SlideShare a Scribd company logo
1 of 15
Download to read offline
 
 
Lab 2:  
Open Loop Buck Converter 
EE 452: Power Electronics Design 
Electrical Engineering Department 
University of Washington 
 
Section AB 
Nasir Elmi 1468579 
Daniel Park 1271113 
Ki Hei Chan 1368010 
 
October 26, 2015 
 
 
 
 
 
 
 
 
1 Introduction 
The purpose of this lab is to use the theory of the buck converter to build one. This lab report is a                                           
follow up from the simulations and will focus on the hardware part. The simulation results will                               
be presented again for comparison purposes and then the physical circuit will undergo tests that                             
were similarly ran in simulations. Finally, these results will be presented to check if the built                               
circuit will be able to replicate the results from the simulated circuit.  
1.1 Design Specifications 
a) Input voltage: 10V DC 
b) Output voltage: 5V DC 
c) Maximum load: 1000 mA 
d) Minimum load: 100 mA 
e) Output Ripple Voltage  0.2 Vpp 
f) Efficiency: > 75 % at Maximum Load 
g) Converter frequency: 50 kHz – 200 kHz. 
h) Worst case dynamic voltage change: 0.75 V 
 
2 Design Using Simulation 
2.1 Inductor Value Selection 
The following parameter values are given in Table 1 to find the inductor value needed for the                                 
design: 
Table 1. Given and Set/Chosen Parameters for the Open­Loop Buck Converter 
Parameter  Value 
Input Voltage  10 V (DC) 
Output Voltage  5 V (DC) 
Max Load Current  1000 mA 
Min Load Current  100 mA 
Peak­to­peak Ripple Voltage  0.2 V 
Converter Frequency  50 kHz (chosen) 
 
In order to find the inductor value needed, delta inductor current had to be found first using the                                   
following equation below: 
 
.5          (1)D = V in
V out
= 5
10 = 0  
 
i .2A     (2)∆ L = Lfs
(V −V )Din out
= (5)(0.5)
(50k)(250μH) = 0  
 
Then, the delta inductor current value was used to find the inductor value. Because we chose our                                 
design to completely avoid discontinuous mode, the minimum load current was used in the                           
following equation below: 
 
50μH     (3)Lcrit = 2I fomin s
(V −V )Din out
= (10−5)(0.5)
(2)(0.1)(50k) = 2  
 
 
The end calculations presented that a 250   inductor was needed to fulfill the design.Hμ   
2.2 Capacitor Value Selection 
Using the same parameters given in Table 1 and the delta inductor current, the following 
equation was used to find the capacitance value needed: 
 
≥ .5μF     (4)C
∆iL
8V f0 s
= 0.2
(8)(0.2)(50k) = 2  
 
With the given equation above, the design needed a capacitor value of at least 2.5 F in parallel                             μ      
with the load. However, there are no 2.5 F capacitor values available; thus, a 3.3 F capacitor                μ              μ    
was used for the simulation. 
3 Open Loop Buck Converter Design  
Figure 1 is the open loop buck converter design that will be built in this lab. The gate of the                                       
MOSFET is connected to a similar representation of the MC­34151 driver as it was not provided                               
in MULTISIM, but is replaced by the drive in the actual circuit.  
 
Figure 1. Open Loop Buck Converter Design (using Multisim) 
4 Simulation Tests and Calculations 
Before building the actual hardware for the lab, some tests had to be run through Multisim to 
ensure that our design has met the specifications for this lab. 
4.1 Varying Load Current 
 
 
Figure 2. Transient Analysis of the Buck Converter at different currents 
 
For the first set of tests, the load current was varied by putting in different resistors ranging from                                   
5 Ω to 50 Ω. By observing the plots, the steady­state DC voltage is approximately 5V and the                                   
voltage ripples are within specifications as shown in Figure 2. 
 
4.2 Inductor Current 
 
 
Figure 3. Transient Analysis of the Buck Converter at different loads 
 
Figure 3 shows two plots of the current load at different loads. The green waveform represents                               
the inductor current at high load current (Rload = 5 Ω) and the blue waveform represents the                                 
inductor current at low load current (Rload = 50 Ω). The average, steady­state currents are near                               
what they should be in specifications. 
 
4.3 Rapid Step Load Variation (Maximum to Minimum) 
 
 
Figure 4. Transient Analysis of the output voltage ripple. 
 
Figure 4 shows the output voltage when there is dynamic loading from maximum loading current                             
to minimum loading current. As of now, this voltage spike is too high and needs to be addressed                                   
when building the hardware. One of the suggestions is to add a higher valued capacitor to reduce                                 
the dynamic voltage change. 
4.4 Rapid Step Load Variation (Minimum to Maximum) 
 
 
Figure 5. Transient Analysis of the output voltage ripple. 
 
