E sci presentation

LABORATORY
TECHNIQUES
A VISUAL PRESENTATION BY GROUP 2
CENTRIFUGATION
LABORATORY
TECHNIQUES
CENTRIFUGATION
DEFINITION
∞ Centrifugation is a process which
involves the application of
the centripetal force for
the sedimentation of heterogeneous
mixtures with a centrifuge, and is
used in industrial and laboratory
settings. This process is used to
separate two immiscible substances.
More-dense components of the
mixture migrate away from the axis
of the centrifuge, while less-dense
components of the mixture migrate
towards the axis.
CENTRIFUGATION
APPARATUS USED
∞ A centrifuge is a piece of equipment that puts an object
in rotation around a fixed axis (spins it in a circle), applying
a potentially strong force perpendicular to the axis of spin
(outward). The centrifuge works using the sedimentation
principle, where the centripetal acceleration causes denser
substances and particles to move outward in the radial
direction. At the same time, objects that are less dense are
displaced and move to the center. In a laboratory
centrifuge that uses sample tubes, the radial acceleration
causes denser particles to settle to the bottom of the tube,
while low-density substances rise to the top.
CHROMATOGRAPHY
LABORATORY
TECHNIQUES
CHROMATOGRAPHY
DEFINITION
∞ Chromatography is the collective term for a set of laboratory
techniques for the separation of mixtures.
∞ Chromatography may be preparative or analytical.
∞ The purpose of preparative chromatography is to separate the
components of a mixture for more advanced use (and is thus a form
of purification).
∞ one of the most useful analytical techniques chemists have at their
disposal, helpful in everything from identifying biological materials
to finding clues at crime scenes.
∞The moving substance is called the mobile phase and the substance
that stays put is the stationary phase. As the mobile phase moves, it
separates out into its components on the stationary phase.
TYPES OF
CHROMATOGRAPHY
CHROMATOGRAPHY: TYPES
PAPER
CHROMATOGRAPHY
∞ This is the "spot of ink on paper"
experiment you often do in school (also the
effect we described at the start when you
get your papers wet). Typically you put a
spot of ink near one edge of some filter
paper and then hang the paper vertically
with its lower edge (nearest the spot) dipped
in a solvent such as alcohol or water.
Capillary action makes the solvent travel up
the paper, where it meets and dissolves the
ink. The dissolved ink (the mobile phase)
slowly travels up the paper (the stationary
phase and separates out into different
components. Sometimes these are colored;
sometimes you have to color them by
adding other substances (called developers
or developing fluids) that help you with
identification.
CHROMATOGRAPHY: TYPES
COLUMN
CHROMATOGRAPHY
∞ Instead of paper, the stationary phase is a
vertical glass jar (the column) packed with a
highly adsorbent solid, such as crystals of
silica or silica gel, or a solid coated with a
liquid. The mobile phase is pumped at high
pressure through the column and splits into
its components, which are then removed and
analyzed. In liquid-column chromatography,
the mixture being studied is placed at one
end of the column and an extra added
substance called an eluant is poured in to
help it travel through. Thin-film
chromatography is a variation of this
technique in which the "column" is actually
a film of glass, plastic, or metal coated with a
very thin layer of adsorbent material
CHROMATOGRAPHY: TYPES
GAS CHROMATOGRAPHY
∞ is a largely automated type of chemical
analysis you can do with a sophisticated
piece of laboratory equipment called, not
surprisingly, a gas chromatograph
machine.
∞ First, a tiny sample of the mixture of
substances being studied is placed in a
syringe and injected into the machine. The
components of the mixture are heated and
instantly vaporize. Next, we add a carrier
(the eluant), which is simply a neutral gas
such as hydrogen or helium, designed to
help the gases in our sample move through
the column.
CHROMATOGRAPHY: TYPES
GAS CHROMATOGRAPHY
∞ In this case, the column is a thin glass or metal tube usually
filled with a liquid that has a high boiling point (or sometimes a
gel or an adsorbent solid). As the mixture travels through the
column, it's adsorbed and separates out into its components.
Each component emerges in turn from the end of the column
and moves past an electronic detector (sometimes a mass
spectrometer), which identifies it and prints a peak on a chart.
The final chart has a series of peaks that correspond to all the
substances in the mixture. Gas chromatography is sometimes
called vapor-phase chromatography (VPC) or gas-liquid
partition chromatography (GLPC).
CHROMATOGRAPHY
TOOLS AND APPARATUS USED
▸The column is where the actual separation takes
place. It is usually a glass or metal of with sufficient
strength to handle pressure.
▸A packed bed column in compromised of a stationary
phase which is granular form and packed into the
column as homogenous bed. The stationary phase
complete fills the column.
▸An open tubular column’s stationary phase is a thin
film or layer on the column wall.
CHROMATOGRAPHY
THE MOBILE AND STATIONARY PHASES
The mobile phase is comprised of a solvent into
which the sample is injected. The solvent and sample
flow through the column together; thus the mobile
phase is often referred to as the "carrier fluid." The
stationary phase is the material in the column for
which the components to be separated have varying
affinities. The materials which comprise the mobile
and stationary phases vary depending on the general
type of chromatographic process being performed.
CHROMATOGRAPHY
HOW DOES IT WORK?
Think of chromatography as a race and you'll find it's
much simpler than it sounds. Waiting on the starting line,
you've got a mixture of chemicals in some unidentified
liquid or gas, just like a load of runners all mixed up and
bunched together. When a race starts, runners soon
spread out because they have different abilities. In exactly
the same way, chemicals in something like a moving
liquid mixture spread out because they travel at different
speeds over a stationary solid. The key thing to remember
is that chromatography is a surface effect.
CHROMATOGRAPHY
HOW DOES IT WORK?
For chromatography to work effectively, we obviously need the
components of the mobile phase to separate out as much as possible
as they move past the stationary phase. That's why the stationary
phase is often something with a large surface area, such as a sheet of
filter paper, a solid made of finely divided particles, a liquid deposited
on the surface of a solid, or some other highly adsorbent material.
The mixture is dissolved in a fluid called the mobile phase, which
carries it through a structure holding another material called the
stationary phase. Different rates of migration cause the various
constituents of the mixture to travel at different speeds, causing them
to separate.
GEL
ELECTROPHORESIS
LABORATORY
TECHNIQUES
GEL ELECTROPHORESIS
DEFINITION
∞ Gel electrophoresis is a method for separation
and analysis of macromolecules
(DNA, RNA and proteins) and their fragments,
based on their size and charge. It is used in
clinical chemistry to separate proteins by charge
and/or size (IEF agarose, essentially size
independent) and in biochemistry and molecular
biology to separate a mixed population
of DNA and RNA fragments by length, to
estimate the size of DNA and RNA fragments or
to separate proteins by charge.
∞ Nucleic acid molecules are separated by
applying an electric field to move the negatively
charged molecules through a matrix of
GEL ELECTROPHORESIS
PHYSICAL BASIS
In simple terms, electrophoresis is a
process which enables the sorting of
molecules based on size. Using an electric
field, molecules (such as DNA) can be
made to move through a gel made
of agar or polyacrylamide. The electric
field consists of a negative charge at one
end which pushes the molecules through
the gel, and a positive charge at the other
end that pulls the molecules through the
gel. The molecules being sorted are
dispensed into a well in the gel material.
The gel is placed in an electrophoresis
GEL ELECTROPHORESIS
HISTORY
• 1930s – first reports of the use of sucrose for gel electrophoresis
