SlideShare a Scribd company logo
1 of 21
ICCV 祭り発表資料 Multimodal Templates for Real-Time Detection of Texture-less Objects in Heavily Cluttered Scenes S. Hinterstoisser, S. Holzer , C. Cagniart, S. Ilic, K. Konolige, N. Navab, V. Lepetit  東京大学 國吉・原田研 博士 2 年 金崎朝子 第 18 回コンピュータビジョン勉強会@関東
目的: 高速・高精度 のテンプレートマッチング ,[object Object],[object Object],[object Object],Canny detector 等 ,[object Object],[object Object],[object Object],[object Object],[object Object],エッジ画像間の類似度による ノイズ、輝度変化、ブラーに弱い 微小変動に弱い 密にマッチングするので遅い スケールスペースのサンプリングを 気をつけないと重要な構造が失われがち 微小変動不変テンプレート 高速化
重要ポイント3点 ,[object Object],[object Object],[object Object]
:      のリスト 輝度勾配  in  カラー画像    法線  in  デプス画像  テンプレート :  参照画像 :  モダリティ(輝度勾配と法線) :  際立ってる点 輝度勾配テンプレートマッチングと法線テンプレートマッチングを並列に行い、最後に類似度を足してるだけ
輝度勾配  in  カラー画像    法線  in  デプス画像  テンプレート Normalized gradient map グレースケール 輝度勾配 RGB カラー 輝度勾配 カラー画像
輝度勾配  in  カラー画像    法線  in  デプス画像  テンプレート デプス画像 法線画像 Stefan 1 三次元座標 視線 デプス 法線: テイラー展開
輝度勾配  in  カラー画像    法線  in  デプス画像  テンプレート 論文中、 Fig.2 のキャプションの最後 gradients are usually found on the object contour while surface normals are found on the object interior (意訳)テクスチャレスな物体を表現するのに        表面形状の情報(法線)で補おう
重要ポイント3点 ,[object Object],[object Object],[object Object]
[object Object],[object Object],テンプレート テスト画像 点      を中心とする、ある大きさの領域 逆に考えれば・・・ テンプレートの spreading 直観的には・・・ 多重テンプレート
DOT とは違う ,[object Object],[object Object],↑ dominant 直観的イメージ LINE-MOD DOT
重要ポイント3点 ,[object Object],[object Object],[object Object]
効率化1: Response Maps を事前に準備 (多重) テンプレート テスト画像 例1:  Sim(  ,  ) = max(|cos(  -  )|, |cos(  -  )|, |cos(  -  )|) = |cos(  -  )|  =  1 例2:  Sim(  ,  ) = max(|cos(  -  )|, |cos(  -  )|, |cos(  -  )|) = |cos(  -  )|  =  0.7 … Response Map 1  1  1  0  0 1  1  1  0.7  0.7 1  1  1  0.7  0.7 0.7  0.7 0.7  0.7 0.7 0  0.7  0.7  0.7  0 ori ori 0  0  0  0  0 0.7  0.7  0.7 0.7  0.7 0.7  0.7  1  1  1 0.7  0.7  1  1  1 0  0.7  1  1  1
効率化2: Response Maps を linear memory に展開 T プロセッサは cache line を使って同時に複数のデータを読んでいる T :  テンプレートを spreading する幅 ⇒ T ピクセル毎にスライディングウィンドウができる
効率化2: Response Maps を linear memory に展開 Similarity Map
効率化2: Response Maps を linear memory に展開 LINEearizing  the  memory + multiMODal || LINE-MOD Similarity Map
ROC カーブ       LINE-MOD    と LINE-2D             ※ PAMI の。
ROC カーブ       LINE-MOD    と LINE-2D             ※ PAMI の。
can  parse  a  VGA   image  with  over  3000 templates   with  about  10 fps   on  the  CPU オクルージョンはやはり問題 類似度が線形に落ちてくのはよいこと
姿勢推定も← New!
ソフトウェア ,[object Object],[object Object],[object Object],[object Object],[object Object]
おわりに(個人的見解) ,[object Object],[object Object],[object Object],[object Object],ソフトウェア  https://kforge.ros.org/project/linemod/