Similarly, Figure 5 shows the output voltage when there is dynamic loading from minimum                           
loading current to maximum loading current. As of now, this voltage spike is too high and needs                                 
to be addressed when building the hardware. Mentioned before, adding a capacitor would be able                             
to reduce this dynamic voltage change.  
 
4.5 Maximum Load (Rload = 5 Ω) 
The sections below are analysis at maximum load current:  
 
4.5.1 Voltage Ripple at Max Load 
 
Figure 6. Transient Analysis of the output voltage ripple. 
 
Figure 6 above shows the output voltage ripple at maximum load current. This plot shows that                               
the voltage ripple ranges from 0 to 4% which is within the acceptable range for the design. 
 
4.5.2 Efficiency at Max Load 
 
Figure 7. Transient Analysis of the Efficiency 
 
Figure 7 displays the efficiency of the circuit, which shows that once in steady state, the                               
efficiency comes to be around 88%, which is above design’s requirement of 75% efficiency.                           
Cursor values: Pin avg = 5.0448 W; Pout avg = 4.436 W 
 
00% 7.93 %     (5)η = Pin
Pout
* 1 = 8  
 
4.6 MOSFET Waveform 
 
Figure 8. Transient Analysis of the Vgs and Vds of the MOSFET, the voltage of the diode, and the output voltage 
Figure 8 displays the drain to source voltage of the MOSFET, the voltage of the diode, and the                                   
voltage of the output. MOSFET turns on when the Vds is at least 10.65 V and the Vgs is at least                                         
0.62 V. Thus, these values are the turn on settings for the MOSFET. Additionally, at these                               
voltage settings, the diode is turned off (the blue waveform) and in reverse bias, which would                               
also prove that the MOSFET is on in the buck converter. 
5 Hardware Implementation 
With the simulation results and calculations shown, the hardware test will be presented as 
follows. 
 
Before starting the hardware testing procedures, the inductor needed to be built using copper 
wiring and a core. The calculation for the number of turns is as follows:  
 
        39.16    (6) N =
√  L
Al =  
√163 10*
−9
250   10*
−6
=    
 
The result was rounded to 40 turns and the resulting inductance was around 252 uH. 
In addition, the capacitance value was increased to 1800 uF to reduce the output voltage ripple 
and the dynamic voltage change, and a resistor of 1kΩ was added to the gate to smooth the gate 
voltage and to reduce spiking. 
5.1 Varying Load Current 
Table 2: Different parameters of the circuit when the load current is varied from minimum to maximum 
via change in load resistance 
R​load​(Ω)  V​out​(V)  I​load​(A)  Vo/Vin 
50  5.20  0.104  0.520 
30  5.11  0.170  0.511 
20  5.01  0.251  0.501 
10  4.99  0.499  0.499 
5  4.91  0.982  0.491 
  
Table 2 summarizes the values of the load current and the ratio of the output and input voltages 
when the load current is varied from minimum to maximum via change in load resistance. 
 
Figure 9.  Load current vs Vo/Vin 
 
Figure 9 shows the plot of the ratio of the output to the input voltage versus the load current. the                                       
above plot is very similar to the theoretical version of the graph. In addition, this plot shows how                                   
once load current reaches below a certain threshold, the circuit slowly goes into discontinuous                           
conduction mode. 
5.2 Inductor Current 
Figure 10 and 11 ​below show the current through the inductor for the highest and lowest load                                 
currents. Although our waveform had large spikes for every new switching cycle of the                           
MOSFET due to transient effects of the switching, the ripple voltage without the peaks ranged                             
from 0.1 to 0.2 V, which is within specifications of the design.  
 
 
Figure 10 shows the inductor current at maximum load 
 
Figure 11 shows the inductor current at minimum load. 
 
5.3 Rapid Step Load Variation (Maximum to Minimum) 
Figure 12 shows the shows a waveform of Vo versus time for rapid (step) load variation from                                 
maximum to minimum. By using a higher capacitor as suggested from simulation, the dynamic                           
voltage change dramatically reduced from 3.6 to 0.75 V.  
 
Figure 12. Rapid load variation from max to min. 
5.4 Rapid Step Load Variation (Minimum to Maximum) 
Figure 13 shows the shows a waveform of Vo versus time for rapid (step) load variation from                                 
minimum to maximum. Similarly, using the higher capacitor value reduced the dynamic voltage                         
change from 7.5 V to at most 0.8 V.  
 
Figure 13. Rapid load variation from min to max. 
5.5 Maximum Load (Rload = 5 Ω) 
Similar to the simulation tests, the following are measurements/waveforms of the circuit when                         
the circuit is operating a maximum load. 
 