• 1955 – introduction of starch gels, mediocre separation
• 1959 – introduction of acrylamide gels; disc electrophoresis (Ornstein and Davis); accurate
control of parameters such as pore size and stability; and (Raymond and Weintraub)
• 1966 – agar gels
• 1969 – introduction of denaturing agents especially SDS separation of protein subunit
(Weber and Osborn)
• 1970 – Laemmli separated 28 components of T4 phage using a stacking gel and SDS
• 1972 – agarose gels with ethidium bromide stain
• 1975 – 2-dimensional gels (O’Farrell); isoelectric focusing then SDS gel electrophoresis
• 1977 – sequencing gels
• 1983 – pulsed field gel electrophoresis enables separation of large DNA molecules
• 1983 – introduction of capillary electrophoresis
• 2004 – standardized time of polymerization of acrylamide gels enables clean and
predictable separation of native proteins
TYPES OF
GEL
GEL ELECTROPHORESIS: TYPES OF GEL
AGAROSE
Agarose gels are made from the
natural polysaccharide polymers extracted
from seaweed. Agarose gels are easily cast
and handled compared to other matrices,
because the gel setting is a physical rather
than chemical change. Samples are also
easily recovered. After the experiment is
finished, the resulting gel can be stored in a
plastic bag in a refrigerator.
Agarose gels do not have a uniform pore
size, but are optimal for electrophoresis of
proteins that are larger than 200
GEL ELECTROPHORESIS: TYPES OF GEL
POLYACRYLAMIDE
Polyacrylamide gel electrophoresis (PAGE) is
used for separating proteins ranging in size from
5 to 2,000 kDa due to the uniform pore size
provided by the polyacrylamide gel. Pore size is
controlled by modulating the concentrations of
acrylamide and bis-acrylamide powder used in
creating a gel. Care must be used when creating
this type of gel, as acrylamide is a potent
neurotoxin in its liquid and powdered forms.
Traditional DNA sequencing techniques such
as Maxam-Gilbert or Sanger methods used
polyacrylamide gels to separate DNA fragments
differing by a single base-pair in length so the
sequence could be read. Most modern DNA
GEL ELECTROPHORESIS: TYPES OF GEL
STARCH
Partially hydrolysed potato
starch makes for another non-
toxic medium for protein
electrophoresis. The gels are
slightly more opaque than
acrylamide or agarose. Non-
denatured proteins can be
separated according to charge
and size. They are visualised
using Napthal Black or Amido
GEL ELECTROPHORESIS
GEL CONDITIONS
∞ Denaturing gels are run under conditions that disrupt the natural
structure of the analyte, causing it to unfold into a linear chain. Thus, the
mobility of each macromolecule depends only on its linear length and its
mass-to-charge ratio. Thus, the secondary, tertiary, and quaternary levels
of biomolecular structure are disrupted, leaving only the primary structure
to be analyzed.
∞ Native gels are run in non-denaturing conditions, so that the analyte's
natural structure is maintained. This allows the physical size of the folded
or assembled complex to affect the mobility, allowing for analysis of all
four levels of the biomolecular structure. For biological samples,
GEL ELECTROPHORESIS
PROCESS
Buffers in gel electrophoresis are used to provide ions that carry a current and to maintain
the pH at a relatively constant value. There are a number of buffers used for electrophoresis.
The most common being, for nucleic acids Tris/Acetate/EDTA (TAE), Tris/Borate/EDTA (TBE).
After the electrophoresis is complete, the molecules in the gel can be stained to make them
visible. DNA may be visualized using ethidium bromide which, when intercalated into DNA,
fluoresce under ultraviolet light, while protein may be visualised using silver stain or
Coomassie Brilliant Blue dye.
After separation, an additional separation method may then be used, such as isoelectric
focusing or SDS-PAGE. The gel will then be physically cut, and the protein complexes
extracted from each portion separately. Each extract may then be analysed, such as by
peptide mass fingerprinting or de novo peptide sequencing after in-gel digestion. This can
provide a great deal of information about the identities of the proteins in a complex.
1 of 25