More Related Content

What's hot

先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15Yoichi Ochiai
 
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII
 
Recent Advances on Transfer Learning and Related Topics Ver.2
Recent Advances on Transfer Learning and Related Topics Ver.2Recent Advances on Transfer Learning and Related Topics Ver.2
Recent Advances on Transfer Learning and Related Topics Ver.2Kota Matsui
 
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII
 
[DL輪読会]Understanding Black-box Predictions via Influence Functions
[DL輪読会]Understanding Black-box Predictions via Influence Functions [DL輪読会]Understanding Black-box Predictions via Influence Functions
[DL輪読会]Understanding Black-box Predictions via Influence Functions Deep Learning JP
 
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)RyuichiKanoh
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習cvpaper. challenge
 
生成モデルの Deep Learning
生成モデルの Deep Learning生成モデルの Deep Learning
生成モデルの Deep LearningSeiya Tokui
 
機械学習研究の現状とこれから
機械学習研究の現状とこれから機械学習研究の現状とこれから
機械学習研究の現状とこれからMLSE
 
Attentionの基礎からTransformerの入門まで
Attentionの基礎からTransformerの入門までAttentionの基礎からTransformerの入門まで
Attentionの基礎からTransformerの入門までAGIRobots
 
研究分野をサーベイする
研究分野をサーベイする研究分野をサーベイする
研究分野をサーベイするTakayuki Itoh
 
3次元レジストレーション(PCLデモとコード付き)
3次元レジストレーション(PCLデモとコード付き)3次元レジストレーション(PCLデモとコード付き)
3次元レジストレーション(PCLデモとコード付き)Toru Tamaki
 
画像処理AIを用いた異常検知
画像処理AIを用いた異常検知画像処理AIを用いた異常検知
画像処理AIを用いた異常検知Hideo Terada
 
【DL輪読会】How Much Can CLIP Benefit Vision-and-Language Tasks?
【DL輪読会】How Much Can CLIP Benefit Vision-and-Language Tasks? 【DL輪読会】How Much Can CLIP Benefit Vision-and-Language Tasks?
【DL輪読会】How Much Can CLIP Benefit Vision-and-Language Tasks? Deep Learning JP
 
顕著性マップの推定手法
顕著性マップの推定手法顕著性マップの推定手法
顕著性マップの推定手法Takao Yamanaka
 
Transformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法についてTransformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法についてSho Takase
 
畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化Yusuke Uchida
 
猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoderSho Tatsuno
 
2014 3 13(テンソル分解の基礎)
2014 3 13(テンソル分解の基礎)2014 3 13(テンソル分解の基礎)
2014 3 13(テンソル分解の基礎)Tatsuya Yokota
 
Domain Adaptation 発展と動向まとめ(サーベイ資料)
Domain Adaptation 発展と動向まとめ(サーベイ資料)Domain Adaptation 発展と動向まとめ(サーベイ資料)
Domain Adaptation 発展と動向まとめ(サーベイ資料)Yamato OKAMOTO
 

What's hot (20)

先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15
 
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
 
Recent Advances on Transfer Learning and Related Topics Ver.2
Recent Advances on Transfer Learning and Related Topics Ver.2Recent Advances on Transfer Learning and Related Topics Ver.2
Recent Advances on Transfer Learning and Related Topics Ver.2
 
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
 
[DL輪読会]Understanding Black-box Predictions via Influence Functions
[DL輪読会]Understanding Black-box Predictions via Influence Functions [DL輪読会]Understanding Black-box Predictions via Influence Functions
[DL輪読会]Understanding Black-box Predictions via Influence Functions
 
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
 
生成モデルの Deep Learning
生成モデルの Deep Learning生成モデルの Deep Learning
生成モデルの Deep Learning
 
機械学習研究の現状とこれから
機械学習研究の現状とこれから機械学習研究の現状とこれから
機械学習研究の現状とこれから
 
Attentionの基礎からTransformerの入門まで
Attentionの基礎からTransformerの入門までAttentionの基礎からTransformerの入門まで
Attentionの基礎からTransformerの入門まで
 
