Combinated energy presure

380 views

Published on

Published in: Education, Technology, Business
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
380
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
0
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Combinated energy presure

  1. 1. RPA2 – Pressure Management RPA 2 Pressure Management University of Leicester WP 2.1 Redesign of press. schemes Exeter WP 2.2 Feedback control schemes Leic./De Mont. WP 2.3 Control Algorithms Leic./De Mont WP 2.4 Supervisory control scheme Leic./De Mont. WP 2.5 Integration of Pump Control De Montfort WP 2.6 Leakage & Burst Monitoring Leic./De Mont . DELIVERABLES
  2. 2. (Re)Design of Pressure Control Schemes RPA2 Work Package 2.1 Haytham Awad
  3. 3. Outline <ul><li>The net benefit cost model for pressure (re)zoning </li></ul><ul><li>The optimisation algorithm for automated (re)zoning </li></ul><ul><li>Demonstration off the above on the case study </li></ul>Objective <ul><li>Develop a methodology and software to define optimal zones for pressure management </li></ul>
  4. 4. Net benefit cost model <ul><li>Evaluating benefits and costs assuming the use of PRVs </li></ul><ul><li>Developed as a standalone methodology using a GUI dialog </li></ul><ul><li>Used for the optimisation algorithm that will automate the process of selecting, locating and setting up PRVs </li></ul><ul><li>The methodology addresses benefits and costs arsing from: </li></ul><ul><ul><li>Reduced water leakage </li></ul></ul><ul><ul><li>Reduced pipe burst frequency </li></ul></ul><ul><ul><li>Reduced pressure-sensitive demand </li></ul></ul><ul><ul><li>Reduced energy consumed </li></ul></ul><ul><ul><li>Reduced active leakage control effort </li></ul></ul><ul><ul><li>Reduced frequency of customer contacts </li></ul></ul><ul><ul><li>Installation/operation of PRVs </li></ul></ul>
  5. 5. GUI dialog
  6. 6. Output report <ul><li>Net Benefits & Benefit/Cost ratios using: </li></ul><ul><ul><li>Fixed setting PRVs </li></ul></ul><ul><ul><li>Time-modulated PRVs (two/four switching periods) </li></ul></ul><ul><ul><li>Flow-modulated PRVs </li></ul></ul><ul><li>Pressure at critical point for different schemes </li></ul><ul><li>Total Head upstream and downstream the PRV location </li></ul>
  7. 7. Implementation <ul><li>4 DMAs analysed (E020, E023, E025, and E204) </li></ul><ul><li>Importance of the estimation of different pressure management related benefits and costs in addition to the conventional ones </li></ul><ul><li>This seems to apply particularly to the net benefits associated with: </li></ul><ul><ul><li>burst frequency reduction </li></ul></ul><ul><ul><li>pressure-sensitive demand reduction and </li></ul></ul><ul><ul><li>customer contacts reduction </li></ul></ul>
  8. 8. (Re)zoning algorithm <ul><li>Objective: m aximise total net benefit </li></ul><ul><li>De cision variables: Locations and settings of PRVs introduced to form pressure zones </li></ul>PRV X X X X Closed valve
  9. 9. (Re)zoning algorithm
  10. 10. 33 Tree - 13 Connected - 37 Closed Example
  11. 11. Optimal steady state pressure control Hossam AbdelMeguid
  12. 12. <ul><li>Content </li></ul>Aim Recent technical developments Practical impact Deliverables and future work
  13. 13. Aim <ul><li>Develop theory and software and solve case studies for optimal steady state pressure control in the form of </li></ul><ul><li>time schedules </li></ul><ul><li>flow modulation curves </li></ul>
  14. 14. Recent technical developments <ul><li>Modification of the algorithm to include boundary and internal PRVs </li></ul><ul><li>Implementation of GUI to pressure control module (PCM) </li></ul><ul><li>Solution of the case studies E067 and E093 </li></ul><ul><li>Isolation of the PCM from FINESSE and connection to PIGM </li></ul>Boundary PRV Boundary PRV Internal PRV
  15. 15. Technical developments
  16. 16. Technical developments
  17. 17. Command-line FINESSETools E067.pcm  Technical developments All other applications Read / write 800xA PGIM Read / write HDA / DA FINESSE modules, e.g Pressure Control, Pump Scheduling, Demand Prediction OPC clinet tool
  18. 18. YWS case-studies <ul><li>DMA E067-Waterside case study, leakage reduced by 30% </li></ul><ul><li>DMA E093-Barrowby case study, leakage reduced by 45% </li></ul>
  19. 19. Practical applications and impact <ul><li>Leakage management and cost analysis </li></ul><ul><li>Calculation of optimal time schedules for PRVs </li></ul><ul><li>Calculation of optimal flow modulation curves for PRVs </li></ul><ul><li>Used by supervisory pressure control system </li></ul><ul><li>Embedded into decision support software </li></ul><ul><li>Deliverables and future work </li></ul><ul><li>D2.3 - Pressure control case studies, reports </li></ul><ul><li>Future work – case studies for A016-HP and J712-HP DMAs equipped with Aquai-Mod controllers </li></ul>
  20. 20. Dynamic pressure control Bogumil Ulanicki
  21. 21. Aim <ul><li>Develop theory and software for robust dynamic pressure control for application in: </li></ul><ul><li>electronic controllers </li></ul><ul><li>hydraulic controllers </li></ul>