Recommended

Centrifuge..m.phillCentrifuge..m.phill
Centrifuge..m.phillAman Thakur
560 views16 slides
SpectrophotometerSpectrophotometer
SpectrophotometerShaheem TM
8K views21 slides
MicroscopyMicroscopy
MicroscopyDaya Pavitrakar
3.6K views58 slides
MicroscopeMicroscope
MicroscopeParthasarathy Ravichandran
143.3K views25 slides
SEMEN ANALYSISSEMEN ANALYSIS
SEMEN ANALYSISIra Bharadwaj
688 views43 slides

More Related Content

What's hot(20)

Analytical biochemistryAnalytical biochemistry
Analytical biochemistry
Monika Uma Shankar572 views
MicroscopyMicroscopy
Microscopy
Diego Ramos51.4K views
Compound microscopeCompound microscope
Compound microscope
Govardhan Joshi39.9K views
Grade 10 Cell Specialisation (1).pptGrade 10 Cell Specialisation (1).ppt
Grade 10 Cell Specialisation (1).ppt
RitaAnnThompson231 views
The microscope presentationThe microscope presentation
The microscope presentation
Alice Herman11.6K views
CentrifugeCentrifuge
Centrifuge
Selwyn Barreto1.7K views
Csf composition and significance by Dr. Ashok KUmar JCsf composition and significance by Dr. Ashok KUmar J
Csf composition and significance by Dr. Ashok KUmar J
International Medical School Malaysia8.7K views
CSF examinationCSF examination
CSF examination
Bahria University Medical & Dental College, Karachi, Pakistan501 views
LabequipLabequip
Labequip
Wesley McCammon4.1K views
Prokaryotic and Eukaryotic CellsProkaryotic and Eukaryotic Cells
Prokaryotic and Eukaryotic Cells
University of Guyana18.7K views
Lab safetyLab safety
Lab safety
Guerillateacher2.7K views
compound microscopecompound microscope
compound microscope
Salman Khan1.1K views
Semen analysis Semen analysis
Semen analysis
dr vipin Drvipinsharma374.3K views
Cleaning The LabCleaning The Lab
Cleaning The Lab
Kirimi Mwobobia II1.6K views
Semen AnalysisSemen Analysis
Semen Analysis
Furquan Alam17.6K views

Viewers also liked

ElectrophoresisElectrophoresis
Electrophoresisnamrataghatge
10.5K views23 slides
ElectrophoresisElectrophoresis
Electrophoresiskhan Shaharukh
3.2K views28 slides
ElecrophoresisElecrophoresis
ElecrophoresisNamrata Chhabra
40.2K views31 slides
ElectrophoresisElectrophoresis
ElectrophoresisKaran Veer Singh
100K views26 slides

Viewers also liked(8)

ElectrophoresisElectrophoresis
Electrophoresis
namrataghatge10.5K views
ElectrophoresisElectrophoresis
Electrophoresis
khan Shaharukh3.2K views
Paper electrophoresisPaper electrophoresis
Paper electrophoresis
Tapeshwar Yadav73.4K views
ElecrophoresisElecrophoresis
Elecrophoresis
Namrata Chhabra40.2K views
ElectrophoresisElectrophoresis
Electrophoresis
Karan Veer Singh100K views
Electrophoresis presentationElectrophoresis presentation
Electrophoresis presentation
jyots2399.3K views
Techniques of electrophoresisTechniques of electrophoresis
Techniques of electrophoresis
Sayanti Sau257.2K views
Electrophoresis ppt.Electrophoresis ppt.
Electrophoresis ppt.
gulamrafey94.1K views

Similar to E sci presentation

ChromatographyChromatography
ChromatographyZainab&Sons
1.1K views68 slides
chromatographychromatography
chromatographydarakhshan09
3.2K views41 slides

Similar to E sci presentation(20)

