Advertisement

まとめ.pdf

Feb. 11, 2023
Advertisement

More Related Content

Slideshows for you(20)

Similar to まとめ.pdf(20)

Advertisement

Recently uploaded(20)

まとめ.pdf

  1. シングルケース実験デザイン まとめ 中井和弥 1
  2. はじめに ① ■ 近年,シングルケース実験デザイン (SCED)の有用性に関心が寄せられている。
  3. はじめに ② ■ SCEDを用いた研究の共通特徴 ① 1人の対象者または小規模な集団を前方視的に追跡 ② 追跡期間中に、アウトカムの測定を反復的に、 高頻度に実施 ③ 追跡期間中に、特定の介入を導入する時期(介入期) としない時期(ベースライン期)を設定 https://www.jstage.jst.go.jp/article/jjbct/advpub/0/advpub_21-024/_article/-char/ja/
  4. SCEDの適用イメージ 0 10 20 30 40 50 60 70 月 火 水 木 金 ベースライン 月 火 水 木 金 介入
  5. SCEDの代表的なデザイン ① ■ 反転法 (e.g., AB,ABA,ABAB) Rではじめるシングルケースデザインのローデータとスクリプトを用いて出力した。
  6. SCEDの代表的なデザイン ② ■ 多層ベースライン法 Rではじめるシングルケースデザインのローデータとスクリプトを用いて出力した。
  7. SCEDの代表的なデザイン ③ ■ 基準変更デザイン https://www.jstage.jst.go.jp/article/jjba/29/Suppl/29_KJ00010016875/_pdf
  8. はじめに ③ ■ SCEDによって測定されたアウトカムを ベースライン期と介入期で比較することで 介入の効果の検証が可能 ■ 従来のSCEDの研究では,介入の有効性を 視覚分析で評価 → しかし,視覚分析は信頼性の点で不十分 https://www.amazon.co.jp/R%E3%81%A7%E3%81%AF%E3%81%98%E3%82%81%E3%82%8B%E3%82%B7%E3%83%B3%E3%82%B0%E3%83%AB%E3%82%B1%E3%83%BC%E3%82%B9%E3%83%87%E3%82%B6%E3%82%A4%E3%83%B3-%E8%97%A4%E5%B7%BB-%E5%B3%BB/dp/4907438397
  9. 本論文の構成 ① 視覚分析の概要と信頼性 ② 統計指標を利用した介入効果の評価 ③ 適切な統計指標を選択する指針に関する議論 + 視覚分析と統計指標を算出するツールの紹介 https://www.jstage.jst.go.jp/article/jjbct/advpub/0/advpub_21-024/_article/-char/ja/
  10. 本スライドの構成 ① 視覚分析の概要と信頼性 ② 統計指標を利用した介入効果の評価 ③ 適切な統計指標を選択する指針に関する議論 + 視覚分析と統計指標を算出するツールの紹介 ④ おまけ
  11. ① 視覚分析の概要と信頼性
  12. 視覚分析 ■ 視覚分析を実施する際のデータの特徴 〇 レベル(level) 〇トレンド(trend) 〇 変動性(variability) 〇 重複度(overlap) 〇 効果の即時性(immediacy of effect) 〇 類似フェーズ間のデータパターンの一貫性 (consistency of data patterns across similar phases) https://www.jstage.jst.go.jp/article/jjbct/advpub/0/advpub_21-024/_article/-char/ja/
  13. 〇 レベル(level) ■ 各フェーズのデータの平均や中央値。 M = 18.96 M = 4.9 平均値差= 14.06 https://www.jstage.jst.go.jp/article/jjbct/advpub/0/advpub_21-024/_article/-char/ja/
  14. 〇 トレンド(trend) ■ 各フェーズのデータに最小二乗法によって 求めた回帰直線をプロットして評価。 https://www.jstage.jst.go.jp/article/jjbct/advpub/0/advpub_21-024/_article/-char/ja/