5.5.1 Output Voltage Ripple 
Figure 14 shows the Output waveform and output voltage ripple versus time at max load. 
 
Figure 14. Output voltage vs. Time at Max Load. 
The calculations for the output voltage ripple are as follows at maximum load: 
 
I 982 .964 A    (7)ΔiL = 2 Omax = 2 * . = 1   
v 0.0027 V     (8)Δ o =  
ΔiL
8Cfs
= 1.964
8 (50kHz)(1800μF)*
=     
 
Although the measured output peak­to­peak voltage ripple are different from the calculated as                         
done above, the measured output peak­to­peak voltage of 0.12 V is within the specifications of                             
the lab. 
5.5.2 Max Load Efficiency 
Using the following measured parameters given below, the calculations for the efficiency are as 
follows: 
V​MaxLoad ​= 4.91V V​in​ = 10V 
I​out  = 0.982 A I​L​   = 0.54 A 
P​out  = 4.822 W P​in​  = 5.4W 
R​Load  = 5 ohm 
 
P​out​ / P​in ​= Efficiency = 89.89%    (9) 
 
Calculations show that efficiency comes out to be around 89%, which is above the specification 
requirement of 75%. 
5.6 Power Loop Losses 
From the max load efficiency section, the measured power loss comes out to be 0.578 W. The                                 
following are the power dissipation for each element (note these are values at which the circuit                               
has reached steady state): 
MOSFET Dissipation: 0.081 W 
Inductor Dissipation: 0.093 W 
Capacitor Dissipation(ESR): 0.200 W  
Diode Dissipation: 0.373 W 
R_Gate Dissipation: 0.126 W 
 
 
5.7 MOSFET Waveforms 
 
Figure 15. Waveform of Vs(yellow), Vd(blue), and Vds(orange) of the MOSFET 
As shown on Figure 15, the waveforms of the Vd, Vs, and Vds of the MOSFET were taken to                                     
observe the turn on behavior. Similar to the simulation, the MOSFET turns on when Vds =                               
10.2V and when the source voltage becomes negative, which would mean that the diode is in                               
reverse bias. Although not pictured in the waveform, through calculations from the                       
measurements of the waveform, the MOSFET turns on when Vgs = 0.58 V. 
5.8 Varying Vcc (Supply Voltage) 
 
Figure 16. Output voltage at which Vcc = 10V 
Additionally, the test was done to see what effect the output voltage would have if the supply                                 
voltage were to decrease. In this case, the supply voltage decreased from 16V to 10V and                               
consequently, the output voltage decreased by 1.6 V (DC). This is the case because this would                               
decrease the output from the driver and in turn decrease Vgs. Consequently, the source current                             
that is fed into the inductor would decrease. Overall, this effectively reduces the current that                             
passes through the load, which in turn decrease the output DC voltage. 
5.9 ESR Calculations 
 
Figure 17. Test Circuit to find the ESR of C1 
In order to calculate the ESR for one of the capacitor, the test circuit in Figure 17 was used. With                                       
the capacitor nearly fully charged, the decay behavior needed to be observed when R2 = 1Ω &                                 
2Ω. Figure 18 and Figure 19 display both decay behaviors. With these graphs, two points were                               
able to be extracted, respectively.  
 
Figure 18. Exponential Decay Behavior with R2 = 1Ω 
 
Figure 19. Exponential Decay Behavior with R2 = 2Ω 
 
Then using the following functions below, the tau values were able to be calculated along with                               
the ESR. 
 
.39Eτ1 = 9 − 4 
.41Eτ2 = 1 − 3 
R21 = 1Ω, R22 = 2Ω  
With all the calculations, ESR value of the 470 uF comes out to be approximately 0.99​Ω​, which                                 
is high and expected of a high­capacitance­valued, electrolytic capacitor. 
3 Conclusion 
By using the current knowledge of the open­loop buck converter, the parameters including the                           
capacitor and the inductor values needed were able to be found. Then we ran simulation tests in                                 
order to prove that most of the circuit design was sufficient. The actual circuit was then built                                 
with new adjustments as suggested from the simulation, which included adding a gate resistor                           
and a higher valued capacitor. As a result, the dynamic voltage change was greatly reduced to                               
within lab specifications along with the spiking. Overall, running the simulations and testing the                           
actual buck­converter circuit enabled us to learn the intricacies of the design, which helped us                             
improve our initial design and fix most of the problem associated with the hardware.  

More Related Content

What's hot

Control And Programingof Synchronous Generator
Control And Programingof Synchronous GeneratorControl And Programingof Synchronous Generator
Control And Programingof Synchronous Generatorfreelay
 
Voltage Mode Control of Buck Converter
Voltage Mode Control of Buck ConverterVoltage Mode Control of Buck Converter
Voltage Mode Control of Buck ConverterManish Kumar
 
FLYBACK CONVERTER PPT
FLYBACK CONVERTER PPTFLYBACK CONVERTER PPT
FLYBACK CONVERTER PPTAjmal Khan
 
Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"Aya Mahmoud
 
A Five – Level Integrated AC – DC Converter
A Five – Level Integrated AC – DC ConverterA Five – Level Integrated AC – DC Converter
A Five – Level Integrated AC – DC ConverterIJTET Journal
 
Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.Prajwal M B Raj
 
Buck boost converter
Buck boost converterBuck boost converter
Buck boost converterNazmushSakib7
 
Circuit theory 1 finals
Circuit theory 1 finalsCircuit theory 1 finals
Circuit theory 1 finalsjerbor
 
8 ee362_l_dc_dc_buckboost_ppt (1)
 8 ee362_l_dc_dc_buckboost_ppt (1) 8 ee362_l_dc_dc_buckboost_ppt (1)
8 ee362_l_dc_dc_buckboost_ppt (1)balaji kumar
 
Buck-Boost Converter
Buck-Boost ConverterBuck-Boost Converter
Buck-Boost ConverterSagar Patil
 
Rc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuitRc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuittaranjeet10
 

What's hot (20)

Control And Programingof Synchronous Generator
Control And Programingof Synchronous GeneratorControl And Programingof Synchronous Generator
Control And Programingof Synchronous Generator
 
Sepic
SepicSepic
Sepic
 
BUCK CONVERTER
BUCK CONVERTERBUCK CONVERTER
BUCK CONVERTER
 
Voltage Mode Control of Buck Converter
Voltage Mode Control of Buck ConverterVoltage Mode Control of Buck Converter
Voltage Mode Control of Buck Converter
 
FLYBACK CONVERTER PPT
FLYBACK CONVERTER PPTFLYBACK CONVERTER PPT
FLYBACK CONVERTER PPT
 
Cuk dc dc+converter
Cuk dc dc+converterCuk dc dc+converter
Cuk dc dc+converter
 
Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"
 
A Five – Level Integrated AC – DC Converter
A Five – Level Integrated AC – DC ConverterA Five – Level Integrated AC – DC Converter
A Five – Level Integrated AC – DC Converter
 
Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.
 
REPORT
REPORTREPORT
REPORT
 
Dc–Dc converters
Dc–Dc convertersDc–Dc converters
Dc–Dc converters
 
Buck boost converter
Buck boost converterBuck boost converter
Buck boost converter
 
Cycloconverters
CycloconvertersCycloconverters
Cycloconverters
 
Circuit theory 1 finals
Circuit theory 1 finalsCircuit theory 1 finals
Circuit theory 1 finals
 
Unit 3
Unit 3Unit 3
Unit 3
 
Dual converter
Dual converterDual converter
Dual converter
 
8 ee362_l_dc_dc_buckboost_ppt (1)
 8 ee362_l_dc_dc_buckboost_ppt (1) 8 ee362_l_dc_dc_buckboost_ppt (1)
8 ee362_l_dc_dc_buckboost_ppt (1)
 
Balaji mini proj
Balaji mini projBalaji mini proj
Balaji mini proj
 
Buck-Boost Converter
Buck-Boost ConverterBuck-Boost Converter
Buck-Boost Converter
 
Rc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuitRc and rl differentiator and integrator circuit
Rc and rl differentiator and integrator circuit
 

Similar to EE452_Open Loop Buck Converter

EE452_ClosedLoop Boost Converter
EE452_ClosedLoop Boost ConverterEE452_ClosedLoop Boost Converter
EE452_ClosedLoop Boost Converterki hei chan
 
Soft Switched Resonant Converters with Unsymmetrical Control
Soft Switched Resonant Converters with Unsymmetrical ControlSoft Switched Resonant Converters with Unsymmetrical Control
Soft Switched Resonant Converters with Unsymmetrical ControlIOSR Journals
 
A study of 220V AC-5V DC Converter
A study of 220V AC-5V DC ConverterA study of 220V AC-5V DC Converter
A study of 220V AC-5V DC ConverterSabrina Chowdhury
 
Vaila ruthvik ece_510_project
Vaila ruthvik ece_510_projectVaila ruthvik ece_510_project
Vaila ruthvik ece_510_projectRuthvik Vaila
 
Comparative Steady State Analysis of Boost and Cascaded Boost Converter with ...
Comparative Steady State Analysis of Boost and Cascaded Boost Converter with ...Comparative Steady State Analysis of Boost and Cascaded Boost Converter with ...
Comparative Steady State Analysis of Boost and Cascaded Boost Converter with ...IAES-IJPEDS
 