Partition chromatography 3Partition chromatography 3
Partition chromatography 3
MrSyedAmmar46K views
CHROMATOGRAPHY.pptxCHROMATOGRAPHY.pptx
CHROMATOGRAPHY.pptx
PathakChandraPrakash63 views
 chromatography, HPLC chromatography, HPLC
chromatography, HPLC
Anshul Agrawal2.8K views
Applied BiochemistryApplied Biochemistry
Applied Biochemistry
christanantony16 views
ChromatographyChromatography
Chromatography
Zainab&Sons1.1K views
chromatographychromatography
chromatography
darakhshan093.2K views
PM PPT.pptPM PPT.ppt
PM PPT.ppt
PankajBoruah55 views
PM PPT.pptPM PPT.ppt
PM PPT.ppt
PankajBoruah55 views
Chromatography.pptChromatography.ppt
Chromatography.ppt
PrakashR129444 views
4_20115_PM.ppt4_20115_PM.ppt
4_20115_PM.ppt
Jaibhagwan4710 views
Chromatography lecture2.pptxChromatography lecture2.pptx
Chromatography lecture2.pptx
AftabHussain95810116 views
ChromatographyChromatography
Chromatography
nupoorneole1.7K views
Chromatography (Pharmacognosy)Chromatography (Pharmacognosy)
Chromatography (Pharmacognosy)
tahirsatz25.4K views
Chromatography, types by  different approaches, HPLC Chromatography, types by  different approaches, HPLC
Chromatography, types by different approaches, HPLC
Muhammad Asif Shaheeen7.7K views
Paper ChromatographyPaper Chromatography
Paper Chromatography
Divya Narla467 views
Classification of chromatographyClassification of chromatography
Classification of chromatography
Jagdish Jat1.6K views
Chromatography (Physical Chemistry Report)Chromatography (Physical Chemistry Report)
Chromatography (Physical Chemistry Report)
Muhammad Mamdouh307 views
Types of chromatographyTypes of chromatography
Types of chromatography
Fizan Chee20.1K views
chromatography and its typeschromatography and its types
chromatography and its types
Asifa Zafar1.2K views