  15. 〇 変動性(variability) ■ 各フェーズのデータにおける平均値,中央値, あるいは回帰直線からの乖離度。 SD = 1.24 SD = 2.11 https://www.jstage.jst.go.jp/article/jjbct/advpub/0/advpub_21-024/_article/-char/ja/
  16. 〇 重複度(overlap) ■ ベースライン期のデータと介入期のデータが 重複する割合。 (e.g., percentage of nonoverlapping data: PND) 44 38 45 42 43 41 20 25 30 35 40 45 50 1 2 3 4 5 6 不 安 35 43 35 39 37 26 32 32 22 7 8 9 10 11 12 13 14 15 PND = 7/9 = 78% Ruiz らで報告されているSubject 7 について公開されているローデータを使用(https://osf.io/v48r6/)
  17. 〇 効果の即時性(immediacy of effect) ■ ベースライン期の最後の3時点のデータと 介入期の最初の3時点のデータの レベル(平均)の差。 Rではじめるシングルケースデザインのローデータとスクリプトを用いて出力した。
  18. 視覚分析のメリット・デメリット メリット ■ データの変換を最小限に抑え,判断も簡潔で 理論的な前提が統計的検定よりも分かりやすい。 デメリット ■ 複数の評定者間で評定が一致しない。 ・メタ分析だと,評定者間の一致率は.76(.80以上が望ましい)。 ・SCEDの専門家の信頼性(.64)が,素人のそれ(.73)と大差なし。 https://www.amazon.co.jp/R%E3%81%A7%E3%81%AF%E3%81%98%E3%82%81%E3%82%8B%E3%82%B7%E3%83%B3%E3%82%B0%E3%83%AB%E3%82%B1%E3%83%BC%E3%82%B9%E3%83%87%E3%82%B6%E3%82%A4%E3%83%B3-%E8%97%A4%E5%B7%BB-%E5%B3%BB/dp/4907438397
  19. 視覚分析に代わるより「 客観的 」な方法が必要! 視覚分析 より客観的な方法
  20. ② 統計指標を利用した 介入効果の評価
  21. 視覚的判断に代わる介入効果の評価方法 ■ 統計的検定(効果の有無) e.g., ランダマイゼーション検定・・・・・・×? ■ 個人内効果量(効果の大きさ) 重複率系(e.g., PND / Tau-U)・・・・・・〇? 平均系(e.g., SMD / LRR) 回帰系 ※詳細不明により割愛 ■ 個人間効果量(効果の大きさ+統計的検定?) e.g., BC-SMD https://www.amazon.co.jp/R%E3%81%A7%E3%81%AF%E3%81%98%E3%82%81%E3%82%8B%E3%82%B7%E3%83%B3%E3%82%B0%E3%83%AB%E3%82%B1%E3%83%BC%E3%82%B9%E3%83%87%E3%82%B6%E3%82%A4%E3%83%B3-%E8%97%A4%E5%B7%BB-%E5%B3%BB/dp/4907438397
  22. 個人内効果の評価:重複率系(PND) ■ Percentage of Non-overlapping Data(PND) 介入条件のデータの内,ベースライン条件のデータの最小値を 下回る(従属変数の値の上昇を目指した介入であれば データの最大を上回る)データの割合 44 38 45 42 43 41 20 25 30 35 40 45 50 1 2 3 4 5 6 不 安 35 43 35 39 37 26 32 32 22 7 8 9 10 11 12 13 14 15 最小値(38)を下回るデータ数:7 介入条件の総データ数:9 PND = 7÷9 = 78% ベースライン条件 介入条件
  23. 個人内効果の評価:重複率系(PND) https://www.jstage.jst.go.jp/article/jsbse/25/0/25_35/_article/-char/ja
