Simulation of Hydrogel  Micro-actuation   Presented by  Kamlesh Suthar* Authors Dr. M. Ghantasala* Dr. D. Mancini # *Depar...
Agenda <ul><li>Introduction </li></ul><ul><li>Problem Description </li></ul><ul><li>Physics </li></ul><ul><li>FEM Formulat...
Introduction <ul><li>Hydrogel : Crossed Link polymer network </li></ul><ul><li>Sensitive to it’s environment and stimulus ...
Research Goal Electric Field sensitive pH sensitive
Associated physics <ul><li>Chemical Potential due to concentration difference  (Continuity equation ) </li></ul><ul><li>St...
Governing Eqution Nernst-Planck Equation: Continuity equation Poisson’s   Equation :  Mechanical   Field   Equation : Diff...
Algorithm
FEM Formulation <ul><li>Simulation of the hydrogel carried out using multi-physics software COMSOL 3.3a </li></ul><ul><li>...
Description <ul><li>Sample: 1mm x 3 mm  </li></ul><ul><li>Buffer Solution: pH6 with 1mM NaCl Salt Concentration. </li></ul...
Results : Applied Electric Potential <ul><li>Concentration profiles: C f =10mM @ 0.2V </li></ul>Buffer ion inside the gel ...
Results : No external Electric Potential Buffer ion inside the gel Electric Potential In the gel
Results: Concentration Profiles at Different Applied Voltages Buffer ion concentration profile at different applied potent...
Results: Deformation
Conclusion <ul><li>The results are very convincing and profiles match with those predicted by other numerical solution and...
Future Work, Solving Transient problem
References <ul><li>1. Liu, X.,  Drug delivery systems based on polymer blends: Synthesis, characterization and application...
Thank You
Upcoming SlideShare
Loading in …5
×