E sci presentation

  • 3. CENTRIFUGATION DEFINITION ∞ Centrifugation is a process which involves the application of the centripetal force for the sedimentation of heterogeneous mixtures with a centrifuge, and is used in industrial and laboratory settings. This process is used to separate two immiscible substances. More-dense components of the mixture migrate away from the axis of the centrifuge, while less-dense components of the mixture migrate towards the axis.
  • 4. CENTRIFUGATION APPARATUS USED ∞ A centrifuge is a piece of equipment that puts an object in rotation around a fixed axis (spins it in a circle), applying a potentially strong force perpendicular to the axis of spin (outward). The centrifuge works using the sedimentation principle, where the centripetal acceleration causes denser substances and particles to move outward in the radial direction. At the same time, objects that are less dense are displaced and move to the center. In a laboratory centrifuge that uses sample tubes, the radial acceleration causes denser particles to settle to the bottom of the tube, while low-density substances rise to the top.
  • 6. CHROMATOGRAPHY DEFINITION ∞ Chromatography is the collective term for a set of laboratory techniques for the separation of mixtures. ∞ Chromatography may be preparative or analytical. ∞ The purpose of preparative chromatography is to separate the components of a mixture for more advanced use (and is thus a form of purification). ∞ one of the most useful analytical techniques chemists have at their disposal, helpful in everything from identifying biological materials to finding clues at crime scenes. ∞The moving substance is called the mobile phase and the substance that stays put is the stationary phase. As the mobile phase moves, it separates out into its components on the stationary phase.
  • 8. CHROMATOGRAPHY: TYPES PAPER CHROMATOGRAPHY ∞ This is the "spot of ink on paper" experiment you often do in school (also the effect we described at the start when you get your papers wet). Typically you put a spot of ink near one edge of some filter paper and then hang the paper vertically with its lower edge (nearest the spot) dipped in a solvent such as alcohol or water. Capillary action makes the solvent travel up the paper, where it meets and dissolves the ink. The dissolved ink (the mobile phase) slowly travels up the paper (the stationary phase and separates out into different components. Sometimes these are colored; sometimes you have to color them by adding other substances (called developers or developing fluids) that help you with identification.
  • 9. CHROMATOGRAPHY: TYPES COLUMN CHROMATOGRAPHY ∞ Instead of paper, the stationary phase is a vertical glass jar (the column) packed with a highly adsorbent solid, such as crystals of silica or silica gel, or a solid coated with a liquid. The mobile phase is pumped at high pressure through the column and splits into its components, which are then removed and analyzed. In liquid-column chromatography, the mixture being studied is placed at one end of the column and an extra added substance called an eluant is poured in to help it travel through. Thin-film chromatography is a variation of this technique in which the "column" is actually a film of glass, plastic, or metal coated with a very thin layer of adsorbent material
  • 10. CHROMATOGRAPHY: TYPES GAS CHROMATOGRAPHY ∞ is a largely automated type of chemical analysis you can do with a sophisticated piece of laboratory equipment called, not surprisingly, a gas chromatograph machine. ∞ First, a tiny sample of the mixture of substances being studied is placed in a syringe and injected into the machine. The components of the mixture are heated and instantly vaporize. Next, we add a carrier (the eluant), which is simply a neutral gas such as hydrogen or helium, designed to help the gases in our sample move through the column.
  • 11. CHROMATOGRAPHY: TYPES GAS CHROMATOGRAPHY ∞ In this case, the column is a thin glass or metal tube usually filled with a liquid that has a high boiling point (or sometimes a gel or an adsorbent solid). As the mixture travels through the column, it's adsorbed and separates out into its components. Each component emerges in turn from the end of the column and moves past an electronic detector (sometimes a mass spectrometer), which identifies it and prints a peak on a chart. The final chart has a series of peaks that correspond to all the substances in the mixture. Gas chromatography is sometimes called vapor-phase chromatography (VPC) or gas-liquid partition chromatography (GLPC).
  • 12. CHROMATOGRAPHY TOOLS AND APPARATUS USED ▸The column is where the actual separation takes place. It is usually a glass or metal of with sufficient strength to handle pressure. ▸A packed bed column in compromised of a stationary phase which is granular form and packed into the column as homogenous bed. The stationary phase complete fills the column. ▸An open tubular column’s stationary phase is a thin film or layer on the column wall.
  • 13. CHROMATOGRAPHY THE MOBILE AND STATIONARY PHASES The mobile phase is comprised of a solvent into which the sample is injected. The solvent and sample flow through the column together; thus the mobile phase is often referred to as the "carrier fluid." The stationary phase is the material in the column for which the components to be separated have varying affinities. The materials which comprise the mobile and stationary phases vary depending on the general type of chromatographic process being performed.
  • 14. CHROMATOGRAPHY HOW DOES IT WORK? Think of chromatography as a race and you'll find it's much simpler than it sounds. Waiting on the starting line, you've got a mixture of chemicals in some unidentified liquid or gas, just like a load of runners all mixed up and bunched together. When a race starts, runners soon spread out because they have different abilities. In exactly the same way, chemicals in something like a moving liquid mixture spread out because they travel at different speeds over a stationary solid. The key thing to remember is that chromatography is a surface effect.