  24. 個人内効果の評価:重複率系(PND) ■ ただし,PNDは,算出が簡便であるが, 外れ値の影響を強く受ける。 例えば,ベースライン条件に極端に小さな値があると, 効果量が0になってしまう。 ■ ベースライン期のトレンドの効果も交絡。 → PNDの弱点を補うさまざまな効果量が提起。 https://www.amazon.co.jp/R%E3%81%A7%E3%81%AF%E3%81%98%E3%82%81%E3%82%8B%E3%82%B7%E3%83%B3%E3%82%B0%E3%83%AB%E3%82%B1%E3%83%BC%E3%82%B9%E3%83%87%E3%82%B6%E3%82%A4%E3%83%B3-%E8%97%A4%E5%B7%BB-%E5%B3%BB/dp/4907438397
  25. 個人内効果の評価:重複率系(Tau-U) 【算出方法】① 44 38 45 42 43 41 20 25 30 35 40 45 50 1 2 3 4 5 6 不 安 35 43 35 39 37 26 32 32 22 7 8 9 10 11 12 13 14 15
  26. 個人内効果の評価:重複率系(Tau-U) 【算出方法】① 44 38 45 42 43 41 20 25 30 35 40 45 50 1 2 3 4 5 6 不 安 35 43 35 39 37 26 32 32 22 7 8 9 10 11 12 13 14 15 posi nega posi posi posi
  27. 個人内効果の評価:重複率系(Tau-U) 【算出方法】① 44 38 45 42 43 41 20 25 30 35 40 45 50 1 2 3 4 5 6 不 安 35 43 35 39 37 26 32 32 22 7 8 9 10 11 12 13 14 15 nega nega nega nega
  28. 個人内効果の評価:重複率系(Tau-U) 【算出方法】① 残りの3つでも変化について検証 44 38 45 42 43 41 20 25 30 35 40 45 50 1 2 3 4 5 6 不 安 35 43 35 39 37 26 32 32 22 7 8 9 10 11 12 13 14 15
  29. 個人内効果の評価:重複率系(Tau-U) 【算出方法】② 44 38 45 42 43 41 20 25 30 35 40 45 50 1 2 3 4 5 6 不 安 35 43 35 39 37 26 32 32 22 7 8 9 10 11 12 13 14 15 ベースラインのpositive変化:9 ベースラインのnegative変化:6 ベースラインのposi-ベースラインのnega:3 (①)
  30. 個人内効果の評価:重複率系(Tau-U) 【算出方法】③ 44 38 45 42 43 41 20 25 30 35 40 45 50 1 2 3 4 5 6 不 安 35 43 35 39 37 26 32 32 22 7 8 9 10 11 12 13 14 15 posi posi posi posi posi posi posi posi posi
  31. 個人内効果の評価:重複率系(Tau-U) 【算出方法】③ 44 38 45 42 43 41 20 25 30 35 40 45 50 1 2 3 4 5 6 不 安 35 43 35 39 37 26 32 32 22 7 8 9 10 11 12 13 14 15 posi posi posi posi posi posi posi nega nega
  32. 個人内効果の評価:重複率系(Tau-U) 【算出方法】③ 残りの4つでも変化について検証 44 38 45 42 43 41 20 25 30 35 40 45 50 1 2 3 4 5 6 不 安 35 43 35 39 37 26 32 32 22 7 8 9 10 11 12 13 14 15
  33. 個人内効果の評価:重複率系(Tau-U) 【算出方法】④ 44 38 45 42 43 41 20 25 30 35 40 45 50 1 2 3 4 5 6 不 安 35 43 35 39 37 26 32 32 22 7 8 9 10 11 12 13 14 15 ベースライン期の値と 介入期の値をすべて比較した際の Positive変化:49 ベースライン期の値と 介入期の値をすべて比較した際の Negative変化:4 Positive変化 ー Negative変化 = 49 ー 4 = 45(②)