Supplementary material for the article: “Pseudo DC-link EV Home Charger with ...
Supplementary material for the article: “Pseudo DC-link EV Home Charger with ...Supplementary material for the article: “Pseudo DC-link EV Home Charger with ...
Supplementary material for the article: “Pseudo DC-link EV Home Charger with ...Hamed Heydari
 
A New Multilevel Inverter Structure For High-Power Applications using Multi-c...
A New Multilevel Inverter Structure For High-Power Applications using Multi-c...A New Multilevel Inverter Structure For High-Power Applications using Multi-c...
A New Multilevel Inverter Structure For High-Power Applications using Multi-c...IJPEDS-IAES
 
A High Step Up Hybrid Switch Converter Connected With PV Array For High Volt...
A High Step Up Hybrid Switch Converter  Connected With PV Array For High Volt...A High Step Up Hybrid Switch Converter  Connected With PV Array For High Volt...
A High Step Up Hybrid Switch Converter Connected With PV Array For High Volt...ijitjournal
 
Design & Construction of Switched Mode Power Supplies
Design & Construction of Switched Mode Power Supplies Design & Construction of Switched Mode Power Supplies
Design & Construction of Switched Mode Power Supplies Sachin Mehta
 
Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...
Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...
Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...IRJET Journal
 
5 a new technique of pwm boost inverter for solar home application
5 a new technique of pwm boost inverter for solar home application5 a new technique of pwm boost inverter for solar home application
5 a new technique of pwm boost inverter for solar home applicationAbdo Brahmi
 
A LOW VOLTAGE DYNAMIC SYNCHRONOUS DC-DC BUCK-BOOST CONVERTER FOUR SWITCHES
A LOW VOLTAGE DYNAMIC SYNCHRONOUS DC-DC BUCK-BOOST CONVERTER FOUR SWITCHES A LOW VOLTAGE DYNAMIC SYNCHRONOUS DC-DC BUCK-BOOST CONVERTER FOUR SWITCHES
A LOW VOLTAGE DYNAMIC SYNCHRONOUS DC-DC BUCK-BOOST CONVERTER FOUR SWITCHES P singh
 

Similar to EE452_Open Loop Buck Converter (20)

EE452_ClosedLoop Boost Converter
EE452_ClosedLoop Boost ConverterEE452_ClosedLoop Boost Converter
EE452_ClosedLoop Boost Converter
 
K010116671
K010116671K010116671
K010116671
 
Soft Switched Resonant Converters with Unsymmetrical Control
Soft Switched Resonant Converters with Unsymmetrical ControlSoft Switched Resonant Converters with Unsymmetrical Control
Soft Switched Resonant Converters with Unsymmetrical Control
 
IEEE 2004
IEEE 2004IEEE 2004
IEEE 2004
 
[IJET-V2I3P17] Authors: R.C.Rohini, G.Srividhya
[IJET-V2I3P17] Authors: R.C.Rohini, G.Srividhya[IJET-V2I3P17] Authors: R.C.Rohini, G.Srividhya
[IJET-V2I3P17] Authors: R.C.Rohini, G.Srividhya
 
A study of 220V AC-5V DC Converter
A study of 220V AC-5V DC ConverterA study of 220V AC-5V DC Converter
A study of 220V AC-5V DC Converter
 
Vaila ruthvik ece_510_project
Vaila ruthvik ece_510_projectVaila ruthvik ece_510_project
Vaila ruthvik ece_510_project
 
A high-performance multilevel inverter with reduced power electronic devices
A high-performance multilevel inverter with reduced power electronic devicesA high-performance multilevel inverter with reduced power electronic devices
A high-performance multilevel inverter with reduced power electronic devices
 
AHK SMPS P4 TR Final
AHK SMPS P4 TR FinalAHK SMPS P4 TR Final
AHK SMPS P4 TR Final
 
Comparative Steady State Analysis of Boost and Cascaded Boost Converter with ...
Comparative Steady State Analysis of Boost and Cascaded Boost Converter with ...Comparative Steady State Analysis of Boost and Cascaded Boost Converter with ...
Comparative Steady State Analysis of Boost and Cascaded Boost Converter with ...
 
Supplementary material for the article: “Pseudo DC-link EV Home Charger with ...
Supplementary material for the article: “Pseudo DC-link EV Home Charger with ...Supplementary material for the article: “Pseudo DC-link EV Home Charger with ...
Supplementary material for the article: “Pseudo DC-link EV Home Charger with ...
 
A New Multilevel Inverter Structure For High-Power Applications using Multi-c...
A New Multilevel Inverter Structure For High-Power Applications using Multi-c...A New Multilevel Inverter Structure For High-Power Applications using Multi-c...
A New Multilevel Inverter Structure For High-Power Applications using Multi-c...
 