  • 15. CHROMATOGRAPHY HOW DOES IT WORK? For chromatography to work effectively, we obviously need the components of the mobile phase to separate out as much as possible as they move past the stationary phase. That's why the stationary phase is often something with a large surface area, such as a sheet of filter paper, a solid made of finely divided particles, a liquid deposited on the surface of a solid, or some other highly adsorbent material. The mixture is dissolved in a fluid called the mobile phase, which carries it through a structure holding another material called the stationary phase. Different rates of migration cause the various constituents of the mixture to travel at different speeds, causing them to separate.
  • 17. GEL ELECTROPHORESIS DEFINITION ∞ Gel electrophoresis is a method for separation and analysis of macromolecules (DNA, RNA and proteins) and their fragments, based on their size and charge. It is used in clinical chemistry to separate proteins by charge and/or size (IEF agarose, essentially size independent) and in biochemistry and molecular biology to separate a mixed population of DNA and RNA fragments by length, to estimate the size of DNA and RNA fragments or to separate proteins by charge. ∞ Nucleic acid molecules are separated by applying an electric field to move the negatively charged molecules through a matrix of
  • 18. GEL ELECTROPHORESIS PHYSICAL BASIS In simple terms, electrophoresis is a process which enables the sorting of molecules based on size. Using an electric field, molecules (such as DNA) can be made to move through a gel made of agar or polyacrylamide. The electric field consists of a negative charge at one end which pushes the molecules through the gel, and a positive charge at the other end that pulls the molecules through the gel. The molecules being sorted are dispensed into a well in the gel material. The gel is placed in an electrophoresis
  • 19. GEL ELECTROPHORESIS HISTORY • 1930s – first reports of the use of sucrose for gel electrophoresis • 1955 – introduction of starch gels, mediocre separation • 1959 – introduction of acrylamide gels; disc electrophoresis (Ornstein and Davis); accurate control of parameters such as pore size and stability; and (Raymond and Weintraub) • 1966 – agar gels • 1969 – introduction of denaturing agents especially SDS separation of protein subunit (Weber and Osborn) • 1970 – Laemmli separated 28 components of T4 phage using a stacking gel and SDS • 1972 – agarose gels with ethidium bromide stain • 1975 – 2-dimensional gels (O’Farrell); isoelectric focusing then SDS gel electrophoresis • 1977 – sequencing gels • 1983 – pulsed field gel electrophoresis enables separation of large DNA molecules • 1983 – introduction of capillary electrophoresis • 2004 – standardized time of polymerization of acrylamide gels enables clean and predictable separation of native proteins
  • 21. GEL ELECTROPHORESIS: TYPES OF GEL AGAROSE Agarose gels are made from the natural polysaccharide polymers extracted from seaweed. Agarose gels are easily cast and handled compared to other matrices, because the gel setting is a physical rather than chemical change. Samples are also easily recovered. After the experiment is finished, the resulting gel can be stored in a plastic bag in a refrigerator. Agarose gels do not have a uniform pore size, but are optimal for electrophoresis of proteins that are larger than 200
  • 22. GEL ELECTROPHORESIS: TYPES OF GEL POLYACRYLAMIDE Polyacrylamide gel electrophoresis (PAGE) is used for separating proteins ranging in size from 5 to 2,000 kDa due to the uniform pore size provided by the polyacrylamide gel. Pore size is controlled by modulating the concentrations of acrylamide and bis-acrylamide powder used in creating a gel. Care must be used when creating this type of gel, as acrylamide is a potent neurotoxin in its liquid and powdered forms. Traditional DNA sequencing techniques such as Maxam-Gilbert or Sanger methods used polyacrylamide gels to separate DNA fragments differing by a single base-pair in length so the sequence could be read. Most modern DNA
  • 23. GEL ELECTROPHORESIS: TYPES OF GEL STARCH Partially hydrolysed potato starch makes for another non- toxic medium for protein electrophoresis. The gels are slightly more opaque than acrylamide or agarose. Non- denatured proteins can be separated according to charge and size. They are visualised using Napthal Black or Amido
  • 24. GEL ELECTROPHORESIS GEL CONDITIONS ∞ Denaturing gels are run under conditions that disrupt the natural structure of the analyte, causing it to unfold into a linear chain. Thus, the mobility of each macromolecule depends only on its linear length and its mass-to-charge ratio. Thus, the secondary, tertiary, and quaternary levels of biomolecular structure are disrupted, leaving only the primary structure to be analyzed. ∞ Native gels are run in non-denaturing conditions, so that the analyte's natural structure is maintained. This allows the physical size of the folded or assembled complex to affect the mobility, allowing for analysis of all four levels of the biomolecular structure. For biological samples,
  • 25. GEL ELECTROPHORESIS PROCESS Buffers in gel electrophoresis are used to provide ions that carry a current and to maintain the pH at a relatively constant value. There are a number of buffers used for electrophoresis. The most common being, for nucleic acids Tris/Acetate/EDTA (TAE), Tris/Borate/EDTA (TBE). After the electrophoresis is complete, the molecules in the gel can be stained to make them visible. DNA may be visualized using ethidium bromide which, when intercalated into DNA, fluoresce under ultraviolet light, while protein may be visualised using silver stain or Coomassie Brilliant Blue dye. After separation, an additional separation method may then be used, such as isoelectric focusing or SDS-PAGE. The gel will then be physically cut, and the protein complexes extracted from each portion separately. Each extract may then be analysed, such as by peptide mass fingerprinting or de novo peptide sequencing after in-gel digestion. This can provide a great deal of information about the identities of the proteins in a complex.