研究分野をサーベイする
研究分野をサーベイする研究分野をサーベイする
研究分野をサーベイする
 
3次元レジストレーション(PCLデモとコード付き)
3次元レジストレーション(PCLデモとコード付き)3次元レジストレーション(PCLデモとコード付き)
3次元レジストレーション(PCLデモとコード付き)
 
画像処理AIを用いた異常検知
画像処理AIを用いた異常検知画像処理AIを用いた異常検知
画像処理AIを用いた異常検知
 
【DL輪読会】How Much Can CLIP Benefit Vision-and-Language Tasks?
【DL輪読会】How Much Can CLIP Benefit Vision-and-Language Tasks? 【DL輪読会】How Much Can CLIP Benefit Vision-and-Language Tasks?
【DL輪読会】How Much Can CLIP Benefit Vision-and-Language Tasks?
 
顕著性マップの推定手法
顕著性マップの推定手法顕著性マップの推定手法
顕著性マップの推定手法
 
Transformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法についてTransformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法について
 
畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化
 
猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder
 
2014 3 13(テンソル分解の基礎)
2014 3 13(テンソル分解の基礎)2014 3 13(テンソル分解の基礎)
2014 3 13(テンソル分解の基礎)
 
Domain Adaptation 発展と動向まとめ(サーベイ資料)
Domain Adaptation 発展と動向まとめ(サーベイ資料)Domain Adaptation 発展と動向まとめ(サーベイ資料)
Domain Adaptation 発展と動向まとめ(サーベイ資料)
 

Viewers also liked

cvsaisentan20141004 kanezaki
cvsaisentan20141004 kanezakicvsaisentan20141004 kanezaki
cvsaisentan20141004 kanezakikanejaki
 
第28回コンピュータビジョン勉強会@関東(kanejaki担当分)
第28回コンピュータビジョン勉強会@関東(kanejaki担当分)第28回コンピュータビジョン勉強会@関東(kanejaki担当分)
第28回コンピュータビジョン勉強会@関東(kanejaki担当分)kanejaki
 
関東コンピュータビジョン勉強会
関東コンピュータビジョン勉強会関東コンピュータビジョン勉強会
関東コンピュータビジョン勉強会nonane
 
画像からの三次元形状復元
画像からの三次元形状復元画像からの三次元形状復元
画像からの三次元形状復元kurotou
 
非線型マッチングによるせん断変形不変な照合に関する一考察
非線型マッチングによるせん断変形不変な照合に関する一考察非線型マッチングによるせん断変形不変な照合に関する一考察
非線型マッチングによるせん断変形不変な照合に関する一考察hasegawamakoto
 
KinectやRealSenseの概要とさまざまな使い方
KinectやRealSenseの概要とさまざまな使い方KinectやRealSenseの概要とさまざまな使い方
KinectやRealSenseの概要とさまざまな使い方Kaoru NAKAMURA
 
HMCN - センサー&デバイスでできる楽しい事例紹介
HMCN - センサー&デバイスでできる楽しい事例紹介HMCN - センサー&デバイスでできる楽しい事例紹介
HMCN - センサー&デバイスでできる楽しい事例紹介Satoshi Maemoto
 
Kinect、real senseの概要とさまざまな使い方
Kinect、real senseの概要とさまざまな使い方Kinect、real senseの概要とさまざまな使い方
Kinect、real senseの概要とさまざまな使い方Kaoru NAKAMURA
 
28th CV勉強会@関東 #3
28th CV勉強会@関東 #328th CV勉強会@関東 #3
28th CV勉強会@関東 #3Hiroki Mizuno
 
ジェスチャ認識・物体形状取得がもたらす新たな未来
ジェスチャ認識・物体形状取得がもたらす新たな未来ジェスチャ認識・物体形状取得がもたらす新たな未来
ジェスチャ認識・物体形状取得がもたらす新たな未来Kaoru NAKAMURA
 