Ijsrp p10285
Ijsrp p10285Ijsrp p10285
Ijsrp p10285
 
A High Step Up Hybrid Switch Converter Connected With PV Array For High Volt...
A High Step Up Hybrid Switch Converter  Connected With PV Array For High Volt...A High Step Up Hybrid Switch Converter  Connected With PV Array For High Volt...
A High Step Up Hybrid Switch Converter Connected With PV Array For High Volt...
 
CVT design
CVT designCVT design
CVT design
 
Design & Construction of Switched Mode Power Supplies
Design & Construction of Switched Mode Power Supplies Design & Construction of Switched Mode Power Supplies
Design & Construction of Switched Mode Power Supplies
 
Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...
Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...
Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...
 
5 a new technique of pwm boost inverter for solar home application
5 a new technique of pwm boost inverter for solar home application5 a new technique of pwm boost inverter for solar home application
5 a new technique of pwm boost inverter for solar home application
 
A LOW VOLTAGE DYNAMIC SYNCHRONOUS DC-DC BUCK-BOOST CONVERTER FOUR SWITCHES
A LOW VOLTAGE DYNAMIC SYNCHRONOUS DC-DC BUCK-BOOST CONVERTER FOUR SWITCHES A LOW VOLTAGE DYNAMIC SYNCHRONOUS DC-DC BUCK-BOOST CONVERTER FOUR SWITCHES
A LOW VOLTAGE DYNAMIC SYNCHRONOUS DC-DC BUCK-BOOST CONVERTER FOUR SWITCHES
 