  34. 個人内効果の評価:重複率系(Tau-U) 【算出方法】⑤ 44 38 45 42 43 41 20 25 30 35 40 45 50 1 2 3 4 5 6 不 安 35 43 35 39 37 26 32 32 22 7 8 9 10 11 12 13 14 15 ( ② ー ① )÷ペアの総数 = Tau-U (45 ー 3 )÷ 54 = 77.8%
  35. 個人内効果の評価:重複率系(Tau-U)
  36. 個人内効果の評価:重複率系(NAP) ■ Non-overlap of All Pairs(NAP) ■ ベースライン期と介入期の全てのペアを 用いて効果量を算出。 ■ 一方のフェーズから他のフェーズについて 改善の見られたデータの割合に注目。 https://www.amazon.co.jp/R%E3%81%A7%E3%81%AF%E3%81%98%E3%82%81%E3%82%8B%E3%82%B7%E3%83%B3%E3%82%B0%E3%83%AB%E3%82%B1%E3%83%BC%E3%82%B9%E3%83%87%E3%82%B6%E3%82%A4%E3%83%B3-%E8%97%A4%E5%B7%BB-%E5%B3%BB/dp/4907438397
  37. 個人内効果の評価:重複率系(NAP) 【算出方法】 44 38 45 42 43 41 20 25 30 35 40 45 50 1 2 3 4 5 6 不 安 35 43 35 39 37 26 32 32 22 7 8 9 10 11 12 13 14 15 posi posi posi posi posi posi posi posi posi https://www.amazon.co.jp/R%E3%81%A7%E3%81%AF%E3%81%98%E3%82%81%E3%82%8B%E3%82%B7%E3%83%B3%E3%82%B0%E3%83%AB%E3%82%B1%E3%83%BC%E3%82%B9%E3%83%87%E3%82%B6%E3%82%A4%E3%83%B3-%E8%97%A4%E5%B7%BB-%E5%B3%BB/dp/4907438397
  38. 個人内効果の評価:重複率系(NAP) 【算出方法】 44 38 45 42 43 41 20 25 30 35 40 45 50 1 2 3 4 5 6 不 安 35 43 35 39 37 26 32 32 22 7 8 9 10 11 12 13 14 15 posi posi posi posi posi posi posi nega nega https://www.amazon.co.jp/R%E3%81%A7%E3%81%AF%E3%81%98%E3%82%81%E3%82%8B%E3%82%B7%E3%83%B3%E3%82%B0%E3%83%AB%E3%82%B1%E3%83%BC%E3%82%B9%E3%83%87%E3%82%B6%E3%82%A4%E3%83%B3-%E8%97%A4%E5%B7%BB-%E5%B3%BB/dp/4907438397
  39. 個人内効果の評価:重複率系(NAP) 【算出方法】 残りの4つでも変化について検証 44 38 45 42 43 41 20 25 30 35 40 45 50 1 2 3 4 5 6 不 安 35 43 35 39 37 26 32 32 22 7 8 9 10 11 12 13 14 15
  40. 個人内効果の評価:重複率系(NAP) ■ 望ましい変化がみられたペア(Posi)は+1 変化がみられなかったペア(Tie)は0.5 望ましくない変化がみられたペア(Nega)は0 として各ペアに点数を与える。 介入1 介入2 介入3 介入4 介入5 介入6 介入7 介入8 介入9 7 8 9 10 11 12 13 14 15 不安 35 43 35 39 37 26 32 32 22 ベース1 1 44 1 1 1 1 1 1 1 1 1 ベース2 2 38 1 0 1 0 1 1 1 1 1 ベース3 3 45 1 1 1 1 1 1 1 1 1 ベース4 4 42 1 0 1 1 1 1 1 1 1 ベース5 5 43 1 0.5 1 1 1 1 1 1 1 ベース6 6 41 1 0 1 1 1 1 1 1 1 https://www.amazon.co.jp/R%E3%81%A7%E3%81%AF%E3%81%98%E3%82%81%E3%82%8B%E3%82%B7%E3%83%B3%E3%82%B0%E3%83%AB%E3%82%B1%E3%83%BC%E3%82%B9%E3%83%87%E3%82%B6%E3%82%A4%E3%83%B3-%E8%97%A4%E5%B7%BB-%E5%B3%BB/dp/4907438397