Hiroshima Motion Control Network 12, September, 2015
Hiroshima Motion Control Network   12, September, 2015Hiroshima Motion Control Network   12, September, 2015
Hiroshima Motion Control Network 12, September, 2015Tomoaki Ueda
 
内蔵化、モバイル化に向かうDepthセンサー
内蔵化、モバイル化に向かうDepthセンサー内蔵化、モバイル化に向かうDepthセンサー
内蔵化、モバイル化に向かうDepthセンサーKaoru NAKAMURA
 
20150328 cv関東勉強会 sumisumithパート_v1.3
20150328 cv関東勉強会 sumisumithパート_v1.320150328 cv関東勉強会 sumisumithパート_v1.3
20150328 cv関東勉強会 sumisumithパート_v1.3sumisumith
 
cvsaisentan5 Multi View Stereo 3.3
cvsaisentan5 Multi View Stereo 3.3cvsaisentan5 Multi View Stereo 3.3
cvsaisentan5 Multi View Stereo 3.3Takuya Minagawa
 
20160724_cv_sfm_revisited
20160724_cv_sfm_revisited20160724_cv_sfm_revisited
20160724_cv_sfm_revisitedKyohei Unno
 
Leap motion 実践活用 ダイジェスト版
Leap motion 実践活用 ダイジェスト版Leap motion 実践活用 ダイジェスト版
Leap motion 実践活用 ダイジェスト版Kaoru NAKAMURA
 
Cvim saisentan-5-2-tomoaki
Cvim saisentan-5-2-tomoakiCvim saisentan-5-2-tomoaki
Cvim saisentan-5-2-tomoakitomoaki0705
 
モーションセンサーデバイス調査
モーションセンサーデバイス調査モーションセンサーデバイス調査
モーションセンサーデバイス調査@TMYSYSKW
 
Cvim saisentan-cvpr-hyper depth
Cvim saisentan-cvpr-hyper depthCvim saisentan-cvpr-hyper depth
Cvim saisentan-cvpr-hyper depthtomoaki0705
 

Viewers also liked (20)

cvsaisentan20141004 kanezaki
cvsaisentan20141004 kanezakicvsaisentan20141004 kanezaki
cvsaisentan20141004 kanezaki
 
第28回コンピュータビジョン勉強会@関東(kanejaki担当分)
第28回コンピュータビジョン勉強会@関東(kanejaki担当分)第28回コンピュータビジョン勉強会@関東(kanejaki担当分)
第28回コンピュータビジョン勉強会@関東(kanejaki担当分)
 
関東コンピュータビジョン勉強会
関東コンピュータビジョン勉強会関東コンピュータビジョン勉強会
関東コンピュータビジョン勉強会
 
画像からの三次元形状復元
画像からの三次元形状復元画像からの三次元形状復元
画像からの三次元形状復元
 
非線型マッチングによるせん断変形不変な照合に関する一考察
非線型マッチングによるせん断変形不変な照合に関する一考察非線型マッチングによるせん断変形不変な照合に関する一考察
非線型マッチングによるせん断変形不変な照合に関する一考察
 
Icp3.2 takmin
Icp3.2 takminIcp3.2 takmin
Icp3.2 takmin
 
KinectやRealSenseの概要とさまざまな使い方
KinectやRealSenseの概要とさまざまな使い方KinectやRealSenseの概要とさまざまな使い方
KinectやRealSenseの概要とさまざまな使い方
 
HMCN - センサー&デバイスでできる楽しい事例紹介
HMCN - センサー&デバイスでできる楽しい事例紹介HMCN - センサー&デバイスでできる楽しい事例紹介
HMCN - センサー&デバイスでできる楽しい事例紹介
 
Kinect、real senseの概要とさまざまな使い方
Kinect、real senseの概要とさまざまな使い方Kinect、real senseの概要とさまざまな使い方
Kinect、real senseの概要とさまざまな使い方
 
28th CV勉強会@関東 #3
28th CV勉強会@関東 #328th CV勉強会@関東 #3
28th CV勉強会@関東 #3
 
ジェスチャ認識・物体形状取得がもたらす新たな未来
ジェスチャ認識・物体形状取得がもたらす新たな未来ジェスチャ認識・物体形状取得がもたらす新たな未来
ジェスチャ認識・物体形状取得がもたらす新たな未来
 
Hiroshima Motion Control Network 12, September, 2015
Hiroshima Motion Control Network   12, September, 2015Hiroshima Motion Control Network   12, September, 2015
Hiroshima Motion Control Network 12, September, 2015
 
内蔵化、モバイル化に向かうDepthセンサー
内蔵化、モバイル化に向かうDepthセンサー内蔵化、モバイル化に向かうDepthセンサー
内蔵化、モバイル化に向かうDepthセンサー
 
20150328 cv関東勉強会 sumisumithパート_v1.3
20150328 cv関東勉強会 sumisumithパート_v1.320150328 cv関東勉強会 sumisumithパート_v1.3
20150328 cv関東勉強会 sumisumithパート_v1.3
 
cvsaisentan5 Multi View Stereo 3.3
cvsaisentan5 Multi View Stereo 3.3cvsaisentan5 Multi View Stereo 3.3
cvsaisentan5 Multi View Stereo 3.3
 
20160724_cv_sfm_revisited
20160724_cv_sfm_revisited20160724_cv_sfm_revisited
20160724_cv_sfm_revisited
 
Leap motion 実践活用 ダイジェスト版
Leap motion 実践活用 ダイジェスト版Leap motion 実践活用 ダイジェスト版
Leap motion 実践活用 ダイジェスト版
 
Cvim saisentan-5-2-tomoaki
Cvim saisentan-5-2-tomoakiCvim saisentan-5-2-tomoaki
Cvim saisentan-5-2-tomoaki
 
モーションセンサーデバイス調査
モーションセンサーデバイス調査モーションセンサーデバイス調査
モーションセンサーデバイス調査
 
Cvim saisentan-cvpr-hyper depth
Cvim saisentan-cvpr-hyper depthCvim saisentan-cvpr-hyper depth
Cvim saisentan-cvpr-hyper depth
 

Similar to 第18回コンピュータビジョン勉強会@関東「ICCV祭り」発表資料(kanejaki)

論文紹介「PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet」
論文紹介「PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet」論文紹介「PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet」
論文紹介「PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet」Naoya Chiba
 
第126回 ロボット工学セミナー 三次元点群と深層学習
第126回 ロボット工学セミナー 三次元点群と深層学習第126回 ロボット工学セミナー 三次元点群と深層学習
第126回 ロボット工学セミナー 三次元点群と深層学習Naoya Chiba
 
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定(文献紹介)深層学習による動被写体ロバストなカメラの動き推定
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定Morpho, Inc.
 
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages. Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages. Satoshi Kato
 
ADVENTUREの他のモジュール・関連プロジェクトの紹介
ADVENTUREの他のモジュール・関連プロジェクトの紹介ADVENTUREの他のモジュール・関連プロジェクトの紹介
ADVENTUREの他のモジュール・関連プロジェクトの紹介ADVENTURE Project
 
MapReduceによる大規模データを利用した機械学習
MapReduceによる大規模データを利用した機械学習MapReduceによる大規模データを利用した機械学習
MapReduceによる大規模データを利用した機械学習Preferred Networks
 
点群深層学習 Meta-study
点群深層学習 Meta-study点群深層学習 Meta-study
点群深層学習 Meta-studyNaoya Chiba
 
20110109第8回CV勉強会(ミーンシフトの原理と応用:6章・7章)shirasy)
20110109第8回CV勉強会(ミーンシフトの原理と応用:6章・7章)shirasy)20110109第8回CV勉強会(ミーンシフトの原理と応用:6章・7章)shirasy)
20110109第8回CV勉強会(ミーンシフトの原理と応用:6章・7章)shirasy)Yoichi Shirasawa
 
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...cvpaper. challenge
 
SSII2022 [TS3] コンテンツ制作を支援する機械学習技術​〜 イラストレーションやデザインの基礎から最新鋭の技術まで 〜​
SSII2022 [TS3] コンテンツ制作を支援する機械学習技術​〜 イラストレーションやデザインの基礎から最新鋭の技術まで 〜​SSII2022 [TS3] コンテンツ制作を支援する機械学習技術​〜 イラストレーションやデザインの基礎から最新鋭の技術まで 〜​
SSII2022 [TS3] コンテンツ制作を支援する機械学習技術​〜 イラストレーションやデザインの基礎から最新鋭の技術まで 〜​SSII
 
Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning
Soft Rasterizer: A Differentiable Renderer for Image-based 3D ReasoningSoft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning
Soft Rasterizer: A Differentiable Renderer for Image-based 3D ReasoningKohei Nishimura
 
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...Shunsuke Ono
 
2012-03-08 MSS研究会
2012-03-08 MSS研究会2012-03-08 MSS研究会
2012-03-08 MSS研究会Kimikazu Kato
 
[DL輪読会]Dense Captioning分野のまとめ
[DL輪読会]Dense Captioning分野のまとめ[DL輪読会]Dense Captioning分野のまとめ
[DL輪読会]Dense Captioning分野のまとめDeep Learning JP
 
[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted WindowsDeep Learning JP
 
2021 10-07 kdd2021読み会 uc phrase
2021 10-07 kdd2021読み会 uc phrase2021 10-07 kdd2021読み会 uc phrase
2021 10-07 kdd2021読み会 uc phraseTatsuya Shirakawa
 
大規模画像認識とその周辺
大規模画像認識とその周辺大規模画像認識とその周辺
大規模画像認識とその周辺n_hidekey
 
semantic segmentation サーベイ
semantic segmentation サーベイsemantic segmentation サーベイ
semantic segmentation サーベイyohei okawa
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...Deep Learning JP
 

Similar to 第18回コンピュータビジョン勉強会@関東「ICCV祭り」発表資料(kanejaki) (20)

論文紹介「PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet」
論文紹介「PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet」論文紹介「PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet」
論文紹介「PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet」
 
第126回 ロボット工学セミナー 三次元点群と深層学習
第126回 ロボット工学セミナー 三次元点群と深層学習第126回 ロボット工学セミナー 三次元点群と深層学習
第126回 ロボット工学セミナー 三次元点群と深層学習
 
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定(文献紹介)深層学習による動被写体ロバストなカメラの動き推定
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定
 
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages. Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
 
ADVENTUREの他のモジュール・関連プロジェクトの紹介
ADVENTUREの他のモジュール・関連プロジェクトの紹介ADVENTUREの他のモジュール・関連プロジェクトの紹介
ADVENTUREの他のモジュール・関連プロジェクトの紹介
 
MapReduceによる大規模データを利用した機械学習
MapReduceによる大規模データを利用した機械学習MapReduceによる大規模データを利用した機械学習
MapReduceによる大規模データを利用した機械学習
 
点群深層学習 Meta-study
点群深層学習 Meta-study点群深層学習 Meta-study
点群深層学習 Meta-study
 
20110109第8回CV勉強会(ミーンシフトの原理と応用:6章・7章)shirasy)
20110109第8回CV勉強会(ミーンシフトの原理と応用:6章・7章)shirasy)20110109第8回CV勉強会(ミーンシフトの原理と応用:6章・7章)shirasy)
20110109第8回CV勉強会(ミーンシフトの原理と応用:6章・7章)shirasy)
 
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
 
SSII2022 [TS3] コンテンツ制作を支援する機械学習技術​〜 イラストレーションやデザインの基礎から最新鋭の技術まで 〜​
SSII2022 [TS3] コンテンツ制作を支援する機械学習技術​〜 イラストレーションやデザインの基礎から最新鋭の技術まで 〜​SSII2022 [TS3] コンテンツ制作を支援する機械学習技術​〜 イラストレーションやデザインの基礎から最新鋭の技術まで 〜​
SSII2022 [TS3] コンテンツ制作を支援する機械学習技術​〜 イラストレーションやデザインの基礎から最新鋭の技術まで 〜​
 
Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning
Soft Rasterizer: A Differentiable Renderer for Image-based 3D ReasoningSoft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning
Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning
 
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...
 
