Musculoskeletal Imaging • Original ResearchDonovan and RosenbergMRI of Lateral Hindfoot ImpingementMusculoskeletal Imaging...
MRI of Lateral Hindfoot Impingement                                                                                       ...
Donovan and RosenbergTABLE 1: Hindfoot Valgus Grading                         proportion having grade II (n = 6, 8%) and  ...
MRI of Lateral Hindfoot Impingement                                                                                       ...
Donovan and Rosenberg                                                                                                     ...
MRI of Lateral Hindfoot ImpingementTABLE 3: Association of Hindfoot Valgus With Lateral Hindfoot                          ...
Donovan and Rosenberghindfoot pain, surgical findings, and patient               11. Rosenberg ZS, Jahss MH, Noto AM, et a...
Upcoming SlideShare
Loading in …5

Extraarticular later hindfoot impingement with ptt tear mri correlation


Published on

This is an excellent article that describes hindfoot impingement.

Published in: Health & Medicine, Technology
1 Like
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Extraarticular later hindfoot impingement with ptt tear mri correlation

  1. 1. Musculoskeletal Imaging • Original ResearchDonovan and RosenbergMRI of Lateral Hindfoot ImpingementMusculoskeletal ImagingOriginal Research Extraarticular Lateral Hindfoot FOCUS ON: Impingement With Posterior Tibial Tendon Tear: MRI CorrelationAndrea Donovan1 OBJECTIVE. Posterior tibial tendon dysfunction with secondary hindfoot valgus can leadZehava Sadka Rosenberg2 to painful extraarticular, lateral talocalcaneal, and subfibular impingements, often necessitating surgical intervention. The purpose of this study was to correlate findings of lateral hindfoot im-Donovan A, Rosenberg ZS pingement with grading of posterior tibial tendon tears and severity of hindfoot valgus on MRI. MATERIALS AND METHODS. MR images from 75 patients (45 women and 30 men) with MRI evidence of posterior tibial tendon tears were evaluated for grade of posterior tibi- al tendon tear, hindfoot valgus angle, osseous contact or opposing marrow signal changes at the talus–calcaneus or fibula–calcaneus, peroneal tendon subluxation–dislocation, and pres- ence of lateral malleolar bursa. Statistical analyses were performed using Cochran-Armitage, Fisher’s exact, and Mann-Whitney tests. RESULTS. Twenty-eight cases (37%) of lateral hindfoot impingement were identified, including six talocalcaneal, eight subfibular, and 14 talocalcaneal–subfibular impingements. The prevalence of impingement was significantly increased with greater MRI hindfoot valgus angle (p < 0.001). The prevalence of talocalcaneal–subfibular impingement significantly in- creased with grading of posterior tibial tendon tear (p = 0.018). Peroneal tendon subluxation was present only with advanced hindfoot valgus (p = 0.010) and impingement (p = 0.004). There was no significant association between the presence of lateral malleolar bursa and hindfoot valgus severity. CONCLUSION. Extraarticular lateral hindfoot impingement is associated with ad- vanced posterior tibial tendon tears and increased MRI hindfoot valgus angle. Peroneal ten- don subluxation likely represents an end stage of lateral impingement in patients with poste- rior tibial tendon dysfunction. P osterior tibial tendon dysfunc- Soft-tissue repair alone in patients with tion is the most common cause of posterior tibial tendon dysfunction may lead acquired flatfoot and hindfoot to unsatisfactory surgical outcome and per- valgus and may lead to medial sistent lateral ankle pain. Calcaneal osteoto-Keywords: ankle, impingement syndrome, MRI, posterior and, with advanced disease, lateral ankle my is often necessary to correct the hindfoottibial tendon pain [1, 2]. This lateral ankle pain has been valgus and lateral hindfoot impingement [1].DOI:10.2214/AJR.08.2215 attributed to extraarticular lateral hindfoot Therefore, early detection of impingement is impingement including talocalcaneal (be- beneficial for successful surgical results.Received December 7, 2008; accepted after revision tween the lateral talus and calcaneus) [3, 4] To the best of our knowledge, the MRI ap-January 5, 2009. and subfibular (between the calcaneus and pearance of lateral hindfoot impingement has1Department of Radiology, Sunnybrook Health Sciences fibula) impingement [5–11] (Fig. 1). In addi- not been reported. The purpose of this studyCentre, 2075 Bayview Ave., Rm. AG 278, Toronto, ON tion, lateral ankle pain in patients with poste- was to describe the MRI features of this ex-M4N 3M5, Canada. Address correspondence to rior tibial tendon dysfunction has been at- traarticular impingement and to correlate itsA. Donovan ( tributed to sinus tarsi pathology, fibular stress presence with grading of posterior tibial ten-2 Department of Radiology, New York University Hospital fractures [12], and lateral adventitial bursa don tear and severity of hindfoot valgus infor Joint Disease, New York, NY. [13]. Several models of acquired hindfoot patients with posterior tibial tendon tears. deformity suggest that lateral hindfoot im-AJR 2009; 193:672–678 pingement is related to a lateral shift of Materials and Methods0361–803X/09/1933–672 weight bearing from the talar dome to the Patient Population lateral talus and fibula [14] as well as to talo- Institutional review board approval was grant-© American Roentgen Ray Society calcaneal joint subluxation [15]. ed and informed consent was waived for this ret-672 AJR:193, September 2009
  2. 2. MRI of Lateral Hindfoot Impingement Fig. 1—Schematic drawings show lateral extraarticular talocalcaneal and subfibular hindfoot impingements. A, Normal hindfoot valgus (≤ 6°) and no lateral impingement. B, Hindfoot valgus angle is measured at intersection of line along medial calcaneal wall and line parallel to longitudinal axis of tibia. With progressive hindfoot valgus there is first abnormal contact between lateral talus and calcaneus (red) resulting in talocalcaneal impingement. C, Subsequent abnormal contact between both lateral talus and calcaneus (red) as well as between calcaneus and fibula (orange) produces combined talocalcaneal– subfibular impingement. A B Crospective HIPAA-compliant study. A radiology slightly different, the MRI protocol in most patients smaller than the adjacent flexor digitorum longusdatabase was retrospectively reviewed to identify consisted of two sagittal acquisitions (T1-weight- tendon); grade III, complete tendon discontinuity.patients with an MRI diagnosis of a posterior tibi- ed spin-echo images and inversion recovery); two The MRI hindfoot valgus angle was measuredal tendon tear over an approximately 5-year period axial acquisitions (T1-weighted or intermediate- on the most posterior coronal image that includedfrom January 2003 to March 2008. The search was weighted and T2-weighted fast spin-echo, with or the tibia and calcaneus by intersecting a line alongperformed with the keywords “posterior tibial ten- without fat suppression); a single coronal plane (T1- the long axis of the tibia and a line along the medi-don,” “tibialis posterior tendon tear” (or “posterior weighted or intermediate-weighted or T2-weighted al wall of the calcaneus (Fig. 1). This measurementtibial tendon tear”), “rupture,” and “tendinosis.” fast spin-echo with fat suppression). T1-weighted is a modification from previously described radio-The initial group of 198 patients was ultimately images were acquired with TR range/TE range of graphic and CT angle measurement techniqueslimited to patients with evidence of posterior tibial 400–700/10–20, intermediate-weighted images [18, 19]. The medial, rather than the lateral, calca-tendon tears based on MR image review. Patients were obtained with TR range/effective TE range neal wall was selected because it had less variabil-with minimal tendinosis or isolated tenosynovitis of 2,500–3,800/34–38, T2-weighted fast spin-echo ity and fewer bony protuberances. Hindfoot valguswere excluded. Additional exclusion criteria in- images were acquired with a TR range/effective on MRI was defined as abnormal in cases with acluded navicular posterior tibial tendon tear, prior TE range of 2,000–6,000/60–90, and inversion re- tibiocalcaneal angle > 6° [19].posterior tibial tendon surgery, and incomplete or covery images were obtained with a TR range/ef- MRI criteria for lateral hindfoot impingement,unavailable studies on our PACS. fective TE range of 4,600–7,200/16–35, all with an using all imaging