SlideShare a Scribd company logo

画像認識で物を見分ける

Pythonで動かして学ぶ機械学習入門 第二回 Jupyter Notebooks: https://goo.gl/U7bglf

1 of 31
Download to read offline
画像認識で物を見分ける
Pythonで動かして学ぶ機械学習入門 第二回
谷田和章
自己紹介
● 谷田和章 (たにだかずあき)
○ GitHub: slaypni
● ソフトウェアエンジニア (フリーランス&白ヤギコーポレーション )
○ 機械学習, 自然言語処理
○ Web, iOS, Android
● カメリオの機械学習アルゴリズムの開発
今日やること (その1)
手書き数字識別OCRを作る
分類器
推定: 0
推定: 2
推定: 7
推定: 5
これ
今日やること (その2)
写真中の建物を分類する
分類器
notredame
louvre
eiffel
機械学習を適用する流れ
● やりたいこと: (未知)データのラベルを推定
● 事前に必要なもの: データと正解ラベル
実験の手順 (概要)
1. データを特徴ベクトルに変換
2. データを学習用とテスト用に分ける
3. 分類器を学習させる
4. テストデータのラベルを推定
5. 推定値と正解から結果を評価
OCRを作りながら各手順を見ていきます
事前に必要なもの: データと正解ラベル
● sklearn.datasetsパッケージ
機械学習を試すのに使えるトイデータ
● labels変数
正解数字の配列
● images変数
数字画像の配列
digits = datasets.load_digits()
labels = digits['target']
images = digits['images']
images.shape
(1797, 8, 8)
1797個の8x8ピクセルのモノクロ画像

Recommended

semantic segmentation サーベイ
semantic segmentation サーベイsemantic segmentation サーベイ
semantic segmentation サーベイyohei okawa
 
逐次モンテカルロ法の基礎
逐次モンテカルロ法の基礎逐次モンテカルロ法の基礎
逐次モンテカルロ法の基礎ShoutoYonekura
 
コンピューテーショナルフォトグラフィ
コンピューテーショナルフォトグラフィコンピューテーショナルフォトグラフィ
コンピューテーショナルフォトグラフィNorishige Fukushima
 
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learningゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement LearningPreferred Networks
 
【DL輪読会】時系列予測 Transfomers の精度向上手法
【DL輪読会】時系列予測 Transfomers の精度向上手法【DL輪読会】時系列予測 Transfomers の精度向上手法
【DL輪読会】時系列予測 Transfomers の精度向上手法Deep Learning JP
 
信号処理・画像処理における凸最適化
信号処理・画像処理における凸最適化信号処理・画像処理における凸最適化
信号処理・画像処理における凸最適化Shunsuke Ono
 
[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS
[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS[DL輪読会]QUASI-RECURRENT NEURAL NETWORKS
[DL輪読会]QUASI-RECURRENT NEURAL NETWORKSDeep Learning JP
 
グラフデータ分析 入門編
グラフデータ分析 入門編グラフデータ分析 入門編
グラフデータ分析 入門編順也 山口
 

More Related Content

What's hot

Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築Tatsuya Tojima
 
TensorFlow を使った 機械学習ことはじめ (GDG京都 機械学習勉強会)
TensorFlow を使った機械学習ことはじめ (GDG京都 機械学習勉強会)TensorFlow を使った機械学習ことはじめ (GDG京都 機械学習勉強会)
TensorFlow を使った 機械学習ことはじめ (GDG京都 機械学習勉強会)徹 上野山
 
【DL輪読会】Egocentric Video Task Translation (CVPR 2023 Highlight)
【DL輪読会】Egocentric Video Task Translation (CVPR 2023 Highlight)【DL輪読会】Egocentric Video Task Translation (CVPR 2023 Highlight)
【DL輪読会】Egocentric Video Task Translation (CVPR 2023 Highlight)Deep Learning JP
 
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話Yusuke Uchida
 
近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer近年のHierarchical Vision Transformer
近年のHierarchical Vision TransformerYusuke Uchida
 
スペクトラル・クラスタリング
スペクトラル・クラスタリングスペクトラル・クラスタリング
スペクトラル・クラスタリングAkira Miyazawa
 
動的輪郭モデル
動的輪郭モデル動的輪郭モデル
動的輪郭モデルArumaziro
 
カルマンフィルタ入門
カルマンフィルタ入門カルマンフィルタ入門
カルマンフィルタ入門Yasunori Nihei
 
[DL輪読会]Learning to Simulate Complex Physics with Graph Networks
[DL輪読会]Learning to Simulate Complex Physics with Graph Networks[DL輪読会]Learning to Simulate Complex Physics with Graph Networks
[DL輪読会]Learning to Simulate Complex Physics with Graph NetworksDeep Learning JP
 
Anaconda navigatorのアップデートが終わらないときの対処方法メモ
Anaconda navigatorのアップデートが終わらないときの対処方法メモAnaconda navigatorのアップデートが終わらないときの対処方法メモ
Anaconda navigatorのアップデートが終わらないときの対処方法メモayohe
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Preferred Networks
 
MCMCサンプルの使い方 ~見る・決める・探す・発生させる~
MCMCサンプルの使い方 ~見る・決める・探す・発生させる~MCMCサンプルの使い方 ~見る・決める・探す・発生させる~
MCMCサンプルの使い方 ~見る・決める・探す・発生させる~. .
 