M1028993
M1028993M1028993
M1028993
 

EE452_Open Loop Buck Converter

  • 2. 1 Introduction  The purpose of this lab is to use the theory of the buck converter to build one. This lab report is a                                            follow up from the simulations and will focus on the hardware part. The simulation results will                                be presented again for comparison purposes and then the physical circuit will undergo tests that                              were similarly ran in simulations. Finally, these results will be presented to check if the built                                circuit will be able to replicate the results from the simulated circuit.   1.1 Design Specifications  a) Input voltage: 10V DC  b) Output voltage: 5V DC  c) Maximum load: 1000 mA  d) Minimum load: 100 mA  e) Output Ripple Voltage  0.2 Vpp  f) Efficiency: > 75 % at Maximum Load  g) Converter frequency: 50 kHz – 200 kHz.  h) Worst case dynamic voltage change: 0.75 V    2 Design Using Simulation  2.1 Inductor Value Selection  The following parameter values are given in Table 1 to find the inductor value needed for the                                  design:  Table 1. Given and Set/Chosen Parameters for the Open­Loop Buck Converter  Parameter  Value  Input Voltage  10 V (DC)  Output Voltage  5 V (DC)  Max Load Current  1000 mA  Min Load Current  100 mA  Peak­to­peak Ripple Voltage  0.2 V  Converter Frequency  50 kHz (chosen) 
  • 3.   In order to find the inductor value needed, delta inductor current had to be found first using the                                    following equation below:    .5          (1)D = V in V out = 5 10 = 0     i .2A     (2)∆ L = Lfs (V −V )Din out = (5)(0.5) (50k)(250μH) = 0     Then, the delta inductor current value was used to find the inductor value. Because we chose our                                  design to completely avoid discontinuous mode, the minimum load current was used in the                            following equation below:    50μH     (3)Lcrit = 2I fomin s (V −V )Din out = (10−5)(0.5) (2)(0.1)(50k) = 2       The end calculations presented that a 250   inductor was needed to fulfill the design.Hμ    2.2 Capacitor Value Selection  Using the same parameters given in Table 1 and the delta inductor current, the following  equation was used to find the capacitance value needed:    ≥ .5μF     (4)C ∆iL 8V f0 s = 0.2 (8)(0.2)(50k) = 2     With the given equation above, the design needed a capacitor value of at least 2.5 F in parallel                             μ       with the load. However, there are no 2.5 F capacitor values available; thus, a 3.3 F capacitor                μ              μ     was used for the simulation.  3 Open Loop Buck Converter Design   Figure 1 is the open loop buck converter design that will be built in this lab. The gate of the                                        MOSFET is connected to a similar representation of the MC­34151 driver as it was not provided                                in MULTISIM, but is replaced by the drive in the actual circuit.  
  • 4.   Figure 1. Open Loop Buck Converter Design (using Multisim)  4 Simulation Tests and Calculations  Before building the actual hardware for the lab, some tests had to be run through Multisim to  ensure that our design has met the specifications for this lab.  4.1 Varying Load Current      Figure 2. Transient Analysis of the Buck Converter at different currents    For the first set of tests, the load current was varied by putting in different resistors ranging from                                    5 Ω to 50 Ω. By observing the plots, the steady­state DC voltage is approximately 5V and the                                    voltage ripples are within specifications as shown in Figure 2.   
  • 5. 4.2 Inductor Current      Figure 3. Transient Analysis of the Buck Converter at different loads    Figure 3 shows two plots of the current load at different loads. The green waveform represents                                the inductor current at high load current (Rload = 5 Ω) and the blue waveform represents the                                  inductor current at low load current (Rload = 50 Ω). The average, steady­state currents are near                                what they should be in specifications.    4.3 Rapid Step Load Variation (Maximum to Minimum)      Figure 4. Transient Analysis of the output voltage ripple.    Figure 4 shows the output voltage when there is dynamic loading from maximum loading current                              to minimum loading current. As of now, this voltage spike is too high and needs to be addressed                                    when building the hardware. One of the suggestions is to add a higher valued capacitor to reduce                                  the dynamic voltage change. 
  • 6. 4.4 Rapid Step Load Variation (Minimum to Maximum)      Figure 5. Transient Analysis of the output voltage ripple.    Similarly, Figure 5 shows the output voltage when there is dynamic loading from minimum                            loading current to maximum loading current. As of now, this voltage spike is too high and needs                                  to be addressed when building the hardware. Mentioned before, adding a capacitor would be able                              to reduce this dynamic voltage change.     4.5 Maximum Load (Rload = 5 Ω)  The sections below are analysis at maximum load current:     4.5.1 Voltage Ripple at Max Load    Figure 6. Transient Analysis of the output voltage ripple.   
  • 7. Figure 6 above shows the output voltage ripple at maximum load current. This plot shows that                                the voltage ripple ranges from 0 to 4% which is within the acceptable range for the design.    4.5.2 Efficiency at Max Load    Figure 7. Transient Analysis of the Efficiency    Figure 7 displays the efficiency of the circuit, which shows that once in steady state, the                                efficiency comes to be around 88%, which is above design’s requirement of 75% efficiency.                            Cursor values: Pin avg = 5.0448 W; Pout avg = 4.436 W    00% 7.93 %     (5)η = Pin Pout * 1 = 8     4.6 MOSFET Waveform    Figure 8. Transient Analysis of the Vgs and Vds of the MOSFET, the voltage of the diode, and the output voltage 
  • 8. Figure 8 displays the drain to source voltage of the MOSFET, the voltage of the diode, and the                                    voltage of the output. MOSFET turns on when the Vds is at least 10.65 V and the Vgs is at least                                          0.62 V. Thus, these values are the turn on settings for the MOSFET. Additionally, at these                                voltage settings, the diode is turned off (the blue waveform) and in reverse bias, which would                                also prove that the MOSFET is on in the buck converter.  5 Hardware Implementation  With the simulation results and calculations shown, the hardware test will be presented as  follows.    Before starting the hardware testing procedures, the inductor needed to be built using copper  wiring and a core. The calculation for the number of turns is as follows:             39.16    (6) N = √  L Al =   √163 10* −9 250   10* −6 =       The result was rounded to 40 turns and the resulting inductance was around 252 uH.  In addition, the capacitance value was increased to 1800 uF to reduce the output voltage ripple  and the dynamic voltage change, and a resistor of 1kΩ was added to the gate to smooth the gate  voltage and to reduce spiking.  5.1 Varying Load Current  Table 2: Different parameters of the circuit when the load current is varied from minimum to maximum  via change in load resistance  R​load​(Ω)  V​out​(V)  I​load​(A)  Vo/Vin  50  5.20  0.104  0.520  30  5.11  0.170  0.511  20  5.01  0.251  0.501  10  4.99  0.499  0.499  5  4.91  0.982  0.491     Table 2 summarizes the values of the load current and the ratio of the output and input voltages  when the load current is varied from minimum to maximum via change in load resistance. 