  41. 個人内効果の評価:重複率系(NAP) NAP = 点数の総和 ÷ ペアの総数 49.5 ÷ 54 92% https://www.amazon.co.jp/R%E3%81%A7%E3%81%AF%E3%81%98%E3%82%81%E3%82%8B%E3%82%B7%E3%83%B3%E3%82%B0%E3%83%AB%E3%82%B1%E3%83%BC%E3%82%B9%E3%83%87%E3%82%B6%E3%82%A4%E3%83%B3-%E8%97%A4%E5%B7%BB-%E5%B3%BB/dp/4907438397
  42. 個人内効果の評価:平均系(SMD) ■ Standardized Mean Difference(SMD) ■ 群比較実験の効果量と類似の効果量 ■ d統計量とも呼ばれる。 https://www.jstage.jst.go.jp/article/jsbse/25/0/25_35/_article/-char/ja
  43. 個人内効果の評価:平均系(SMD) SMD-1 ベースライン期のデータの平均と 介入期のデータの平均の差を, ベースライン期のデータの標準偏差で 割ったもの https://www.jstage.jst.go.jp/article/jsbse/25/0/25_35/_article/-char/ja
  44. 個人内効果の評価:平均系(SMD) SMD-1 44 38 45 42 43 41 20 25 30 35 40 45 50 1 2 3 4 5 6 不 安 35 43 35 39 37 26 32 32 22 7 8 9 10 11 12 13 14 15 平均 = 33.4 平均 = 42.2 SD = 2.5 https://www.jstage.jst.go.jp/article/jsbse/25/0/25_35/_article/-char/ja
  45. 個人内効果の評価:平均系(SMD) SMD-1 ベースライン期のデータの平均(42.2)と 介入期のデータの平均(33.4)の差を, ベースライン期のデータの標準偏差(2.5)で 割ったもの (42.2 – 33.4)÷2.5 = 3.51 https://www.jstage.jst.go.jp/article/jsbse/25/0/25_35/_article/-char/ja
  46. 個人内効果の評価:平均系(SMD) SMD-2 ベースライン期のデータの平均と 介入期のデータの平均の差を, 2つのフェイズをプールした標準偏差で 割ったもの https://www.jstage.jst.go.jp/article/jsbse/25/0/25_35/_article/-char/ja
  47. 個人内効果の評価:平均系(SMD) SMD-2 44 38 45 42 43 41 20 25 30 35 40 45 50 1 2 3 4 5 6 不 安 35 43 35 39 37 26 32 32 22 7 8 9 10 11 12 13 14 15 平均 = 33.4 平均 = 42.2 プールされた SD = 6.7
  48. 個人内効果の評価:平均系(SMD) SMD-2 ベースライン期のデータの平均と 介入期のデータの平均の差を, 2つのフェイズをプールした標準偏差で 割ったもの (42.2 – 33.4)÷6.7 = 1.29
  49. 個人内効果の評価:平均系(LRR) ■ log response ratio(LRR) ■ 各フェーズの平均の対数比を取ったもの。 ■ LRR = ln(33.4 / 42.1) = ー.23 ※ 従属変数の値が増加する場合は正の値になる。
  50. 個人内効果の評価:平均系(LRR) ■ LRRは変化割合への変換も可能。 変化割合 = 100×exp(LRR)-1 100×exp(-.23)-1 78.31 ■ ベースライン期の得点の78%ほど減少
  51. 個人間効果の評価:平均系(BC-SMD) ■ Between-Case Standardized Mean Difference (BC-SMD) 特徴①:群比較研究で計算される標準化平均値差と比較可能 特徴②:被検者間マルチベースラインデザインと ABABデザインのデータについて算出可能 特徴③:効果量の算出のため,少なくとも3人の被験者が必要。 https://www.jstage.jst.go.jp/article/jsbse/25/0/25_35/_article/-char/ja