最適輸送の解き方
最適輸送の解き方最適輸送の解き方
最適輸送の解き方joisino
 
Transformer メタサーベイ
Transformer メタサーベイTransformer メタサーベイ
Transformer メタサーベイcvpaper. challenge
 
[DL輪読会]Objects as Points
[DL輪読会]Objects as Points[DL輪読会]Objects as Points
[DL輪読会]Objects as PointsDeep Learning JP
 
[DL輪読会]Discriminative Learning for Monaural Speech Separation Using Deep Embe...
[DL輪読会]Discriminative Learning for Monaural Speech Separation Using Deep Embe...[DL輪読会]Discriminative Learning for Monaural Speech Separation Using Deep Embe...
[DL輪読会]Discriminative Learning for Monaural Speech Separation Using Deep Embe...Deep Learning JP
 
言語と画像の表現学習
言語と画像の表現学習言語と画像の表現学習
言語と画像の表現学習Yuki Noguchi
 
Word2vecの並列実行時の学習速度の改善
Word2vecの並列実行時の学習速度の改善Word2vecの並列実行時の学習速度の改善
Word2vecの並列実行時の学習速度の改善Naoaki Okazaki
 
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)Deep Learning JP
 
pymcとpystanでベイズ推定してみた話
pymcとpystanでベイズ推定してみた話pymcとpystanでベイズ推定してみた話
pymcとpystanでベイズ推定してみた話Classi.corp
 

What's hot (20)

Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
 
TensorFlow を使った 機械学習ことはじめ (GDG京都 機械学習勉強会)
TensorFlow を使った機械学習ことはじめ (GDG京都 機械学習勉強会)TensorFlow を使った機械学習ことはじめ (GDG京都 機械学習勉強会)
TensorFlow を使った 機械学習ことはじめ (GDG京都 機械学習勉強会)
 
【DL輪読会】Egocentric Video Task Translation (CVPR 2023 Highlight)
【DL輪読会】Egocentric Video Task Translation (CVPR 2023 Highlight)【DL輪読会】Egocentric Video Task Translation (CVPR 2023 Highlight)
【DL輪読会】Egocentric Video Task Translation (CVPR 2023 Highlight)
 
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
 
近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer
 
スペクトラル・クラスタリング
スペクトラル・クラスタリングスペクトラル・クラスタリング
スペクトラル・クラスタリング
 
動的輪郭モデル
動的輪郭モデル動的輪郭モデル
動的輪郭モデル
 
カルマンフィルタ入門
カルマンフィルタ入門カルマンフィルタ入門
カルマンフィルタ入門
 
[DL輪読会]Learning to Simulate Complex Physics with Graph Networks
[DL輪読会]Learning to Simulate Complex Physics with Graph Networks[DL輪読会]Learning to Simulate Complex Physics with Graph Networks
[DL輪読会]Learning to Simulate Complex Physics with Graph Networks
 
Anaconda navigatorのアップデートが終わらないときの対処方法メモ
Anaconda navigatorのアップデートが終わらないときの対処方法メモAnaconda navigatorのアップデートが終わらないときの対処方法メモ
Anaconda navigatorのアップデートが終わらないときの対処方法メモ
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
 
MCMCサンプルの使い方 ~見る・決める・探す・発生させる~
MCMCサンプルの使い方 ~見る・決める・探す・発生させる~MCMCサンプルの使い方 ~見る・決める・探す・発生させる~
MCMCサンプルの使い方 ~見る・決める・探す・発生させる~
 
最適輸送の解き方
最適輸送の解き方最適輸送の解き方
最適輸送の解き方
 
Transformer メタサーベイ
Transformer メタサーベイTransformer メタサーベイ
Transformer メタサーベイ
 
[DL輪読会]Objects as Points
[DL輪読会]Objects as Points[DL輪読会]Objects as Points
[DL輪読会]Objects as Points
 
[DL輪読会]Discriminative Learning for Monaural Speech Separation Using Deep Embe...
[DL輪読会]Discriminative Learning for Monaural Speech Separation Using Deep Embe...[DL輪読会]Discriminative Learning for Monaural Speech Separation Using Deep Embe...
[DL輪読会]Discriminative Learning for Monaural Speech Separation Using Deep Embe...
 
