Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Cours1

227 views

Published on

Published in: Education
  • Be the first to comment

  • Be the first to like this

Cours1

  1. 1. ‫اﻟﺘﻌﺪاد واﻟﺤﺴﺎب‬ ‫·‬ ‫ﻟﯿﻜﻦ ‪a‬و ‪b‬و ‪ c‬أﻋﺪاد ﺻﺤﯿﺤﺔ ﻃﺒﯿﻌﯿﺔ ﺑﺤﯿﺚ ‪ a‬ﯾﻘﺴﻢ اﻟﺠﺬاء ‪bc‬‬ ‫إذا ﻛﺎن : ‪ a‬و ‪ b‬أوﻟﯿﯿﻦ ﻓﯿﻤﺎ ﺑﯿﻨﮭﻤﺎ ﻓﺈن ‪ a‬ﯾﻘﺴﻢ ‪c‬‬ ‫·‬ ‫ﻟﯿﻜﻦ ‪a‬و ‪b‬و ‪ c‬أﻋﺪاد ﺻﺤﯿﺤﺔ ﻃﺒﯿﻌﯿﺔ إذا ﻛﺎن ‪ a‬ﯾﻘﺴﻢ ‪ c‬و ‪ b‬ﯾﻘﺴﻢ ‪c‬‬ ‫و ‪ a‬و ‪ b‬أوﻟﯿﯿﻦ ﻓﯿﻤﺎ ﺑﯿﻨﮭﻤﺎ ﻓﺈن ‪ ab‬ﯾﻘﺴﻢ ‪c‬‬ ‫·‬ ‫ﯾﻜﻮن ﻋﺪد ﻗﺎﺑﻼ ﻟﻠﻘﺴﻤﺔ ﻋﻠﻰ 6 إذا ﻛﺎن ھﺬا اﻟﻌﺪد ﻗﺎﺑﻼ ﻟﻠﻘﺴﻤﺔ ﻋﻠﻰ 2 و 3 .‬ ‫·‬ ‫ﯾﻜﻮن ﻋﺪد ﻗﺎﺑﻼ ﻟﻠﻘﺴﻤﺔ ﻋﻠﻰ 21 إذا ﻛﺎن ھﺬا اﻟﻌﺪد ﻗﺎﺑﻼ ﻟﻠﻘﺴﻤﺔ ﻋﻠﻰ 3 و 4 .‬ ‫·‬ ‫ﯾﻜﻮن ﻋﺪد ﻗﺎﺑﻼ ﻟﻠﻘﺴﻤﺔ ﻋﻠﻰ 51 إذا ﻛﺎن ھﺬا اﻟﻌﺪد ﻗﺎﺑﻼ ﻟﻠﻘﺴﻤﺔ ﻋﻠﻰ 3 و 5 .‬ ‫ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد اﻟﺤﻘﻴﻘﻴﺔ ‪R‬‬ ‫·‬ ‫·‬ ‫·‬ ‫·‬ ‫ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد اﻟﺤﻘﯿﻘﯿﺔ ھﻲ اﺗﺤﺎد ﻣﺠﻤﻮﻋﺘﻲ اﻷﻋﺪاد اﻟﻜﺴﺮﯾﺔ اﻟﻨﺴﺒﯿﺔ ‪ Q‬واﻷﻋﺪاد اﻟﺼﻤﺎء ‪I‬‬ ‫ﻟﻜﻞ ﻋﺪد ﻛﺴﺮي ﻧﺴﺒﻲ ﻛﺘﺎﺑﺔ ﻋﺸﺮﯾﺔ دورﯾﺔ ، وﻛﻞ ﻛﺘﺎﺑﺔ ﻋﺸﺮﯾﺔ دورﯾﺔ ﺗﻤﺜﻞ ﻋﺪدا ﻛﺴﺮﯾﺎ وﺣﯿﺪا‬ ‫ﻛﻞ ﻛﺘﺎﺑﺔ ﻋﺸﺮﯾﺔ ﻏﯿﺮ ﻣﺘﻨﺎھﯿﺔ وﻏﯿﺮ دورﯾﺔ ﺗﻤﺜﻞ ﻋﺪدا أﺻﻤﺎ‬ ‫اﻟﻤﺴﺘﻘﯿﻢ اﻟﻌﺪدي ھﻮ ﻣﺴﺘﻘﯿﻢ ﻣﺪرج ﺑﻮاﺳﻄﺔ اﻻﻋﺪاد اﻟﺤﻘﯿﻘﯿﺔ ﺣﯿﺚ أن ﻛﻞ ﻋﺪد ﺣﻘﯿﻘﻲ ﯾﻤﺜﻞ ﻓﺎﺻﻠﺔ ﻧﻘﻄﺔ ﻣﻦ‬ ‫اﻟﻤﺴﺘﻘﯿﻢ وﻛﻞ ﻧﻘﻄﺔ ﻣﻦ اﻟﻤﺴﺘﻘﯿﻢ ﺗﻤﺜﻞ ﻋﺪدا ﺣﻘﯿﻘﯿﺎ‬ ‫اﻟﻌﻤﻠﻴﺎت ﻓﻲ ‪R‬‬ ‫·‬ ‫ﻣﮭﻤﺎ ﯾﻜﻦ اﻟﻌﺪدان اﻟﺤﻘﯿﻘﯿﺎن ‪ a‬و ﻻ ﻓﺈن :‬ ‫‪a+b = b+a‬‬ ‫·‬ ‫ﻣﮭﻤﺎ ﯾﻜﻦ اﻟﻌﺪد اﻟﺤﻘﯿﻘﻲ ‪ a‬ﻓﺈن :‬ ‫‪a+0 = 0+a = a‬‬ ‫·‬ ‫اﻟﻔﺮق ﺑﯿﻦ ‪ a‬و ‪ b‬ھﻮ اﻟﻌﺪد اﻟﺤﻘﯿﻘﻲ ‪ d‬ﺣﯿﺚ :‬ ‫‪ a= d+b‬وﻧﻜﺘﺐ ‪d = a – b‬‬ ‫·‬ ‫ﻣﮭﻤﺎ ﯾﻜﻦ اﻟﻌﺪدان اﻟﺤﻘﯿﻘﯿﺎن ‪ a‬و ‪ b‬ﻓﺈن :‬ ‫‪-(a+b) = -a – b‬‬
  2. 2. ‫·‬ ‫ﻣﮭﻤﺎ ﯾﻜﻦ اﻟﻌﺪدان اﻟﺤﻘﯿﻘﯿﺎن ‪ a‬و ‪ b‬ﻓﺈن :‬ ‫‪axb=bxa‬‬ ‫·‬ ‫ﻣﮭﻤﺎ ﺗﻜﻦ اﻷﻋﺪاد اﻟﺤﻘﯿﻘﯿﺔ ‪a‬و ‪ b‬و ‪ c‬ﻓﺈن :‬ ‫‪a(b-c) = ab – ac‬‬ ‫·‬ ‫ﻣﮭﻤﺎ ﯾﻜﻦ اﻟﻌﺪد اﻟﺤﻘﯿﻘﻲ ‪ a‬ﻓﺈن :‬ ‫)‪a x (-1) = (-1) x a = (-a‬‬ ‫·‬ ‫ﻣﮭﻤﺎ ﯾﻜﻦ اﻟﻌﺪدان اﻟﺤﻘﯿﻘﯿﺎن ‪ a‬و ‪ b‬ﻓﺈن :‬ ‫0 = ‪ ab‬ﯾﻌﻨﻲ 0 = ‪ a‬أو 0 = ‪b‬‬ ‫·‬ ‫ﻣﮭﻤﺎ ﺗﻜﻦ اﻷﻋﺪاد اﻟﺤﻘﯿﻘﯿﺔ ‪a‬و ‪ b‬و ‪ c‬ﻓﺈن :‬ ‫‪a + ( b+c) = ( a+ b) + c = a+ b +c‬‬ ‫·‬ ‫ﻣﮭﻤﺎ ﯾﻜﻦ اﻟﻌﺪد اﻟﺤﻘﯿﻘﻲ ‪ a‬ﻓﺈن :‬ ‫0 = )‪a + (-a‬‬ ‫·‬ ‫ﻣﮭﻤﺎ ﺗﻜﻦ اﻷﻋﺪاد اﻟﺤﻘﯿﻘﯿﺔ ‪a‬و ‪ b‬و ‪ c‬ﻓﺈن :‬ ‫‪a – ( b – c) = a – b + c‬‬ ‫‪a – ( b + c) = a – b – c‬‬ ‫·‬ ‫ﻛﻞ ﻋﺪد ﺣﻘﯿﻘﻲ ‪ a‬ﻣﺨﺎﻟﻒ ﻟﻠﺼﻔﺮ ﻟﮫ ﻣﻘﻠﻮب ‪1/a‬‬ ‫·‬ ‫ﻣﮭﻤﺎ ﯾﻜﻦ اﻟﻌﺪد اﻟﺤﻘﯿﻘﻲ ‪ a‬ﻣﺨﺎﻟﻒ ﻟﻠﺼﻔﺮ ﻓﺈن :‬ ‫1 = ‪a x 1/a‬‬ ‫·‬ ‫‪M‬ﻧﻘﻄﺔ ﻣﻦ اﻟﻤﺴﺘﻘﯿﻢ اﻟﻤﺪرج )‪ (oi‬ﻓﺎﺻﻠﻨﮭﺎ ‪x‬اﻟﻘﯿﻤﺔ اﻟﻤﻄﻠﻘﺔ ﻟـ ‪x‬‬ ‫ھﻲ اﻟﺒﻌﺪ ‪|x| = OM : OM‬‬ ‫·‬ ‫‪ |x| = X‬إذا ﻛﺎن ‪ X‬ﻋﺪد ﻣﻮﺟﺒﺎ‬ ‫·‬ ‫‪ |x| = - X‬إذا ﻛﺎن ‪ X‬ﻋﺪد ا ﺳﺎﻟﺒﺎ‬ ‫·‬ ‫0 = |‪ |x‬ﯾﻌﻨﻲ 0 = ‪X‬‬ ‫·‬ ‫ﻣﮭﻤﺎ ﯾﻜﻦ اﻟﻌﺪدان اﻟﺤﻘﯿﻘﯿﺎن ‪ a‬و ‪ b‬ﻓﺈن :‬ ‫|‪|ab| = |a| .| b‬‬
  3. 3. ‫اﻟﻘﻮى ﻓﻲ ‪R‬‬ ‫·‬ ‫إذا ﻛﺎن ‪ a‬و ﻻ ﻋﺪدﯾﻦ ﺣﻘﯿﻘﯿﻦ ﻣﺨﺎﻟﻔﯿﻦ ﻟﻠﺼﻔﺮ و ‪n‬و ‪ p‬ﻋﺪدﯾﻦ ﺻﺤﯿﺤﯿﻦ ﻓﺈن :‬ ‫‪(a x b ) = an x bn‬‬ ‫‪(an) = anp‬‬ ‫‪an x ap = an+p‬‬ ‫‪( a/b)² = an / bn‬‬ ‫اﻟﺘﺮﺗﻴﺐ واﻟﻤﻘﺎرﻧﺔ ﻓﻲ ‪R‬‬ ‫·‬ ‫ﻟﯿﻜﻦ ‪ a‬و ‪ b‬ﻋﺪدﯾﻦ ﺣﻘﯿﻘﯿﻦ‬ ‫0≤ ‪ a-b‬ﯾﻌﻨﻲ ‪a ≤b‬‬ ‫0≥ ‪ a-b‬ﯾﻌﻨﻲ ‪a ≥b‬‬ ‫·‬ ‫ﻟﺘﻜﻦ ‪ x‬و ‪ y‬و ‪ z‬أﻋﺪاد ﺣﻘﯿﻘﯿﺔ‬ ‫‪ a ≤ b‬ﯾﻌﻨﻲ ‪a + c ≤ b +c‬‬ ‫·‬ ‫إذا ﻛﺎن ‪ a‬و ‪ b‬و ‪ c‬و ‪ d‬أﻋﺪاد ﺣﻘﯿﻘﯿﺔ‬ ‫·‬ ‫‪ a ≤ b‬ﯾﻌﻨﻲ ‪a + c ≤ b +c‬‬ ‫·‬ ‫‪ c ≤ d a ≤ b‬ﯾﻌﻨﻲ ‪a + c ≤ b +d‬‬ ‫·‬ ‫ﻧﻌﺘﺒﺮ ‪ a‬و ‪ b‬ﻋﺪدﯾﻦ ﺣﻘﯿﻘﯿﻦ‬ ‫1- إذا ﻛﺎن ‪ c‬ﻋﺪدا ﻣﻮﺟﺒﺎ ﻗﻄﻌﺎ ﻓﺈن :‬ ‫‪ a ≤ b‬ﯾﻌﻨﻲ ‪a c ≤ b c‬‬ ‫2- إذا ﻛﺎن ‪ c‬ﻋﺪدا ﺳﺎﻟﺒﺎ ﻗﻄﻌﺎ ﻓﺈن :‬ ‫‪ a ≤ b‬ﯾﻌﻨﻲ ‪a c ≥ b c‬‬ ‫·‬ ‫إذا ﻛﺎن ‪a‬و ‪ b‬و ‪ c‬و ‪ d‬أﻋﺪاد ﺣﻘﯿﻘﯿﺔ ﻣﻮﺟﺒﺔ :‬ ‫‪ A ≤b‬و ‪ c≤d‬إذن ‪ac ≤bd‬‬ ‫·‬ ‫إذا ﻛﺎن ‪ a‬و ‪ b‬و ‪ c‬و ‪ d‬أﻋﺎد ﺣﻘﯿﻘﯿﺔ ﺳﺎﻟﺒﺔ :‬ ‫‪ A ≤b‬و ‪ c ≤d‬إذن ‪ac ≥bd‬‬ ‫·‬ ‫ﻧﻌﺘﺒﺮ ‪ x‬و ‪ y‬ﻋﺪدﯾﻦ ﺣﻘﯿﻘﯿﻦ ﻣﻮﺟﺒﯿﻦ‬ ‫‪ X ≤ y‬ﯾﻌﻨﻲ‬ ‫·‬ ‫²‪x² ≤y‬‬ ‫ﻧﻌﺘﺒﺮ ‪ x‬و ‪ y‬ﻋﺪدﯾﻦ ﺣﻘﯿﻘﯿﻦ ﺳﺎﻟﺒﯿﻦ‬ ‫‪ X ≤ y‬ﯾﻌﻨﻲ‬ ‫²‪x² ≥y‬‬
  4. 4. ‫·‬ ‫ﻟﯿﻜﻦ ‪ x‬و ‪ y‬ﻋﺪدﯾﻦ ﺣﻘﯿﻘﯿﻦ‬ ‫|‪|x|≤|y‬‬ ‫²‪ x² ≤y‬ﯾﻌﻨﻲ‬ ‫‪ X‬و ‪ y‬ﻋﺪدﯾﻦ ﺣﻘﯿﻘﯿﻦ ﻣﺨﺎﻟﻔﯿﻦ ﻟﻠﺼﻔﺮ وﻟﮭﻤﺎ ﻧﻔﺲ اﻟﻌﻼﻣﺔ‬ ‫·‬ ‫‪ X ≤ y‬ﯾﻌﻨﻲ‬ ‫·‬ ‫إذا ﻛﺎن ‪ a‬و ‪ b‬و ‪ c‬و ‪ d‬أﻋﺪاد ﺣﻘﯿﻘﯿﺔ ﻓﺈن :‬ ‫‪(a+b)(c+d) = ac + ad + bc + bd‬‬ ‫‪(a+b)(c-d) = ac – ad + bc - bd‬‬ ‫‪(a-b)(c-d) = ac – ad - bc - bd‬‬ ‫‪(a-b)(c+d) = ac + ad - bc - bd‬‬ ‫·‬ ‫إذا ﻛﺎن ‪ a‬و ‪ b‬ﻋﺪدﯾﻦ ﺣﻘﯿﻘﯿﻦ :‬ ‫²‪( a +b) ² = a² + 2ab + b‬‬ ‫²‪(a -b) ² = a² - 2ab + b‬‬ ‫²‪( a + b) ( a – b)= a² - b‬‬ ‫·‬ ‫ﺣﺼﺮ ﻋﺪﺩ ﺣﻘﻴﻘﻲ‬ ‫ﺍﻟﻜﺘﺎﺑﺔ ‪b‬‬ ‫‪ a‬ﺃﻭ ‪b‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪ a‬ﺗﺴﻤﻰ ﺣﺼﺮ ﻟﻠﻌﺪﺩ ‪. x‬‬ ‫ﺍﻟﻔﺮﻕ ‪ b – a‬ﻳﺴﻤﻰ ﻣﺪﻯ ﺍﻟﺤﺼﺮ‬ ‫·‬ ‫ﺣﺼﺮ ﻣﺠﻤﻮﻉ ﻋﺪﺩﻳﻦ :‬ ‫‪ a‬ﻭ ‪ b‬ﻭ ‪ c‬ﻭ ‪ d‬ﻭ ‪ x‬ﻭ ‪ y‬ﺃﻋﺪﺍﺩ ﺣﻘﻴﻘﻴﺔ.‬ ‫ﺇﺫﺍ ﻛﺎﻥ ‪b‬‬ ‫‪x‬‬ ‫ﻓﺈﻥ ‪b+d‬‬ ‫‪x+y‬‬ ‫·‬ ‫‪a‬ﻭ ‪d‬‬ ‫‪y‬‬ ‫‪a+ c‬‬ ‫ﺣﺼﺮ ﺟﺬﺍﺀ ﻋﺪﺩﻳﻦ ﻣﻮﺟﺒﻴﻦ‬ ‫‪c‬‬
  5. 5. ‫‪ a‬ﻭ ‪ b‬ﻭ ‪ c‬ﻭ ‪ d‬ﻭ ‪ x‬ﻭ ‪ y‬ﺃﻋﺪﺍﺩ ﺣﻘﻴﻘﻴﺔ ﻣﻮﺟﺒﺔ‬ ‫ﺇﺫﺍ ﻛﺎﻥ ‪b‬‬ ‫‪x‬‬ ‫ﻓﺈﻥ : ‪bd‬‬ ‫‪xy‬‬ ‫‪b‬‬ ‫‪ac‬‬ ‫ﺍﻟﻤﺠﺎﻻﺕ ﺍﻟﻤﺤﺪﻭﺩﺓ ﻓﻲ‬ ‫·‬ ‫‪b‬‬ ‫‪a‬ﻭ ‪d‬‬ ‫‪y‬‬ ‫‪c‬‬ ‫‪a‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫[ ‪]a ; b‬‬ ‫‪a‬‬ ‫‪a‬‬ ‫‪b‬‬ ‫‪x‬‬ ‫‪b‬‬ ‫‪a>x‬‬ ‫]‪]a;b‬‬ ‫ﺍﻟﻤﺠﺎﻻﺕ ﻏﻴﺮ ﺍﻟﻤﺤﺪﻭﺩﺓ ﻓﻲ‬ ‫·‬ ‫‪X≥a‬‬ ‫[‬ ‫+ ; ‪[a‬‬ ‫‪X‬‬ ‫[‬ ‫+ ; ‪]a‬‬ ‫‪a‬‬ ‫‪X≤a‬‬ ‫‪a‬‬ ‫]‬‫‪X‬‬ ‫·‬ ‫]‬‫ﺍﻟﻤﺠﺎﻻﺕ ﺍﻟﺨﺎﺻﺔ‬ ‫|‪ |x‬ﺗﺴﻤﻰ ﺍﻟﻤﺠﺎﻝ‬ ‫|‪ |x‬ﺗﺴﻤﻰ ﺍﻟﻤﺠﺎﻝ‬ ‫|‪ |x‬ﻫﻲ [‬ ‫+ ; ‪[a‬‬ ‫-]‬ ‫|‪ |x‬ﻫﻲ [‬ ‫+ ; ‪]a‬‬ ‫-]‬

×