  52. 個人間効果の評価:平均系(BC-SMD) ■ BC-SMDの算出には階層線形モデル (Hierarchical Linear Modeling: HLM)を利用。 ■ レベル1で個人内の効果を, レベル2で個人間の効果を推定。 ■ Webアプリケーションまたは RのSchhlmパッケージで算出可能。 https://www.jstage.jst.go.jp/article/jsbse/25/0/25_35/_article/-char/ja
  53. ③ 適切な統計指標を選択する指針に関する議論 + 視覚分析と統計指標を算出するツールの紹介
  54. どの効果量が人気? ■ PNDが最も利用されているが現在は減少傾向。 ■ 最近はNAP・PAND・Tau-Uが増加。 https://www.jstage.jst.go.jp/article/jsbse/25/0/25_35/_article/-char/ja
  55. 結局何を使えばよいのか? ■個人内効果の指標 ・データの変動性が高い場合は重複率系。 → ベースラインにトレンドあり : Tau-U → ベースラインにトレンドなし : NAP ・ベースラインの変動性が低くてトレンドもない もしくは即時効果が期待される場合はSMD・LRR
  56. ④ おまけ
  57. SCEDの流れ https://www.amazon.co.jp/R%E3%81%A7%E3%81%AF%E3%81%98%E3%82%81%E3%82%8B%E3%82%B7%E3%83%B3%E3%82%B0%E3%83%AB%E3%82%B1%E3%83%BC%E3%82%B9%E3%83%87%E3%82%B6%E3%82%A4%E3%83%B3-%E8%97%A4%E5%B7%BB-%E5%B3%BB/dp/4907438397 効果がある アプローチの 選定 対象者の選定 と研究計画書 の作成 倫理審査, 対象への インフォームド コンセント データ収集 解析 成果発表 (学会・論文発表) 1 2 3 4 5 6 実践現場で「 これ,いいんじゃね? 」という アプローチがSCEDで採用されることが多い?
  58. SCEDの実例①:鈴木他(2010) ■ SCEDの形式:反転法(ABAB) ■ 重度の認知障害・右片麻痺を呈する70代の 男性を対象に日常生活動作訓練の効果を検証。 (身体ガイド法) ■ 身体ガイド法を実施しているフェイズでは 実施していないフェイズよりも,自力で遂行 し得た介助協力動作が多いのかどうかを検証。 注1)訓練をしていると,手がかり刺激を呈示すれば介助協力動作をしてくれるのかどうかを検証。 注2)介助協力動作とは,「移乗時に体幹を前屈する」「スプーンで食事をすくう」「タオルで顔を拭く」など。 https://www.jstage.jst.go.jp/article/jjba/24/1/24_KJ00006064942/_pdf
  59. SCEDの実例①:鈴木他(2010) https://www.jstage.jst.go.jp/article/jjba/24/1/24_KJ00006064942/_pdf
  60. SCEDの実例②:宮﨑・下平・玉澤(2012) ■ SCEDの形式:多層ベースラインデザイン。 ■ 中学1年生の自閉症児のために,会話促進の ための5つの場面を用意し,会話の台本の 効果を検証。注)場面は,おやつ・ばばぬき・共同制作 など ■ ただし,会話の台本を使用し始める時期は 場面ごとでずらした。 https://www.jstage.jst.go.jp/article/jjba/26/2/26_KJ00007979397/_pdf
  61. SCEDの実例②:宮﨑・下平・玉澤(2012) https://www.jstage.jst.go.jp/article/jjba/26/2/26_KJ00007979397/_pdf https://www.jstage.jst.go.jp/article/jjba/29/Suppl/29_KJ00010016875/_pdf 場面② 場面③
  62. ちなみに
  63. 重複率系の個人内効果量は R で簡単に算出可能
  64. Webアプリでも算出可能?
  65. http://singlecaseresearch.org/
  66. http://singlecaseresearch.org/calculators/tau-u
Advertisement