言語と画像の表現学習
言語と画像の表現学習言語と画像の表現学習
言語と画像の表現学習
 
Word2vecの並列実行時の学習速度の改善
Word2vecの並列実行時の学習速度の改善Word2vecの並列実行時の学習速度の改善
Word2vecの並列実行時の学習速度の改善
 
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
 
pymcとpystanでベイズ推定してみた話
pymcとpystanでベイズ推定してみた話pymcとpystanでベイズ推定してみた話
pymcとpystanでベイズ推定してみた話
 

Similar to 画像認識で物を見分ける

Pythonによる機械学習入門 ~SVMからDeep Learningまで~
Pythonによる機械学習入門 ~SVMからDeep Learningまで~Pythonによる機械学習入門 ~SVMからDeep Learningまで~
Pythonによる機械学習入門 ~SVMからDeep Learningまで~Yasutomo Kawanishi
 
Opencv object detection_takmin
Opencv object detection_takminOpencv object detection_takmin
Opencv object detection_takminTakuya Minagawa
 
10分で分かるr言語入門ver2.9 14 0920
10分で分かるr言語入門ver2.9 14 0920 10分で分かるr言語入門ver2.9 14 0920
10分で分かるr言語入門ver2.9 14 0920 Nobuaki Oshiro
 
機械学習を用いた予測モデル構築・評価
機械学習を用いた予測モデル構築・評価機械学習を用いた予測モデル構築・評価
機械学習を用いた予測モデル構築・評価Shintaro Fukushima
 
Pythonによる機械学習入門 ~Deep Learningに挑戦~
Pythonによる機械学習入門 ~Deep Learningに挑戦~Pythonによる機械学習入門 ~Deep Learningに挑戦~
Pythonによる機械学習入門 ~Deep Learningに挑戦~Yasutomo Kawanishi
 
10分で分かるr言語入門ver2.10 14 1101
10分で分かるr言語入門ver2.10 14 110110分で分かるr言語入門ver2.10 14 1101
10分で分かるr言語入門ver2.10 14 1101Nobuaki Oshiro
 
Kashiwa.R#1 画像解析とパターン認識における R の利用
Kashiwa.R#1 画像解析とパターン認識における R の利用Kashiwa.R#1 画像解析とパターン認識における R の利用
Kashiwa.R#1 画像解析とパターン認識における R の利用nmaro
 
基礎から見直す ASP.NET MVC の単体テスト自動化方法 ~ Windows Azure 関連もあるかも~
基礎から見直す ASP.NET MVC の単体テスト自動化方法 ~ Windows Azure 関連もあるかも~基礎から見直す ASP.NET MVC の単体テスト自動化方法 ~ Windows Azure 関連もあるかも~
基礎から見直す ASP.NET MVC の単体テスト自動化方法 ~ Windows Azure 関連もあるかも~normalian
 
OpenCVの拡張ユーティリティ関数群
OpenCVの拡張ユーティリティ関数群OpenCVの拡張ユーティリティ関数群
OpenCVの拡張ユーティリティ関数群Norishige Fukushima
 
エンジニアのための機械学習の基礎
エンジニアのための機械学習の基礎エンジニアのための機械学習の基礎
エンジニアのための機械学習の基礎Daiyu Hatakeyama
 
データマイニング勉強会3
データマイニング勉強会3データマイニング勉強会3
データマイニング勉強会3Yohei Sato
 
PostgreSQLクエリ実行の基礎知識 ~Explainを読み解こう~
PostgreSQLクエリ実行の基礎知識 ~Explainを読み解こう~PostgreSQLクエリ実行の基礎知識 ~Explainを読み解こう~
PostgreSQLクエリ実行の基礎知識 ~Explainを読み解こう~Miki Shimogai
 
第四回 JavaScriptから始めるプログラミング2016
第四回 JavaScriptから始めるプログラミング2016第四回 JavaScriptから始めるプログラミング2016
第四回 JavaScriptから始めるプログラミング2016kyoto university
 
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」 佐野正太郎
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」  佐野正太郎明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」  佐野正太郎
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」 佐野正太郎Preferred Networks
 
テスト分析入門 -「ゆもつよメソッド」を例に- #wacate
テスト分析入門 -「ゆもつよメソッド」を例に- #wacateテスト分析入門 -「ゆもつよメソッド」を例に- #wacate
テスト分析入門 -「ゆもつよメソッド」を例に- #wacateKinji Akemine
 
NINと画像分類 for 人工知能LT祭
NINと画像分類 for 人工知能LT祭NINと画像分類 for 人工知能LT祭
NINと画像分類 for 人工知能LT祭t dev
 