planes, were based on previously The study group was composed of 75 patients: inversion time of 150 milliseconds. Additional pa- described CT criteria for osseous impingement [20]45 women, 30 men, mean age 58 years (age range, rameters included 12–20 × 9–20 field of view range, and on previously described MRI criteria for soft-29–90 years) with MRI evidence of a posterior tib- 256–512 × 128–256 matrix range, 4–5 mm slice thick- tissue and osseous ankle impingement syndromesial tendon tear. Medical records were reviewed and ness with 1.0–1.5 mm intersection gap, and echo- at other locations [21–23]. Lateral talocalcaneal andthe clinical details recorded included patient age, train length of 4–8. subfibular impingements were defined as signal andsex, involved side, and clinical indication for the morphologic alterations or direct contact at the op-MRI study. MRI studies were evaluated by con- MRI Interpretation posing surfaces of the lateral talus and calcaneussensus by two musculoskeletal radiologists with 22 The following MRI features were recorded: grade and at the fibula and calcaneus, respectively. Spe-and 1 years of experience, respectively. The read- of posterior tibial tendon tear, MRI hindfoot valgus cifically, the images were evaluated for the presenceers were not blinded to the clinical information. angle, lateral hindfoot impingement, peroneal ten- of marrow edema, cystic changes, or sclerosis at don dislocation, and lateral malleolar bursa. Poste- the opposing osseous surfaces of the talus and cal-MRI Technique rior tibial tendon tears were graded on a I–III scale caneus or the fibula and calcaneus and the presence The ankle MRI studies were performed on sev- on the basis of previously described classification of soft-tissue entrapment at those locations.eral different 1.5-T MR units (n = 73) and an open systems [16, 17]: grade Ia, thickened tendon with The peroneal tendons and lateral malleolar bur-0.2-T (n = 2) MR unit. Patients were placed in the no or a small amount of longitudinal splits; grade sa were examined in all patients. The peronealsupine position, with the ankle in mild (20°) plan- Ib, thickened tendon with a large amount of longi- tendons were defined as subluxed or dislocatedtar flexion. Although the imaging protocols were tudinal splits; grade II, attenuated tendon (equal or when the tendons were partially out or lateral toAJR:193, September 2009 673
  3. 3. Donovan and RosenbergTABLE 1: Hindfoot Valgus Grading proportion having grade II (n = 6, 8%) and ings (70%) within a group of seven patients. Scheme Based on grade III (n = 7, 9%) tears. This patient group size was based on statisti- Measured Coronal An abnormal MRI hindfoot valgus angle cal power calculation. Tibiocalcaneal Angle (> 6°) was present in the majority of patients Most patients had mild (n = 31, 41%) or Hindfoot (n = 70, 93%) (Table 1). MRI hindfoot val- moderate (n = 25, 33%) hindfoot valgus (Fig. Valgus Tibiocalcaneal No. of Cases gus angle was further categorized, using 10° 2C). Severe hindfoot valgus was present in a Severity Angle (°) (%) increments as mild (7–16°), moderate (17– minority of patients (n = 14, 19%). Normal ≤6 5 (6.7) 26°), and severe (> 26°). The threshold an- Mild 7–16 31 (41.3) gles of 16° and 26° used in the definitions MRI Appearance of Lateral were chosen to optimize the statistical power Hindfoot Impingement Moderate 17–26 25 (33.3) of the study for detecting an association be- There were 28 cases (37%) with later- Severe > 26 14 (19.7) tween the hindfoot valgus classification and al hindfoot impingement. These included the frequency of talocalcaneal or subfibular isolated talocalcaneal impingement (n = 6,the fibular groove, respectively [24]. Lateral ad- impingement. Specifically, the threshold an- 21%), isolated subfibular impingement (n =ventitial bursa was defined as disproportionate, gle of 16° was used to distinguish mild from 8, 29%), and combined talocalcaneal–sub-focal subcutaneous edema or a discrete collection moderate hindfoot valgus based on a receiv- fibular impingement (n = 14, 50%).with fluid signal characteristics in the lateral peri- er operating characteristic (ROC) analysis to MRI features of talocalcaneal impinge-malleolar fat. Cases with circumferential subcuta- assess the MRI hindfoot valgus angle as a ment (n = 20) included marrow edema (n =neous ankle edema were excluded. predictor for a finding of impingement. The 20, 100%) or cystic changes (n = 19, 95%) ROC analysis showed that the threshold val- (Figs. 2A and 2B) or sclerosis (low T1 andStatistical Analysis ue of 16° resulted in a diagnostic test with the low T2 marrow signal; n = 3, 15%) (Figs. The Cochran-Armitage trend test was used to highest average of sensitivity and specificity. 