fuel cell technologies<br />Low temperature Fuel Cells:<br />Proton Exchange Membrane (PEM) – highest power dens...
Different fuel cell technologies<br />High temperature fuel cells: <br />Molten Carbonate – requires molten electrolyte<br...
Main Types of Fuel Cell<br />
Differences<br />
FCS 1kW Solid Oxide stack<br />High Temperature – Solid Oxide<br /><ul><li>Solid ceramic electrolyte conducts </li></ul>an...
Many materials challenges due to high operating temperatures
High efficiency
High grade heat available for CHP
Slow start up times
Most suited to stationary applications</li></li></ul><li>MTU 250kW MCFC “HotModule”<br />High Temperature – Molten Carbona...
The hot electrolyte (~650oC) is very corrosive
High temps. Allow cheaper catalysts (nickel based) to be used
High efficiency
High grade heat available for CHP
Slow start up times
Most suited to stationary applications</li></li></ul><li>Low Temperature – Proton Exchange Membrane<br /><ul><li>Solid pol...
CO easily poisons catalysts
Very thin membranes allow low resistance losses and high power density
Fast start up – well suited to portable power</li></ul>Ballard Nexa 1.2kW system<br />
Advantages of PEMFC<br />No toxic chemicals<br />All three products are useable: <br />Electricity<br />Water<br />Heat<br...
2.5kW Alkaline system<br />Low Temperature - Alkaline<br /><ul><li>Liquid electrolyte is a basic solution like </li></ul>K...
Upcoming SlideShare
Loading in …5
×

An Introduction To Hydrogen Fuel Cells

9,546 views

Published on

A training presentation to introduce people to hydrogen as a fuel in ICE and fuel cells.