2012-03-08 MSS研究会
2012-03-08 MSS研究会2012-03-08 MSS研究会
2012-03-08 MSS研究会
 
[DL輪読会]Dense Captioning分野のまとめ
[DL輪読会]Dense Captioning分野のまとめ[DL輪読会]Dense Captioning分野のまとめ
[DL輪読会]Dense Captioning分野のまとめ
 
[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
 
2021 10-07 kdd2021読み会 uc phrase
2021 10-07 kdd2021読み会 uc phrase2021 10-07 kdd2021読み会 uc phrase
2021 10-07 kdd2021読み会 uc phrase
 
大規模画像認識とその周辺
大規模画像認識とその周辺大規模画像認識とその周辺
大規模画像認識とその周辺
 
semantic segmentation サーベイ
semantic segmentation サーベイsemantic segmentation サーベイ
semantic segmentation サーベイ
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
 
Semantic segmentation2
Semantic segmentation2Semantic segmentation2
Semantic segmentation2
 

第18回コンピュータビジョン勉強会@関東「ICCV祭り」発表資料(kanejaki)

  • 1. ICCV 祭り発表資料 Multimodal Templates for Real-Time Detection of Texture-less Objects in Heavily Cluttered Scenes S. Hinterstoisser, S. Holzer , C. Cagniart, S. Ilic, K. Konolige, N. Navab, V. Lepetit  東京大学 國吉・原田研 博士 2 年 金崎朝子 第 18 回コンピュータビジョン勉強会@関東
  • 2.
  • 3.
  • 4. :      のリスト 輝度勾配  in カラー画像   法線 in デプス画像  テンプレート : 参照画像 : モダリティ(輝度勾配と法線) : 際立ってる点 輝度勾配テンプレートマッチングと法線テンプレートマッチングを並列に行い、最後に類似度を足してるだけ
  • 5. 輝度勾配  in カラー画像   法線 in デプス画像  テンプレート Normalized gradient map グレースケール 輝度勾配 RGB カラー 輝度勾配 カラー画像
  • 6. 輝度勾配  in カラー画像   法線 in デプス画像  テンプレート デプス画像 法線画像 Stefan 1 三次元座標 視線 デプス 法線: テイラー展開
  • 7. 輝度勾配  in カラー画像   法線 in デプス画像  テンプレート 論文中、 Fig.2 のキャプションの最後 gradients are usually found on the object contour while surface normals are found on the object interior (意訳)テクスチャレスな物体を表現するのに        表面形状の情報(法線)で補おう
  • 8.
  • 9.
  • 10.
  • 11.
  • 12. 効率化1: Response Maps を事前に準備 (多重) テンプレート テスト画像 例1: Sim( , ) = max(|cos( - )|, |cos( - )|, |cos( - )|) = |cos( - )| = 1 例2: Sim( , ) = max(|cos( - )|, |cos( - )|, |cos( - )|) = |cos( - )| = 0.7 … Response Map 1 1 1 0 0 1 1 1 0.7 0.7 1 1 1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0 0.7 0.7 0.7 0 ori ori 0 0 0 0 0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1 1 1 0.7 0.7 1 1 1 0 0.7 1 1 1
  • 13. 効率化2: Response Maps を linear memory に展開 T プロセッサは cache line を使って同時に複数のデータを読んでいる T : テンプレートを spreading する幅 ⇒ T ピクセル毎にスライディングウィンドウができる
  • 14. 効率化2: Response Maps を linear memory に展開 Similarity Map
  • 15. 効率化2: Response Maps を linear memory に展開 LINEearizing the memory + multiMODal || LINE-MOD Similarity Map
  • 16. ROC カーブ       LINE-MOD    と LINE-2D            ※ PAMI の。
  • 17. ROC カーブ       LINE-MOD    と LINE-2D            ※ PAMI の。
  • 18. can parse a VGA   image with over 3000 templates with about 10 fps   on the CPU オクルージョンはやはり問題 類似度が線形に落ちてくのはよいこと
  • 20.
  • 21.

Editor's Notes

  1. 猿以外は LINE-2D もかなりいい