3A and 3B) at the opposing surfaces of thecorrelate the prevalence of talocalcaneal or subfib- Similarly, a threshold angle of 26° provided lateral talar process and the lateral wall ofular impingement, peroneal subluxation–disloca- the highest prevalence of impingement find- the calcaneus. At the calcaneus, the marrowtion, and lateral adventitial bursa with grading ofposterior tibial tendon tear. An exact Mann-Whit-ney test was used to compare subjects with andwithout talocalcaneal or subfibular impingement,peroneal dislocation, or lateral adventitial bursi-tis with the measured MRI hindfoot valgus angle.Fisher’s exact test was used to evaluate associa-tions among these findings. Statistical computa-tions were performed using SAS version 9.0 (SASInstitute). Statistical significance was defined as ap value less than 0.05.ResultsDistribution of Grading of Posterior Tibial A BTendon Tear and Hindfoot Valgus Angle Clinical history of posterior tibial ten-don dysfunction was provided for the major-ity of patients (n = 45, 60%). Evaluation ofMR images showed the largest proportion ofpatients having grade Ia (n = 26, 35%) andgrade Ib (n = 36, 48%) tears, and a smallerFig. 2—60-year-old man with lateral ankle pain.A and B, Sagittal T1-weighted fast spin-echo (A) andsagittal inversion recovery (B) images show cysticchanges and marrow edema at lateral talar process(solid arrows) and opposing lateral calcaneus (openarrows).C, Coronal T2-weighted fast spin-echo fat-saturatedimage shows moderate hindfoot valgus angle of22°. Lateral calcaneal marrow edema (star) andsubcutaneous edema (arrow) are noted.D, Axial T2-weighted fast spin-echo fat-saturatedimage shows type Ia posterior tibial tendon tear withmild morphologic irregularity and increased tendonsize (arrow). C D674 AJR:193, September 2009
  4. 4. MRI of Lateral Hindfoot Impingement Fig. 3—65-year-old woman with clinical history of posterior tibial tendon dysfunction. A and B, Sagittal T1-weighted fast spin-echo (A) and sagittal inversion recovery weighted (B) sequences show signal alterations at opposing osseous contact surfaces of talus and calcaneus, representing sclerosis (solid arrows) and marrow edema (open arrows, B). C and D, Sagittal T1-weighted fast spin-echo (C) and sagittal inversion recovery weighted (D) images show subfibular soft-tissue abnormality depicted by hypointense T1 and both hyper- and hypointense T2- weighted signal (arrowheads). A B tion. There was a positive association be- tween tendon subluxation and the presence of impingement (p = 0.006); the former was identified only in cases of impingement and mostly with combined talocalcaneal–subfib- ular impingement (n = 4, 80%). Also, per- oneal tendon subluxation was seen only with moderate or severe hindfoot valgus; a sig- nificant positive association was present be- tween hindfoot valgus severity and peroneal tendon subluxation (p = 0.010). Association Between Lateral Hindfoot Impingement and Lateral Malleolar Bursa Lateral adventitial bursa was present in 11 C D of 28 patients (39%) with lateral impinge- ment (Fig. 5). There was no significant asso-findings were mainly seen at the junction of ular impingement and severity of posterior ciation between the presence of lateral malle-the calcaneal tuberosity with the anterior tibial tendon tear (p = 0.020) (Table 2). Com- olar bursa and hindfoot valgus impingementprocess of the calcaneus. The predominant bined talocalcaneal–subfibular impingement or hindfoot valgus severity.pattern was cystic changes with surrounding was seen in 12% (n = 8/62) of grade I, 33%marrow edema (n = 16, 80%). (n = 2/6) of grade II, and 57% (n = 4/7) of Discussion MRI findings of subfibular impingement grade III posterior tibial tendon tears. In our study, lateral hindfoot impinge-(n = 22) most commonly included low T1 ment was more