  22. 22. NEPTUNE Workshop Esholt Hall, 9th July 2008 PID controller uses only pressure measurements Previous work
  23. 23. NEPTUNE Workshop Esholt Hall, 9th July 2008 Modified controller uses information about both the outlet pressure and the valve flow. Recent technical developments
  24. 24. <ul><li>Proposing a new controller </li></ul><ul><li>Performing simulation studies using Matlab/Simulink </li></ul>NEPTUNE Workshop Esholt Hall, 9th July 2008 Recent technical developments
  25. 25. <ul><li>Simulation result of pressure tracking with a linear flow modulation curve </li></ul>NEPTUNE Workshop Esholt Hall, 9th July 2008 Recent technical developments
  26. 26. <ul><li>Shows potential performance of electronic controllers </li></ul><ul><li>Some ideas can be transferred to a hydraulic controller </li></ul><ul><li>Reference point to compare the dynamic performance of the hydraulic controllers, e.g. Aquai-Mod controller </li></ul><ul><li>Deliverables and future work </li></ul><ul><li>D2.3 - Pressure control case studies, reports </li></ul><ul><li>Future work – case studies for A016-HP and J712-HP DMAs equipped with Aquai-Mod controllers </li></ul><ul><li>Generalisation of the controller algorithm for DMAs with many inlets </li></ul>NEPTUNE Workshop Esholt Hall, 9th July 2008 Practical applications and impact
  27. 27. Test rig experiments on Aquai-Mod controller Piotr Skworcow, Hossam AbdelMeguid (DMU) David Hurley, Mark Lock (Aquavent)
  28. 28. Aims <ul><li>Test Aquai-Mod controller in a test rig and field conditions </li></ul><ul><li>Derive and calibrate a mathematical model of the controller </li></ul><ul><li>Compare the performance of the hydraulic controller against the electronic controller through simulations </li></ul>
  29. 29. Recent technical developments <ul><li>Purchase and installation of the monitoring equipment: pressure transmitters, LVDT, flow meter, data acquisition card, LabView software, etc. </li></ul><ul><li>Derivation of a mathematical model of the controller </li></ul><ul><li>Carrying out test sessions </li></ul>
  30. 30. Mathematical model <ul><li>Understanding the valve operations </li></ul><ul><li>General equations </li></ul><ul><li>Parameter values derived from the controller dimensions </li></ul><ul><li>Parameter values derived from measurements </li></ul><ul><li>Model validation from dynamic measurements </li></ul>
  31. 31. Test set-up
  32. 33. Preliminary measurement results The measured flow modulation curve
  33. 34. Practical applications and impact <ul><li>Understanding steady-state and dynamic properties of the controller </li></ul><ul><li>Benchmarking against standard pilot valve; assessing its value as a replacement for the traditional pilot valve </li></ul><ul><li>Suggesting potential improvements to the controller </li></ul><ul><li>Deliverables and future work </li></ul><ul><li>D2.4 - Report on the test results </li></ul><ul><li>Finishing the measurements, calibration of the model </li></ul>
  34. 35. Combined energy and pressure management Hossam AbdelMeguid, Peter Bounds, Piotr Skworcow , Bogumil Ulanicki
  35. 36. <ul><li>Purpose </li></ul><ul><li>Proposed solution </li></ul><ul><li>Software implementation </li></ul><ul><li>Case study </li></ul><ul><li>Conclusions </li></ul>Outline
  36. 37. Purpose Minimize cost of water treatment and pumps energy usage whilst supplying good service to customers without unnecessarily high pressure Integration and co-ordination of pump control in grid with pressure control of DMAs Pump scheduling Pressure control Combined energy and pressure management Calculate time schedules for treatment works, pumps, valves, reservoirs and PRV setpoints
  37. 38. Proposed Solution Formulate as optimisation problem; cost function: Total cost of water treatment and pumps energy use Inclusion of PRV model – setpoint as decision variable Network model with pressure dependent leakage: Excessive Pumping High energy cost High pressure Increased leakage More water from sources and to be pumped £ £ £
  38. 39. Implementation Embedded into the FINESSE software
  39. 40. Case Study 1 Harrogate (Yorkshire Water): <ul><li>10621 Nodes </li></ul><ul><li>11293 Pipes </li></ul><ul><li>14 PS </li></ul><ul><li>6 Reservoirs </li></ul><ul><li>243 Valves </li></ul><ul><li>Total Demand: 400 l/s </li></ul>
  40. 41. Case Study 2 Oldham (United Utilities): <ul><li>3 WTW </li></ul><ul><li>10 Reservoirs </li></ul><ul><li>11 PS </li></ul><ul><li>80 DMA </li></ul><ul><li>3 Ind. Users </li></ul><ul><li>4m kWh </li></ul><ul><li>£280k </li></ul>
  41. 42. Conclusions <ul><li>Minimize cost of water treatment and pumps energy usage whilst supplying good service to customers without unnecessarily high pressure </li></ul><ul><li>Combined energy and pressure management </li></ul><ul><li>Formulation as optimisation problem with network model with pressure dependent leakage </li></ul><ul><li>Solver embedded into FINESSE software </li></ul><ul><li>Cases to be solved: Harrogate (Yorkshire), Oldham (UU) </li></ul>

×