
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
This book deals with the study of quantum communication protocols with Continuous Variable (CV) systems. Continuous Variable systems are those described by canonical conjugated coordinates x and p endowed with infinite dimensional Hilbert spaces, thus involving a complex mathematical structure. A special class of CV states, are the socalled Gaussian states. With them, it has been possible to implement certain quantum tasks as quantum teleportation, quantum cryptography and quantum computation with fantastic experimental success. The importance of Gaussian states is two fold; firstly, its structural mathematical description makes them much more amenable than any other CV system. Secondly, its production, manipulation and detection with current optical technology can be done with a very high degree of accuracy and control. Nevertheless, it is known that in spite of their exceptional role within the space of all Continuous Variable states, in fact, Gaussian states are not always the best candidates to perform quantum information tasks. Thus nonGaussian states emerge as potentially good candidates for communication and computation purposes.
Be the first to like this
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment