Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Analytics, Search, Social Media, and Optimization: Why Has Marketing Gotten So Geeky?


Published on

From search and social media to analytics and optimization, marketing has really gotten geeky. It's nearly impossible to keep up, so what should business owners know about online marketing in order to make good decisions about their web presence? This presentation is both a broad overview of key web marketing disciplines as well as a quick dive into some of the concepts and vocabulary behind them.

Presented on Wednesday, August 18th to the Women Business Owners Special Interest Group of the Nashville Area Chamber of Commerce.

Published in: Business

Analytics, Search, Social Media, and Optimization: Why Has Marketing Gotten So Geeky?

  1. 1. Analytics, Search, Social Media, Optimization: Why Has Marketing Gotten So Geeky? <ul><li>presented by : Kate O’Neill CEO & Founding Partner, [meta]marketer </li></ul>
  2. 2. Paging Dr. Drucker: <ul><li>“ The aim of marketing is to know and understand the customer so well the product or service fits him and sells itself.” </li></ul><ul><li>“ Because the purpose of business is to create a customer, the business enterprise has two—and only two— basic functions: marketing and innovation. </li></ul><ul><li>Marketing and innovation produce results; all the rest are costs. ” </li></ul>
  3. 3. Traditional Marketing Path Awareness Preference Purchase Loyalty
  4. 4. What’s changed? <ul><li>Search </li></ul><ul><li>Social </li></ul><ul><li>Analytics </li></ul><ul><li>Technologies </li></ul><ul><ul><li>not to mention… </li></ul></ul><ul><ul><ul><li>customer expectations of relevance, usability, portability, etc. </li></ul></ul></ul>Let’s look at the landscape >
  5. 5. How do you plan for all this?
  6. 7. Let’s Talk About Search .
  7. 8. What’s changing in the Web landscape?
  8. 9. Remember the Pre-Search Web?
  9. 11. And then ...
  10. 13. Google changed everything .
  11. 14. The Consequences of Google <ul><li>Emphasis on ranking high in the ‘One True Search’ led to </li></ul><ul><li>Emphasis on inbound links at any cost which led to </li></ul><ul><li>Creation of web litter, spam sites, bogus articles, spam blog comments, questionable endorsements, an industry of “experts”, etc </li></ul>
  12. 15. The Audacity of Google Facebook
  13. 16. Facebook Moving In On Google’s Turf
  14. 17. It’s (Almost) a Post-Search World, Baby <ul><li>But we’re a changed user base </li></ul><ul><li>Bringing the mindset of shady SEO to social media (unfortunately) - manipulate results, rank high, add junk </li></ul><ul><li>We’ve got hundreds of “experts” early in the game. Really? </li></ul>
  15. 18. How Many ‘Experts’ Are There Really? 13,000? 36,000 ?
  16. 19. It All Comes Around Eventually <ul><li>Twitter lists take us right back to the manual link-building, curation model </li></ul><ul><li>Emphasis on “friendsourcing” vs “crowdsourcing” </li></ul>
  17. 20. So: what’s changing in the Web landscape? <ul><li>Google > Facebook </li></ul><ul><li>Search > Spontaneity </li></ul><ul><li>Findability > Trustability </li></ul>
  18. 21. And let’s not forget “the Cloud” <ul><li>Data portability </li></ul><ul><li>Mobile apps & mobile web </li></ul><ul><li>Location-based apps & games </li></ul><ul><li>Augmented reality </li></ul><ul><li>Context relevance takes on geography and proximity </li></ul>
  19. 22. The “Burden of Proof” <ul><li>In a digital world, everything is potentially measurable </li></ul><ul><li>Business insights need data and validation </li></ul><ul><li>Marketing has the opportunity to move from the hot seat to the driver’s seat with the tools to inform the business </li></ul>
  20. 23. Analytics : With Great Power Comes Great Accountability.
  21. 24. Analytics Process at a Glance <ul><li>Determine KPIs </li></ul><ul><ul><li>What factors will determine success? </li></ul></ul><ul><ul><li>What’s actionable? </li></ul></ul><ul><li>Establish a baseline </li></ul><ul><ul><li>Where are the pain points? </li></ul></ul><ul><ul><li>What’s the range? </li></ul></ul><ul><li>Prioritize </li></ul><ul><ul><li>What’s most critical? </li></ul></ul><ul><ul><li>What’s easiest? </li></ul></ul><ul><li>Validate </li></ul><ul><ul><li>Form a hypothesis </li></ul></ul><ul><ul><li>Test </li></ul></ul><ul><li>Analyze </li></ul><ul><ul><li>Compare with baseline </li></ul></ul><ul><ul><li>Extrapolate to ROI </li></ul></ul>source: Omniture SiteCatalyst Basic User Training Workbook
  22. 25. What’s measurable? <ul><li>Traffic </li></ul><ul><ul><li>Sources (finding methods) </li></ul></ul><ul><ul><li>Composition (visitor profile) </li></ul></ul><ul><li>Engagement </li></ul><ul><ul><li>Navigation </li></ul></ul><ul><ul><li>Content </li></ul></ul><ul><li>Conversion </li></ul>&quot;Not everything that can be counted counts, and not everything that counts can be counted.&quot; - Albert Einstein
  23. 26. What’s meaningful? <ul><li>“ Where in the site are visitors most often deciding to leave?” </li></ul><ul><li>“ Where do visitors most often go after using the internal search?” </li></ul><ul><li>“ Do visitors who come in on blog posts actually visit the rest of the site?” </li></ul><ul><li>“ What search terms are used by the people who are most likely to purchase?” </li></ul><ul><ul><ul><li>In other words: </li></ul></ul></ul><ul><ul><ul><ul><ul><li>start with a good question . </li></ul></ul></ul></ul></ul>
  24. 27. Planning is Key to Analysis <ul><li>Anticipate </li></ul><ul><ul><li>Implement </li></ul></ul><ul><ul><ul><ul><li>Modify </li></ul></ul></ul></ul>Data collection begins! Incremental data only
  25. 28. Conversion Metrics <ul><li>Conversion Rate (Orders or Leads per Visit) </li></ul><ul><li>Orders </li></ul><ul><li>Revenue </li></ul><ul><li>Leads Generated </li></ul><ul><li>Offline Sales Completed </li></ul>
  26. 29. Model the Site <ul><li>identify actions / events, content hierarchies, products (e-commerce), and potentially interesting characteristics </li></ul>
  27. 30. Types of Reports <ul><li>Metrics Trending </li></ul><ul><li>Pathing </li></ul><ul><ul><li>Next Page / Previous Page </li></ul></ul><ul><ul><li>Fall-out </li></ul></ul><ul><li>Dashboards </li></ul>
  28. 31. Trending <ul><li>helpful in spotting anomalies in patterns </li></ul>
  29. 32. Funnels <ul><li>helpful with path fall-out visualization </li></ul>
  30. 33. Page Flow <ul><li>helpful in spotting content & navigation problems </li></ul>
  31. 34. Dashboards <ul><li>helpful in reviewing KPIs at a glance </li></ul>
  32. 35. Traffic: Who’s coming to the site?
  33. 36. Examples of Traffic Metrics <ul><li>Visits </li></ul><ul><li>Page Views </li></ul><ul><li>Traffic Sources </li></ul><ul><li>Unique Visitors </li></ul><ul><ul><li>Wait... what’s the difference between ‘absolute unique’ and ‘daily/weekly unique’? </li></ul></ul>
  34. 37. Visitors: aren’t we all unique? <ul><li>Mon: Joe, Jane, Jeff </li></ul><ul><li>Tues: John, Jack </li></ul><ul><li>Weds: James, Jill </li></ul><ul><li>Thurs: Jeff , Jason, Jack </li></ul><ul><li>Fri: Jay, Joel, John </li></ul>How many visits? at least 13 How many visitors? 13 How many unique daily visitors? 13 How many unique weekly visitors? 10
  35. 38. Engagement: What’s happening once people get there?
  36. 39. Examples of Engagement Metrics <ul><li>Return Visits </li></ul><ul><li>Time on Site / Time Spent per Visit </li></ul><ul><li>Bounce Rate </li></ul>
  37. 40. Are You Ready for the Social Web?
  38. 41. Defining Social Media <ul><li>publishing power to the masses </li></ul><ul><li>participation </li></ul><ul><li>conversation </li></ul><ul><li>accountability, transparency, measurability </li></ul>
  39. 42. What do we mean by social media? <ul><li>Twitter, Facebook, MySpace, LinkedIn, blogs </li></ul><ul><li>but also </li></ul><ul><li>YouTube, Ning, Flickr, Vimeo, Bebo,, imeem, Plaxo, Tumblr, etc. </li></ul>
  40. 45. Social Media Measurements
  41. 47. Traditional Marketing Path Awareness Preference Purchase Loyalty
  42. 48. Social Marketing Path Reach / Exposure / Awareness Engagement Influence Goal Action