機械学習向けCGデータの量産手法の検討
機械学習向けCGデータの量産手法の検討機械学習向けCGデータの量産手法の検討
機械学習向けCGデータの量産手法の検討Silicon Studio Corporation
 
ソフトウェア自動チューニング研究紹介
ソフトウェア自動チューニング研究紹介ソフトウェア自動チューニング研究紹介
ソフトウェア自動チューニング研究紹介Takahiro Katagiri
 
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~SSII
 

Similar to 画像認識で物を見分ける (20)

Pythonによる機械学習入門 ~SVMからDeep Learningまで~
Pythonによる機械学習入門 ~SVMからDeep Learningまで~Pythonによる機械学習入門 ~SVMからDeep Learningまで~
Pythonによる機械学習入門 ~SVMからDeep Learningまで~
 
Opencv object detection_takmin
Opencv object detection_takminOpencv object detection_takmin
Opencv object detection_takmin
 
10分で分かるr言語入門ver2.9 14 0920
10分で分かるr言語入門ver2.9 14 0920 10分で分かるr言語入門ver2.9 14 0920
10分で分かるr言語入門ver2.9 14 0920
 
機械学習を用いた予測モデル構築・評価
機械学習を用いた予測モデル構築・評価機械学習を用いた予測モデル構築・評価
機械学習を用いた予測モデル構築・評価
 
Pythonによる機械学習入門 ~Deep Learningに挑戦~
Pythonによる機械学習入門 ~Deep Learningに挑戦~Pythonによる機械学習入門 ~Deep Learningに挑戦~
Pythonによる機械学習入門 ~Deep Learningに挑戦~
 
10分で分かるr言語入門ver2.10 14 1101
10分で分かるr言語入門ver2.10 14 110110分で分かるr言語入門ver2.10 14 1101
10分で分かるr言語入門ver2.10 14 1101
 
Kashiwa.R#1 画像解析とパターン認識における R の利用
Kashiwa.R#1 画像解析とパターン認識における R の利用Kashiwa.R#1 画像解析とパターン認識における R の利用
Kashiwa.R#1 画像解析とパターン認識における R の利用
 
Gurobi python
Gurobi pythonGurobi python
Gurobi python
 
基礎から見直す ASP.NET MVC の単体テスト自動化方法 ~ Windows Azure 関連もあるかも~
基礎から見直す ASP.NET MVC の単体テスト自動化方法 ~ Windows Azure 関連もあるかも~基礎から見直す ASP.NET MVC の単体テスト自動化方法 ~ Windows Azure 関連もあるかも~
基礎から見直す ASP.NET MVC の単体テスト自動化方法 ~ Windows Azure 関連もあるかも~
 
OpenCVの拡張ユーティリティ関数群
OpenCVの拡張ユーティリティ関数群OpenCVの拡張ユーティリティ関数群
OpenCVの拡張ユーティリティ関数群
 
エンジニアのための機械学習の基礎
エンジニアのための機械学習の基礎エンジニアのための機械学習の基礎
エンジニアのための機械学習の基礎
 
データマイニング勉強会3
データマイニング勉強会3データマイニング勉強会3
データマイニング勉強会3
 
PostgreSQLクエリ実行の基礎知識 ~Explainを読み解こう~
PostgreSQLクエリ実行の基礎知識 ~Explainを読み解こう~PostgreSQLクエリ実行の基礎知識 ~Explainを読み解こう~
PostgreSQLクエリ実行の基礎知識 ~Explainを読み解こう~
 
第四回 JavaScriptから始めるプログラミング2016
第四回 JavaScriptから始めるプログラミング2016第四回 JavaScriptから始めるプログラミング2016
第四回 JavaScriptから始めるプログラミング2016
 
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」 佐野正太郎
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」  佐野正太郎明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」  佐野正太郎
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」 佐野正太郎
 
テスト分析入門 -「ゆもつよメソッド」を例に- #wacate
テスト分析入門 -「ゆもつよメソッド」を例に- #wacateテスト分析入門 -「ゆもつよメソッド」を例に- #wacate
テスト分析入門 -「ゆもつよメソッド」を例に- #wacate
 
NINと画像分類 for 人工知能LT祭
NINと画像分類 for 人工知能LT祭NINと画像分類 for 人工知能LT祭
NINと画像分類 for 人工知能LT祭
 
機械学習向けCGデータの量産手法の検討
機械学習向けCGデータの量産手法の検討機械学習向けCGデータの量産手法の検討
機械学習向けCGデータの量産手法の検討
 
ソフトウェア自動チューニング研究紹介
ソフトウェア自動チューニング研究紹介ソフトウェア自動チューニング研究紹介
ソフトウェア自動チューニング研究紹介
 
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
 

画像認識で物を見分ける