Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Computer and Network Security.

Name: Khalid Khalil Kamil
Matric. No.: G0327887.

                            Solutions to...
21mod21=2    22mod21=4,    24mod21=(4x4)mod21=16, 28mod21=(16x16)mod21
=256mod21=4, 216mod21=(4x4)mod21=16,
  217mod21=[(2...
n=p * q=13*11=143.
       φ(n)=(p-1)(q-1)=12*10=120.
       Select integer “e” where: gcd(φ(n),e)=1 and 1<e< φ(n)
       C...
2530mod133=(25*93)mod133=64.
     31
M = 25 mod133=(64*25)mod133=4.
   M=4.
Upcoming SlideShare
Loading in …5
×

Microsoft Word Hw#3

2,283 views

Published on

Published in: Technology
  • Be the first to comment

  • Be the first to like this

Microsoft Word Hw#3

  1. 1. Computer and Network Security. Name: Khalid Khalil Kamil Matric. No.: G0327887. Solutions to Assignment # 3: 1- Use Euclid’s algorithm to find the greatest common divisor (gcd) of: a. gcd(14,105): Solution: gcd(105,14)=gcd(14, 105 mod 14) = gcd(14, 7) = gcd(7,14 mod 7) = gcd(7,0)=7. b. gcd(180, 1512) Solution: Gcd(1512,180)=gcd(180,1512 mod180)=gcd(180,72)=gcd(72,36)=gcd(36,72mod36) =gcd(36,0)= 36. c. gcd(1001,7655): solution: gcd(7655,1001)=gcd(1001,7655mod1001)=gcd(1001,648)=gcd(648,1001mod648) =gcd(648,353)=gcd(353,648mod353)=gcd(353,295)=gcd(295,353mod295) =gcd(295,58) =gcd(58,295mod58)=gcd(58,5)=gcd(5,58mod5)=gcd(5,3)=gcd(3,5mod3)=gcd(3,2) =gcd(2,3mod2)=gcd(2,1)=gcd(1,2mod1)=gcd(1,0)=1. d. gcd(24140,16762): solution: gcd(24140,16762)=gcd(16762,24140mod16762)=gcd(16762,7378) =gcd(7378,16762mod7378)=gcd(7378,2006)=gcd(2006,7378mod2006) =gcd(2006,1360)=gcd(1360,2006mod1360)=gcd(1360,646)=gcd(646,1360mod646) =gcd(646,68)=gcd(68,646mod68)=gcd(68,34)=gcd(34,68mod34)=gcd(34,0)=34. 2- Find: a. 13 mod 11=2mod11=2. b.875mod9=2mod9=2. c.2594mod48=2mod9=2. d.217mod21: Solution:
  2. 2. 21mod21=2 22mod21=4, 24mod21=(4x4)mod21=16, 28mod21=(16x16)mod21 =256mod21=4, 216mod21=(4x4)mod21=16, 217mod21=[(21mod21)x(216mod21)]mod21=[2x16]mod21=32mod21=11mod21=11. 3-Using Fermat’s theorem, find 3201mod11? Solution: Fermat’s theorem states that: ap-1 ≡1 mod p , provided that, p is a prime number and a is positive integer not divisible by p. 3201mod11=[(310mod11)20 x (31mod11)]mod11 ====== ▼ applying Fermat’s theorem [(1 mod 11)20x (3 mod 11)]mod 11 [1x3] mod 11=3. 4- Perform encryption and decryption using RSA algorithm for the following: a- p=3 q=11 m=5 Solution Key generation: n=p * q=3*11=33. φ(n)=(p-1)(q-1)=2*10=20. Select integer “e” where: gcd(φ(n),e)=1 and 1<e< φ(n) Choose e=3. Calculate d; where d≡e-1mod φ(n) de≡1 mod φ(n) where: d< φ(n) d*3≡1 mod 20 d=7. Public key: KU={3,33}; Private Key: KR={7,33}. Encryption: C=Me mod n = 53mod 33=[(51mod33)(52mod33)]mod33=[5*25]mod33 =26. Decryption: M=Cd mod n=267mod33=[(261mod33)(262mod33)(264mod33)]mod33 =[26*16*(16*16 mod33)]mod33=[26*16*25]mod33=5. b- p=13 q=11 M=9. Key generation:
  3. 3. n=p * q=13*11=143. φ(n)=(p-1)(q-1)=12*10=120. Select integer “e” where: gcd(φ(n),e)=1 and 1<e< φ(n) Choose e=7. Calculate d; where d≡e-1mod φ(n) de≡1 mod φ(n) where: d< φ(n) d*7≡1 mod 120 721≡1mod120 d=721/7=103. Public key: KU={7,143}; Private Key: KR={103,143}. Encryption: C=Me mod n = 97mod 143=[(91mod143)(92mod143)(94mod143)]mod33 =[9*81*(81*81)mod143]mod143=[9*81*126]mod43=48. Decryption: M=Cd mod n=48103mod143 (48mod143)=48. (482mod143)=(48*48)mod143=16. (484mod143)=(16*16)mod143=113. (488mod143)=(113*113)mod143=42. (4816mod143)=(42*42)mod143=48. (4832mod48)=(48*48)mod143=16. (4864mod143)=(16*16mod)143=113. (4896mod143)=(16*113)mod143=92. (48100mod143)=(92*113)mod143=100. (48102mod143)=(100*16)mod143=27. (48103mod143)=(27*48)mod143=9. 5- In a public key system, an intruder intercepts the cipher text C=25, which is destined to a user whose public key is {7,133}. What is the plain text message M? Solution: We have: KU={e,n}={7,133} n=133=20305071110130170191=7*19. p=7, q=19. φ(n) =(7-1)(19-1)=108. de ≡ 1 mod φ(n) 7d ≡ 1 mod108. 7d mod 108=1. Maybe: 7d=108+1? d=109/7=15.57 no Maybe: 7d=108*2+1 d=217/7=31 OK. KR={31,133}. M=Cd mod n =2531 mod 133 251mod133=25. 252mod133=(25*25)mod133=93. 254mod133=(93*93)mod133=4 258mod133=(4*4)mod133=16. 2516mod133=(16*16)mod133=123. 2524mod133=(123*16)mod133=106. 2528mod133=(106*4)mod133=25.
  4. 4. 2530mod133=(25*93)mod133=64. 31 M = 25 mod133=(64*25)mod133=4. M=4.

×