  • Be the first to comment

An Introduction To Hydrogen Fuel Cells

  1. 1. Hydrogen as a Fuel<br />Low Carbon: Innovation, Opportunities and Training <br />Presented by: Dirk Kok<br />
  2. 2. Agenda<br />An Urgent Case<br />History of Hydrogen<br />What is a Fuel Cell?<br />Different fuel cells<br />Future of Fuel Cells<br />
  3. 3. An Urgent Case<br />
  4. 4. An Urgent Case<br />
  5. 5. An Urgent Case<br />BBC Breakfast 07-012-2009<br />The Climate Conference in Copenhagen, Denmark<br />Higher targets are needed<br />
  6. 6. King report<br />60% emissions reduction<br />Evolutionary improvements guaranteed with current development<br />80%<br />Growth in Ultra Low Carbon Vehicles<br />90-100% <br />Complete change in paradigm<br />Public Transport most efficient in +10M<br />
  7. 7. History<br />1839 – Sir William Robert Grove<br />“Gas Voltaic Battery” - 1st Fuel Cell <br />1937 – Baur and Preis<br />1st Solid Oxide Fuel Cell<br />1940-45 German Submarines<br />FC made SUB “trackless”<br />1955 – Francis Thomas Bacon<br />5kW stationary Alkaline Fuel Cell<br />
  8. 8. History<br />1960’s – Grubb and Niedrach (GE)<br />PEM Fuel Cell invented<br />1967 – GM Electrovan<br />1 driver + 1 passenger <br />1969 – NASA<br />First Alkaline Fuel Cell <br /> on the moon. <br />
  9. 9. History<br />Today: <br />Major OEMs have demonstration or lease versions<br />ICE and Fuel Cell vehicles<br />Price per kW is coming down<br />Hydrogen Supply<br />Funding available (TSB)<br />
  10. 10. Health and Safety<br />After 1 minute<br />After 3 seconds<br /><ul><li>Odourless gas
  11. 11. It is very flammable
  12. 12. Hydrogen burns with a flame that is hard to see
  13. 13. It is lighter than air (unlike petrol which ‘pools’)</li></li></ul><li>The good and the Bad<br />1937 - Hindenburg Disaster<br /><ul><li>1969 -Apollo 11 Success</li></li></ul><li>Hydrogen Fuel Advantages<br />Can be made anywhere<br />Electricity (plug, solar, wind, etc)<br />Can be stored without losses<br />Battery does not hold energy overtime<br />High Energy Density<br />More efficient and cleaner<br />
  14. 14. What is a Fuel Cell<br />A fuel cell is a device that converts energy from one form into another<br />It converts the ‘Chemical Energy’ in a fuel into Electrical Energy and Heat.<br />It does this without burning the fuel. This is very different to the type of engine in a car!<br />
  15. 15. What is a Fuel Cell<br />2H24H+ + 4e-<br />O2+ 4H+ + 4e- 2H2O<br />Electrons<br />Electrolyte<br />Reactionthat produces electrons<br />(-)<br />Reactionthat consumes electrons<br />(+)<br />Fuel <br />Oxidant<br />(water)<br />
  16. 16. The science of a fuel cell<br />Oxygen Side<br />O2<br />O2<br />O2<br />O2<br />O<br />O<br />H2O<br />Electrolyte <br />H+<br />H+<br />e-<br />e-<br />H<br />H<br />Hydrogen Side<br />H2<br />H2<br />H2<br />H2<br />
  17. 17. Cell Construction<br />Hydrogen<br />Oxygen in<br />Cooling area<br />Water in<br />Water in<br />Hydrogen<br />Oxygen Out<br />Silicon separation<br />
  18. 18. Cell Construction<br />Cooling area<br />Hydrogen in<br />Hydrogen out<br />Silicon separation<br />
  19. 19. Inside the cell<br />
  20. 20. Inside the cell<br />
  21. 21. Different fuel cell technologies<br />Low temperature Fuel Cells:<br />Proton Exchange Membrane (PEM) – highest power density<br />Alkaline – oldest commercial technology (used by NASA)<br />Direct Methanol – similar to PEM but able to use methanol directly<br />Phosphoric Acid – commercially available technology<br />
  22. 22. Different fuel cell technologies<br />High temperature fuel cells: <br />Molten Carbonate – requires molten electrolyte<br />Solid Oxide – high temperature oxides allow ion transport<br />
  23. 23. Main Types of Fuel Cell<br />
  24. 24. Differences<br />
  25. 25. FCS 1kW Solid Oxide stack<br />High Temperature – Solid Oxide<br /><ul><li>Solid ceramic electrolyte conducts </li></ul>anions (O2-) at high temps. 800-1000oC<br /><ul><li>High temp. allows wide range of fuel
  26. 26. Many materials challenges due to high operating temperatures
  27. 27. High efficiency
  28. 28. High grade heat available for CHP
  29. 29. Slow start up times
  30. 30. Most suited to stationary applications</li></li></ul><li>MTU 250kW MCFC “HotModule”<br />High Temperature – Molten Carbonate<br /><ul><li>Molten ionic salt like lithium carbonate in a ceramic matrix conducts CO32- anion
  31. 31. The hot electrolyte (~650oC) is very corrosive
  32. 32. High temps. Allow cheaper catalysts (nickel based) to be used
  33. 33. High efficiency
  34. 34. High grade heat available for CHP
  35. 35. Slow start up times
  36. 36. Most suited to stationary applications</li></li></ul><li>Low Temperature – Proton Exchange Membrane<br /><ul><li>Solid polymer electrolyte conducts </li></ul>protons (H+)<br /><ul><li>Water must be managed to keep </li></ul>membrane wet for ion conduction, but not flooded<br />A roll of Nafion PEM<br /><ul><li>Limited to temp range 60-100oC due to stability of membrane
  37. 37. CO easily poisons catalysts
  38. 38. Very thin membranes allow low resistance losses and high power density
  39. 39. Fast start up – well suited to portable power</li></ul>Ballard Nexa 1.2kW system<br />
  40. 40. Advantages of PEMFC<br />No toxic chemicals<br />All three products are useable: <br />Electricity<br />Water<br />Heat<br />High Efficiency<br />60%<br />
  41. 41. 2.5kW Alkaline system<br />Low Temperature - Alkaline<br /><ul><li>Liquid electrolyte is a basic solution like </li></ul>KOH conducts OH- anions<br /><ul><li>The cathode reaction is faster in alkaline conditions, so higher voltages & efficiency than acidic systems
  42. 42. Operates in temp. range 60-100oC
  43. 43. CO2 easily reacts with electrolyte forming carbonates</li></li></ul><li>Low Temperature – Phosphoric acid<br /><ul><li>Liquid electrolyte within a thin ceramic </li></ul>sheet<br /><ul><li>System very similar to PEM
  44. 44. Operates at around 200oC
  45. 45. Phosphoric acid is a poor conductor at low temperatures, but corrosive at high temperatures
  46. 46. Higher operating temperatures result in higher grade heat for co-generation</li></ul>200kW UTC PAFC system<br />
  47. 47. Typical Applications<br />Central Heating Power<br />High temp can be used to increase efficiency<br />Fork Lift Trucks<br />1 off filling point<br />Public transport<br />Filling station for buses<br />Space<br />Electricity, Water, Heat<br />
  48. 48. Typical Applications<br />Portable applications<br />Battery chargers<br />Power tools<br />Laptops<br />Personal vehicles<br />Filling<br />Safety training<br />Driving behaviour – driving cycle<br />
  49. 49. CPI’s Fuel Cell Installations<br />
  50. 50. Future of Fuel Cells<br />FUEL CELL COMMERCIALISATION ‘STARTED IN 2007’<br />Fuel Cell Shipments to Exceed 5 Million Units by 2013<br />Source: www.fuelcellstoday.com<br />Portable Fuel Cell Market to Reach $2.3 Billion by 2016<br />Source: Pike Research at www.greencarcongress.com<br />
  51. 51. NAIGT report<br />New Automotive Innovation and Growth Team<br />Recommend:<br />Provide incentives on a well-to-wheel basis<br />The aim is reduction of CO2 and not just introduction of EV<br />Well-to-Wheel reduction = R&D<br />
  52. 52. Opportunities - NAIGT<br />
  53. 53. Opportunities - NAIGT<br />
  54. 54. Opportunities - NAIGT<br />
  55. 55. Opportunities - NAIGT<br />
  56. 56. Opportunities<br />Control strategies<br />Hydrogen generation (renewables)<br />Hydrogen storage<br />Transportation<br />Filling station and safety<br />Fuel Cell Component development and improvement<br />
  57. 57. Recommended Reading<br />Fuel Cell Systems Explained<br />James Larminie, Andrew Dicks<br />Wiley 2nd edition 2003<br />PEM Fuel Cells: Theory and Practice<br />Frano Barbir<br />Elsevier Academic Press 2005<br />Further reading<br />Materials for Fuel Cells<br />Michael Gasik (editor)<br />Woodhead Publishing in Materials 2008<br />The Economic Dynamics of Fuel Cell Technologies<br />Arman Avadikyan, Patrick Cohendet, Jean-Alain Héraud (editors)<br />Springer 2003<br />
  58. 58. Questions<br />Do you want to know more about:<br />Today’s presentation<br />Mentioned projects<br />Or discuss project ideas: <br />adrian.morris@sunderland.ac.uk<br />dirk.kok@sunderland.ac.uk<br />0191 – 515 3888<br />

×