  43. 49. Social Marketing Path Select Measures # of Visits # of Visitors Comments Click-throughs Duration Repeat visits Registration Retweets Purchase Consideration Likelihood to Recommend Purchase Attend event Tell a friend Contact Reach / Exposure / Awareness Engagement Influence Performance of Goal Action
  44. 50. What are Ideal Measures? Reach Clickthroughs Purchases Awareness
  45. 52. Unprecedented Technologies: A Look at Optimization
  46. 53. How are most design decisions made?
  47. 54. HPPO <ul><li>H ighest P aid P erson’s O pinion </li></ul><ul><li>Not irrelevant, but not comprehensive. </li></ul>
  48. 55. By Committee <ul><li>“I need my department to be featured on the home page!” </li></ul><ul><li>“Can we use something other than red for the Buy buttons? I hate red.” </li></ul>
  49. 56. Designer’s Aesthetic <ul><li>Flash! </li></ul><ul><li>Prettiness over performance </li></ul>
  50. 57. Finger in the Wind <ul><li>What seems to be trendy </li></ul><ul><li>What someone mentioned at a party </li></ul><ul><li>What’s reported in the news </li></ul>
  51. 58. In other words... in a vacuum.
  52. 59. How should design decisions be made?
  53. 60. You need user input. <ul><li>You are not your audience. Even if you are. </li></ul>
  54. 61. You need data. <ul><li>Users lie. Aggregate data doesn’t. </li></ul>
  55. 62. HPPO Data trumps opinions. Even highly paid ones. Use conversion-related metrics to determine executive-relevant strengths and weaknesses of the site.
  56. 63. Committee If it isn’t interesting to the user, ditch it. Use engagement metrics to determine what keeps users on the site.
  57. 64. Design for Design’s Sake Think users like your design? Prove it. If your creative success can’t be measured, it may not be valued.
  58. 65. Finger in the Wind “ Great idea! I’ll add it to the testing roadmap.” Trendy ideas are worth knowing about. But they may not work in your situation.
  59. 66. Balance objective and subjective input <ul><ul><ul><li>what people think or feel </li></ul></ul></ul><ul><ul><ul><li>versus </li></ul></ul></ul><ul><ul><ul><li>what people do </li></ul></ul></ul>
  60. 67. Balance qualitative and quantitative input <ul><ul><ul><li>what you can intuit </li></ul></ul></ul><ul><ul><ul><li>versus </li></ul></ul></ul><ul><ul><ul><li>what you can measure </li></ul></ul></ul>
  61. 68. Gathering Balanced Input focus groups A/B or MVT results usability studies / interviews surveys analytics data
  62. 69. What to do? <ul><ul><li>Balance subjective & objective testing </li></ul></ul><ul><ul><li>(And know that you may get it wrong) </li></ul></ul><ul><ul><li>Find the story behind the story </li></ul></ul><ul><ul><li>(But know that you may get it wrong) </li></ul></ul><ul><ul><li>Look for a narrative in onsite testing </li></ul></ul><ul><ul><li>(But know that you may get it wrong) </li></ul></ul><ul><ul><li>Look for the unobvious AND the obvious </li></ul></ul><ul><ul><li>(And know that you may get it wrong) </li></ul></ul>
  63. 70. If you’re still going to get it wrong, why test? <ul><li>Because you can not only measure lift when you’re right... </li></ul><ul><li>(Woo hoo!) </li></ul><ul><li>you can also contain risk when you’re wrong. </li></ul><ul><li>(And it just might save your job.) </li></ul>In short, test your way to greatness.
  64. 71. Customer Expectations Are Changing
  65. 72. What Customers Have Come to Expect: <ul><li>Interaction : Through social channels, click to chat support, etc. </li></ul><ul><li>Responsiveness : Replies to complaints on Twitter and elsewhere, fast fast FAST turnaround </li></ul><ul><li>Customization : Ability to set up custom levels of interactions, or even better, learn without them telling you </li></ul><ul><li>Relevance : Specific, targeted messaging and experiences </li></ul><ul><li>Respect : Nothing foisted on them, no invasions of privacy or security </li></ul>
  66. 73. Q&A
  67. 74. Follow me? <ul><li>Twitter: @kateo @metamarketer @corpidealist </li></ul>Facebook: LinkedIn: Blogs: Email: [email_address] [email_address] [email_address]