common in patients with ad-and predominantly low T2 signal intensity Association Between Lateral Hindfoot vanced posterior tibial tendon tear and withsoft-tissue entrapment between the calcaneus Impingement and Hindfoot Valgus Severity a greater MRI hindfoot valgus angle. Theseand fibula (n = 15, 68%) (Figs. 3C, 3D, and The prevalence of impingement correlated observations parallel the clinical manifesta-4A) or direct osseous contact between the with MRI hindfoot valgus angle (p < 0.001) tions of posterior tibial tendon dysfunction incalcaneus and fibula (n = 6, 27%) (Figs. 4A (Table 3). The mean angle was significant- which longitudinal arch collapse progressesand 4B) or distal fibular marrow edema (n = ly lower among subjects without MRI evi- through four stages based on the severity of8, 36%) (Fig. 4C). In one patient, there was dence of impingement (14.1°; SD, 6.1) than the flatfoot deformity [25, 26]. In stage I, pa-remodeling of the calcaneus and fibula with among subjects with either isolated talo- tients present with mild medial ankle painthe formation of a “neofacet” (Fig. 4B). calcaneal impingement (26.5°; SD, 11.0) or because of posterior tibial tendon tenosyno- combined talocalcaneal–subfibular impinge- vitis or tendinosis. In stage II, there is a tearAssociation Between Lateral Hindfoot ment (27.1°; SD, 7.0) (p < 0.001). In addition, of the posterior tibial tendon with loss of nor-Impingement and Grading of Posterior Tibial the mean angle was significantly greater in mal alignment of the foot. However, the flat-Tendon Tear combined talocalcaneal–subfibular impinge- foot deformity is mobile. In contrast, stage III There was a trend for the prevalence of lat- ment compared with isolated talocalcaneal represents severe incompetence of the poste-eral hindfoot impingement to increase with impingement (p = 0.031) or isolated subfibu- rior tibial tendon and progression to a fixedgrading of posterior tibial tendon tear (p = lar impingement (p = 0.020). flatfoot deformity. Finally, in stage IV, there0.052). Impingement was seen in 32% (n = is additional valgus angulation of the talus at20/62) of grade I, 50% (n = 3/6) of grade Association Between Lateral Hindfoot Impingement the tibiotalar joint [25, 26]. Although medialII, and 71% (n = 5/7) of grade III posterior and Peroneal Subluxation–Dislocation ankle pain is the presenting symptom in earlytibial tendon tears. Furthermore, there was a Peroneal tendon subluxation was seen in stages of posterior tibial tendon dysfunction,significant positive association between the five (7%) of the 75 patients (Fig. 4). There lateral ankle pain related to hindfoot val-presence of combined talocalcaneal–subfib- were no cases of peroneal tendon disloca- gus and lateral impingement predominatesAJR:193, September 2009 675
  5. 5. Donovan and Rosenberg Fig. 4—83-year-old woman with history of posterior tibial tendon dysfunction and lateral ankle pain, depicted by marker, showing combined talocalcaneal–subfibular impingement. A, Coronal T1-weighted fast spin-echo image shows cystic changes and sclerosis at opposing talus and calcaneus (white arrows). Intermediate-signal soft tissue is entrapped between fibula and calcaneus (black arrow). B, More posterior coronal T1-weighted fast spin- echo image illustrates direct osseous contact between fibula and calcaneus (arrow) with calcaneal “neofacet” (star). Hindfoot valgus angle, formed by intersection of line along medial calcaneal wall and line parallel to long axis of tibia, is increased (32°). C, Coronal T2-weighted fat-suppressed image depicts fibular marrow edema (star). D, Axial proton density–weighted fast spin-echo image illustrates peroneal tendon subluxation (black arrow) and grade III posterior tibial tendon tear (arrowhead). Direct contact between fibula and calcaneus (white arrows) is also identified. A B the MRI studies were not weight bearing, it may still be useful for assessing anatomic distortions [27]. Future studies with recently introduced weight-bearing MRI capabilities [28] may aid in correlating our MRI hindfoot valgus grading scale with weight-bearing ra- diographs and with clinical stages of poste- rior tibial tendon dysfunction. To the best of our knowledge, this study provides the first description of the MRI fea- tures