Slides from RecSys 2010 presentation.
Context has been recognized as an important factor to con- sider in personalized Recommender Systems. However, most model-based Collaborative Filtering approaches such as Ma- trix Factorization do not provide a straightforward way of integrating context information into the model. In this work, we introduce a Collaborative Filtering method based on Tensor Factorization, a generalization of Matrix Factoriza- tion that allows for a flexible and generic integration of con- textual information by modeling the data as a User-Item- Context N-dimensional tensor instead of the traditional 2D User-Item matrix. In the proposed model, called Multiverse Recommendation, different types of context are considered as additional dimensions in the representation of the data as a tensor