  • 9.   Figure 9.  Load current vs Vo/Vin    Figure 9 shows the plot of the ratio of the output to the input voltage versus the load current. the                                        above plot is very similar to the theoretical version of the graph. In addition, this plot shows how                                    once load current reaches below a certain threshold, the circuit slowly goes into discontinuous                            conduction mode.  5.2 Inductor Current  Figure 10 and 11 ​below show the current through the inductor for the highest and lowest load                                  currents. Although our waveform had large spikes for every new switching cycle of the                            MOSFET due to transient effects of the switching, the ripple voltage without the peaks ranged                              from 0.1 to 0.2 V, which is within specifications of the design.       Figure 10 shows the inductor current at maximum load 
  • 10.   Figure 11 shows the inductor current at minimum load.    5.3 Rapid Step Load Variation (Maximum to Minimum)  Figure 12 shows the shows a waveform of Vo versus time for rapid (step) load variation from                                  maximum to minimum. By using a higher capacitor as suggested from simulation, the dynamic                            voltage change dramatically reduced from 3.6 to 0.75 V.     Figure 12. Rapid load variation from max to min. 
  • 11. 5.4 Rapid Step Load Variation (Minimum to Maximum)  Figure 13 shows the shows a waveform of Vo versus time for rapid (step) load variation from                                  minimum to maximum. Similarly, using the higher capacitor value reduced the dynamic voltage                          change from 7.5 V to at most 0.8 V.     Figure 13. Rapid load variation from min to max.  5.5 Maximum Load (Rload = 5 Ω)  Similar to the simulation tests, the following are measurements/waveforms of the circuit when                          the circuit is operating a maximum load.    5.5.1 Output Voltage Ripple  Figure 14 shows the Output waveform and output voltage ripple versus time at max load.    Figure 14. Output voltage vs. Time at Max Load. 
  • 12. The calculations for the output voltage ripple are as follows at maximum load:    I 982 .964 A    (7)ΔiL = 2 Omax = 2 * . = 1    v 0.0027 V     (8)Δ o =   ΔiL 8Cfs = 1.964 8 (50kHz)(1800μF)* =        Although the measured output peak­to­peak voltage ripple are different from the calculated as                          done above, the measured output peak­to­peak voltage of 0.12 V is within the specifications of                              the lab.  5.5.2 Max Load Efficiency  Using the following measured parameters given below, the calculations for the efficiency are as  follows:  V​MaxLoad ​= 4.91V V​in​ = 10V  I​out  = 0.982 A I​L​   = 0.54 A  P​out  = 4.822 W P​in​  = 5.4W  R​Load  = 5 ohm    P​out​ / P​in ​= Efficiency = 89.89%    (9)    Calculations show that efficiency comes out to be around 89%, which is above the specification  requirement of 75%.  5.6 Power Loop Losses  From the max load efficiency section, the measured power loss comes out to be 0.578 W. The                                  following are the power dissipation for each element (note these are values at which the circuit                                has reached steady state):  MOSFET Dissipation: 0.081 W  Inductor Dissipation: 0.093 W  Capacitor Dissipation(ESR): 0.200 W   Diode Dissipation: 0.373 W  R_Gate Dissipation: 0.126 W     
  • 13. 5.7 MOSFET Waveforms    Figure 15. Waveform of Vs(yellow), Vd(blue), and Vds(orange) of the MOSFET  As shown on Figure 15, the waveforms of the Vd, Vs, and Vds of the MOSFET were taken to                                      observe the turn on behavior. Similar to the simulation, the MOSFET turns on when Vds =                                10.2V and when the source voltage becomes negative, which would mean that the diode is in                                reverse bias. Although not pictured in the waveform, through calculations from the                        measurements of the waveform, the MOSFET turns on when Vgs = 0.58 V.  5.8 Varying Vcc (Supply Voltage)    Figure 16. Output voltage at which Vcc = 10V 
  • 14. Additionally, the test was done to see what effect the output voltage would have if the supply                                  voltage were to decrease. In this case, the supply voltage decreased from 16V to 10V and                                consequently, the output voltage decreased by 1.6 V (DC). This is the case because this would                                decrease the output from the driver and in turn decrease Vgs. Consequently, the source current                              that is fed into the inductor would decrease. Overall, this effectively reduces the current that                              passes through the load, which in turn decrease the output DC voltage.  5.9 ESR Calculations    Figure 17. Test Circuit to find the ESR of C1  In order to calculate the ESR for one of the capacitor, the test circuit in Figure 17 was used. With                                        the capacitor nearly fully charged, the decay behavior needed to be observed when R2 = 1Ω &                                  2Ω. Figure 18 and Figure 19 display both decay behaviors. With these graphs, two points were                                able to be extracted, respectively.     Figure 18. Exponential Decay Behavior with R2 = 1Ω 
  • 15.   Figure 19. Exponential Decay Behavior with R2 = 2Ω    Then using the following functions below, the tau values were able to be calculated along with                                the ESR.    .39Eτ1 = 9 − 4  .41Eτ2 = 1 − 3  R21 = 1Ω, R22 = 2Ω   With all the calculations, ESR value of the 470 uF comes out to be approximately 0.99​Ω​, which                                  is high and expected of a high­capacitance­valued, electrolytic capacitor.  3 Conclusion  By using the current knowledge of the open­loop buck converter, the parameters including the                            capacitor and the inductor values needed were able to be found. Then we ran simulation tests in                                  order to prove that most of the circuit design was sufficient. The actual circuit was then built                                  with new adjustments as suggested from the simulation, which included adding a gate resistor                            and a higher valued capacitor. As a result, the dynamic voltage change was greatly reduced to                                within lab specifications along with the spiking. Overall, running the simulations and testing the                            actual buck­converter circuit enabled us to learn the intricacies of the design, which helped us                              improve our initial design and fix most of the problem associated with the hardware.