of lateral hindfoot impingement. The most common manifestations of talocalca- neal impingement were cystic changes and edema in the lateral process of the talus and the lateral calcaneus. Imaging features of subfibular impingement included extensive soft-tissue thickening between the fibula and the calcaneus. We believe this may be related to entrapment of fat and even the calcaneo- C D fibular ligament between the two bones, withTABLE 2: Association of Grading of Posterior Tibial Tendon Tear With the development of fat atrophy and fibrosis Lateral Hindfoot Impingement [21]. Less frequent findings in subfibular im- Grading of Posterior Tibial Tendon Tear pingement included fibular tip marrow ede- Lateral Hindfoot Impingement Ia (n = 26) Ib (n = 36) II (n = 6) III (n = 7) p ma and contact between the fibula and cal- caneus, occasionally with the formation of a No impingement 18 (69.2) 24 (66.7) 3 (50.0) 2 (28.6) 0.052 calcaneal neofacet. Impingement 8 (30.8) 12 (33.3) 3 (50.0) 5 (71.4) It is important to distinguish marrow ede- Isolated talocalcaneal 1 (3.8) 5 (13.9) 0 (0) 0 (0) 0.804 ma involving the fibula in subfibular impinge- ment from that related to a fibular stress frac- Isolated subfibular 3 (11.5) 3 (8.3) 1 (16.7) 1 (14.3) 0.788 ture [29]. Both fibular marrow abnormalities Combined talocalcaneal–subfibular 4 (15.4) 4 (11.1) 2 (33.3) 4 (57.1) 0.020 occur with increased frequency in hindfootNote—Data in parentheses are percentages. valgus and lateral impingement [12, 27]. The location of marrow edema may be a helpfulin long-standing posterior tibial tendon dys- fined as 6° or less based on CT measure- distinguishing feature. Fibular stress frac-function [14] and often necessitates osseous ments [19]. We developed a grading scheme tures typically involve the distal fibular shaft,correction of the foot deformity [5]. for hindfoot valgus severity based on MRI whereas fibular tip edema is likely the result Clinical or radiographic grading scales measurement of the coronal tibiocalcaneal of direct osseous contact with the calcaneus.for hindfoot valgus severity are lacking, al- angle. Although the hindfoot valgus angle is If fibular edema is related to impingement,though the normal angle was previously de- likely underestimated in our study because then edema may be seen in the adjacent por-676 AJR:193, September 2009
  6. 6. MRI of Lateral Hindfoot ImpingementTABLE 3: Association of Hindfoot Valgus With Lateral Hindfoot combined talocalcaneal–subfibular impinge- Impingement ment. To the best of our knowledge, these re- Hindfoot Valgus lationships have not been described previous- ly in the literature. Interestingly, MR images Normal Mild Moderate Severe Lateral Hindfoot Impingement (n = 5) (n = 31) (n = 25) (n = 14) p illustrating peroneal tendon dislocation in pa- tients with severe hindfoot valgus secondary No impingement 5 (100.0) 29 (93.5) 12 (48.0) 1 (7.1) < 0.001 to posterior tibial tendon dysfunction have Impingement 0 (0) 2 (6.5) 13 (52.0) 13 (92.9) been published previously without addressing Isolated talocalcaneal 0 (0) 1 (3.2) 2 (8.0) 3 (21.4) 0.039 this association [32]. Peroneal tendon disloca- Isolated subfibular 0 (0) 1 (3.2) 4 (16.0) 3 (21.4) 0.034 tion has also been observed in patients with congenital calcaneovalgus deformity [33]. Combined talocalcaneal–subfibular 0 (0) 0 (0) 7 (28.0) 7 (50.0) < 0.001 It is possible that the proximity of the calca-Note—Data in parentheses are percentages. neus to the fibula with advanced posterior tib- ial tendon dysfunction leads to crowding and subsequent displacement of the peroneal ten- dons of the retromalleolar groove. There were several limitations to our study. First, the retrospective design and the case selection methodology may have intro- duced bias by excluding patients with early clinical posterior tibial tendon dysfunction and normal MRI studies. This may have re- sulted in falsely high MRI prevalence of lat- eral impingement in our patient population. Second, the readers were not blinded to the grading of posterior tibial tendon tears and were aware of the null hypothesis, and image review was performed by consensus. Third, access to patients’ clinical history and surgi- cal correlation was restricted, and the MRI criteria for impingement were established in A B the absence of clinical correlation. Fourth,Fig. 5—74-year-old woman with history of fall and MRI finding of severe hindfoot valgus and lateral adventitial the true degree of hindfoot valgus could notbursa formation. be assessed because our MRI studies wereA and B, Coronal (A) and axial (B) T2-weighted fat-suppressed fast spin-echo images show lateral adventitial not weight bearing, and correlation withbursa (stars). Severe hindfoot valgus (40°) is present as measured by tibiocalcaneal angle in coronal plane.Posterior tibial tendon is thickened in keeping with grade Ia tear (arrow, B). standing radiographs was not available. Fi- nally, our study described associations be- tween posterior tibial tendon tear severity,tion of the calcaneus, which would be absent advanced posterior tibial tendon tears. Im- hindfoot valgus severity, and lateral hindfootin a stress fracture. pingement was seen in only 32% of cases with impingement; causal relationships between Aside from posterior tibial tendon dys- grade I posterior tibial tendon tears but in 71% these findings cannot be established.function, there are several additional causes of cases with grade III posterior tibial tendon In summary, the MRI features of lateralof hindfoot valgus, such as healed intraartic- tears. Furthermore, combined talocalcaneal– hindfoot impingement including osseous andular calcaneal fractures [30], neuropathic ar- subfibular impingement was seen in a minor- soft-tissue abnormalities were more com-thropathy [31], and inflammatory arthritides ity of cases with grade I posterior tibial tendon monly seen in patients with advanced pos-[12], which may lead to extraarticular im- tears (12%), whereas a higher percentage was terior tibial tendon tears and with a greaterpingement. The radiologist should be famil- seen with grade II (33%) and grade III (57%) MRI hindfoot valgus angle. Peroneal ten-iar with these different entities when encoun- posterior tibial tendon tears. don displacement, previously not describedtering patients with lateral ankle pain and A positive association was also seen be- in association with posterior tibial tendonwith MRI features of lateral impingement. tween impingement and hindfoot valgus se- dysfunction, may also be encountered with Our data support previous studies showing verity. Moreover, the mean MRI hindfoot advanced hindfoot valgus and lateral im-that talocalcaneal impingement may represent valgus angle was significantly greater in pingement. Thus, grading of posterior tibialan earlier stage of posterior tibial tendon dys- combined talocalcaneal–subfibular impinge- tendon tears and assessment of hindfoot val-function than subfibular or combined talocal- ment compared with isolated talocalcaneal gus angles on MRI may aid in the detectioncaneal–subfibular impingement [20]. We not- or isolated subfibular impingement. of early lateral impingement. Further studyed an increased prevalence of impingement, Our study noted a significant association is needed to correlate MRI findings of lateralparticularly the more advanced, combined between peroneal tendon subluxation and hindfoot impingement with clinical gradingtalocalcaneal–subfibular impingement, with moderate or severe hindfoot valgus as well as of posterior tibial tendon dysfunction, lateralAJR:193, September 2009 677
  7. 7. Donovan and Rosenberghindfoot pain, surgical findings, and patient 11. Rosenberg ZS, Jahss MH, Noto AM, et al. Rup- 497–503outcome after surgery. ture of the posterior tibial tendon: CT and surgical 23. Robinson P, White LM. Soft-tissue and osseous findings. Radiology 1988; 167:489–493 impingement syndromes of the ankle: role of im-Acknowledgment 12. Maenpaa H, Lehto MU, Belt EA. Stress fractures of aging in diagnosis and management. Radio- The authors thank James Babb for his as- the ankle and forefoot in patients with inflammatory Graphics 2002; 22:1457–1469 [discussion 1470–sistance with statistical analysis. arthritides. Foot Ankle Int 2002; 23:833–837 1451] 13. Bluman EM, Title CI, Myerson MS. Posterior 24. Rosenberg ZS, Bencardino J, Astion D, Sch-References tibial tendon rupture: a refined classification sys- weitzer ME, Rokito A, Sheskier S. MRI features 1. Bluman EM, Myerson MS. Stage IV posterior tem. Foot Ankle Clin 2007; 12:233–249, v of chronic injuries of the superior peroneal reti- tibial tendon rupture. Foot Ankle Clin 2007; 12: 14. Friedman MA, Draganich LF, Toolan B, Brage naculum. AJR 2003; 181:1551–1557 341–362, viii ME. The effects of adult acquired flatfoot defor- 25. Johnson KA, Strom DE. Tibialis posterior tendon 2. Jahss MH. Spontaneous rupture of the tibialis mity on tibiotalar joint contact characteristics. dysfunction. Clin Orthop Relat Res 1989; 196–206 posterior tendon: clinical findings, tenographic Foot Ankle Int 2001; 22:241–246 26. Myerson MS, Corrigan J. Treatment of posterior studies, and a new technique of repair. Foot Ankle 15. Ananthakrisnan D, Ching R, Tencer A, Hansen tibial tendon dysfunction with flexor digitorum 1982; 3:158–166 ST Jr, Sangeorzan BJ. Subluxation of the talocal- longus tendon transfer and calcaneal osteotomy. 3. Johnson KA. Tibialis posterior tendon rupture. caneal joint in adults who have symptomatic flat- Orthopedics 1996; 19:383–388 Clin Orthop Relat Res 1983; 140–147 foot. J Bone Joint Surg Am 1999; 81:1147–1154 27. Schweitzer ME, Karasick D. MR imaging of dis- 4. Funk DA, Cass JR, Johnson KA. Acquired adult 16. Rosenberg ZS. Chronic rupture of the posterior orders of the posterior tibialis tendon. AJR 2000; flat foot secondary to posterior tibial tendon pa- tibial tendon. Magn Reson Imaging Clin N Am 175:627–635 thology. J Bone Joint Surg Am 1986; 68:95–102 1994; 2:79–87 28. Weishaupt D, Treiber K, Jacob HA, et al. MR imag- 5. Chi TD, Toolan BC, Sangeorzan BJ, Hansen ST 17. Conti S, Michelson J, Jahss M. Clinical signifi- ing of the forefoot under weight-bearing conditions: Jr. The lateral column lengthening and medial cance of magnetic resonance imaging in preoper- position-related changes of the neurovascular bun- column stabilization procedures. Clin Orthop ative planning for reconstruction of posterior tibi- dles and the metatarsal heads in asymptomatic vol- Relat Res 1999; 81–90 al tendon ruptures. Foot Ankle 1992; 13:208–214 unteers. J Magn Reson Imaging 2002; 16:75–84 6. Myerson MS. Adult acquired flatfoot deformity: 18. Saltzman CL, el-Khoury GY. The hindfoot align- 29. Taunton JE, Ryan MB, Clement DB, McKenzie treatment of dysfunction of the posterior tibial ment view. Foot Ankle Int 1995; 16:572–576 DC, Lloyd-Smith DR, Zumbo BD. A retrospec- tendon. Instr Course Lect 1997; 46:393–405 19. Seltzer SE, Weissman BN, Braunstein EM, Adams tive case-control analysis of 2002 running inju- 7. Mann RA, Thompson FM. Rupture of the poste- DF, Thomas WH. Computed tomography of the ries. Br J Sports Med 2002; 36:95–101 rior tibial tendon causing flat foot: surgical treat- hindfoot. J Comput Assist Tomogr 1984; 8:488–497 30. Isbister JF. Calcaneo-fibular abutment following ment. J Bone Joint Surg Am 1985; 67:556–561 20. Malicky ES, Crary JL, Houghton MJ, Agel J, crush fracture of the calcaneus. J Bone Joint Surg 8. Pedowitz WJ, Kovatis P. Flatfoot in the adult. J Hansen ST Jr, Sangeorzan BJ. Talocalcaneal and Br 1974; 56:274–278 Am Acad Orthop Surg 1995; 3:293–302 subfibular impingement in symptomatic flatfoot 31. Clouse ME, Gramm HF, Legg M, Flood T. Dia- 9. Pomeroy GC, Manoli A 2nd. A new operative ap- in adults. J Bone Joint Surg Am 2002; 84:2005– betic osteoarthropathy: clinical and roentgeno- proach for flatfoot secondary to posterior tibial 2009 graphic observations in 90 cases. Am J Roentgenol tendon insufficiency: a preliminary report. Foot 21. Jordan LK 3rd, Helms CA, Cooperman AE, Speer Radium Ther Nucl Med 1974; 121:22–34 Ankle Int 1997; 18:206–212 KP. Magnetic resonance imaging findings in ante- 32. Jahss MH. Tendon disorders of the foot and ankle,10. Gazdag AR, Cracchiolo A 3rd. Rupture of the rolateral impingement of the ankle. Skeletal Ra- 2nd ed. Philadelphia, PA: Sanders, 1991:1491 posterior tibial tendon: evaluation of injury of the diol 2000; 29:34–39 33. Purnell ML, Drummond DS, Engber WD, Breed spring ligament and clinical assessment of tendon 22. Bureau NJ, Cardinal E, Hobden R, Aubin B. Pos- AL. Congenital dislocation of the peroneal ten- transfer and ligament repair. J Bone Joint Surg terior ankle impingement syndrome: MR imaging dons in the calcaneovalgus foot. J Bone Joint Surg Am 1997; 79:675–681 findings in seven patients. Radiology 2000; 215: Br 1983; 65:316–319678 AJR:193, September 2009