Simulation Of Hydrogel Micro Actuation

2,714 views

Published on

Hydrogel simulation for electric stimuli

  • Be the first to comment

Simulation Of Hydrogel Micro Actuation

  1. 1. Simulation of Hydrogel Micro-actuation Presented by Kamlesh Suthar* Authors Dr. M. Ghantasala* Dr. D. Mancini # *Department of Mechanical and Aeronautical Engineering, Western Michigan University, Kalamazoo, MI USA - 49008 # Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL, USA – 60439
  2. 2. Agenda <ul><li>Introduction </li></ul><ul><li>Problem Description </li></ul><ul><li>Physics </li></ul><ul><li>FEM Formulation </li></ul><ul><li>Simulation Using COMSOL 3.3a </li></ul><ul><li>Results </li></ul><ul><li>Conclusion/Future Work </li></ul>
  3. 3. Introduction <ul><li>Hydrogel : Crossed Link polymer network </li></ul><ul><li>Sensitive to it’s environment and stimulus i.e. Electric field, Magnetic field </li></ul><ul><li>Application: Micro Fluidic Pump, Artificial muscle Actuation etc. (macroscopic level: Contact lens etc </li></ul>
  4. 4. Research Goal Electric Field sensitive pH sensitive
  5. 5. Associated physics <ul><li>Chemical Potential due to concentration difference (Continuity equation ) </li></ul><ul><li>Static Electric Potential Due to fixed charge and buffer ion interaction (electro-neutrality condition ) </li></ul><ul><li>Equilibrium achieved by Elastic Restoring Force (Isotropic elasticity) </li></ul>
  6. 6. Governing Eqution Nernst-Planck Equation: Continuity equation Poisson’s Equation : Mechanical Field Equation : Diffusion co-efficient of ith ion Concentration of ith ion Valence of ith ion Faraday constant Universal gas constant Temperature Electric field potential Mobility of ith Ion Fixed ion concentration Hydration Strain Induced stress Material elasticity matrix Osmotic Pressure
  7. 7. Algorithm
  8. 8. FEM Formulation <ul><li>Simulation of the hydrogel carried out using multi-physics software COMSOL 3.3a </li></ul><ul><li>Nernst-Planck without Electro-neutrality (Chemical Engineering Module) </li></ul><ul><li>Conductive Media DC (AC/DC Module) for Poisson’s Equation </li></ul><ul><li>Plane Strain (Structural Mechanics Module) for Mechanical Field Equation </li></ul><ul><li>Moving Mesh (ALE) </li></ul><ul><li>The large deformation simulated using Arbitrary Lagrangean and Eularian (ALE) finite element method. </li></ul><ul><li>The electro-neutrality condition is satisfied by the Poisson’s equation </li></ul>
  9. 9. Description <ul><li>Sample: 1mm x 3 mm </li></ul><ul><li>Buffer Solution: pH6 with 1mM NaCl Salt Concentration. </li></ul><ul><li>One end of the hydrogel is fixed and other end is suspended in the liquid. </li></ul><ul><li>Two electrodes are placed equidistance at 15 mm. </li></ul><ul><li>Fixed charge densities 4mM, 8mM and 10mM </li></ul><ul><li>Applied electric potential of 0-2V. </li></ul>
  10. 10. Results : Applied Electric Potential <ul><li>Concentration profiles: C f =10mM @ 0.2V </li></ul>Buffer ion inside the gel Electric Potential In the gel
  11. 11. Results : No external Electric Potential Buffer ion inside the gel Electric Potential In the gel
  12. 12. Results: Concentration Profiles at Different Applied Voltages Buffer ion concentration profile at different applied potential for a fixed charge concentration of 4mM
  13. 13. Results: Deformation
  14. 14. Conclusion <ul><li>The results are very convincing and profiles match with those predicted by other numerical solution and experimental results </li></ul><ul><li>2D analysis is not dimensionless </li></ul><ul><li>coupling of different equations and refinement of convergence conditions is in progress </li></ul>
  15. 15. Future Work, Solving Transient problem
  16. 16. References <ul><li>1. Liu, X., Drug delivery systems based on polymer blends: Synthesis, characterization and application . 2003, Drexel University: United States -- Pennsylvania. </li></ul><ul><li>2. Li Yan, Q. and B. You Han, Polymer Architecture and Drug Delivery. Pharmaceutical Research, 2006. V23 (1): p. 1-30. </li></ul><ul><li>3. Huang, L.-Y. and M.-C. Yang, Behaviors of controlled drug release of magnetic-gelatin hydrogel coated stainless steel for drug-eluting-stents application. Journal of Magnetism and Magnetic Materials, 2007. 310 (2 SUPPL PART 3): p. 2874-2876. </li></ul><ul><li>4. Achilleos, E.C., K.N. Christodoulou, and I.G. Kevrekidis, A transport model for swelling of polyelectrolyte gels in simple and complex geometries. Computational and Theoretical Polymer Science, 2001. 11 (1): p. 63-80. </li></ul><ul><li>5. De, S.K. and N.R. Aluru, A chemo-electro-mechanical mathematical model for simulation of pH sensitive hydrogels. Mechanics of Materials, 2004. 36 (5-6): p. 395-410. </li></ul><ul><li>6. Li, H., R. Luo, and K.Y. Lam, Modeling of ionic transport in electric-stimulus-responsive hydrogels. Journal of Membrane Science, 2007. 289 (1-2): p. 284-296. </li></ul><ul><li>7. Wallmersperger, T., B. Kroplin, and R.W. Gulch, Coupled chemo-electro-mechanical formulation for ionic polymer gels--numerical and experimental investigations. Mechanics of Materials, 2004. 36 (5-6): p. 411-420. </li></ul><ul><li>8. De, S.K., et al., Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. Microelectromechanical Systems, Journal of, 2002. 11 (5): p. 544-555. </li></ul><ul><li>9. Aluru, N.R. and G. Li, Finite cloud method: a true meshless technique based on a fixed reproducing kernel approximation. International Journal For Nnumerical Methos in Engineering, 2001. 50 (10): p. 2373-2410. </li></ul><ul><li>10. Tanaka, N., et al., A study on dynamics of water in crosslinked poly (N-isopropylacrylamide) gel by n.m.r. spectroscopy. Polymer, 1998. 39 (20): p. 4703-4706. </li></ul><ul><li>11. Grimshaw, P.E., et al., Kinetics of electrically and chemically induced swelling in polyelectrolyte gels. The Journal of Chemical Physics, 1990. 93 (6): p. 4462-4472. </li></ul><ul><li>12. Hua Li, J.C.K.Y.L., Multiphysical modeling and meshless simulation of electric-sensitive hydrogels. Journal of Polymer Science Part B: Polymer Physics, 2004. 42 (8): p. 1514-1531. </li></ul><ul><li>13. Li, H., J. Chen, and K.Y. Lam, Multiphysical Modeling and Meshless Simulation of Electric-Sensitive Hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2004. 42 (8): p. 1514-1531. </li></ul><ul><li>14. Li, H., J. Chen, and K.Y. Lam, Transient simulation of kinetics of electric-sensitive hydrogels. Biosensors and Bioelectronics, 2007. 22 (8): p. 1633-1641. </li></ul><ul><li>15. MacGillivray, A.D., Nernst-Planck Equations and the Electroneutrality and Donnan Equilibrium Assumptions. The Journal of Chemical Physics, 1968. 48 (7): p. 2903-2907. </li></ul><ul><li>16. Biot, M.A., Theory of Deformation of a Porous Viscoelastic Anisotropic Solid. Journal of Applied Physics, 1956. 27 (5): p. 459-467. </li></ul><ul><li>17. www.comsol.com, COMSOL 3.3a . 2007, COMSOL. </li></ul><ul><li>18. Li, H., et al., Model development and numerical simulation of electric-stimulus-responsive hydrogels subject to an externally applied electric field. Biosensors and Bioelectronics, 2004. 19 (9): p. 1097-1107. </li></ul><ul><li>19. Li, H., et al., Modeling of multiphase smart hydrogels responding to pH and electric voltage coupled stimuli. Journal of Applied Physics, 2007. 101 (11): p. 114905. </li></ul>
  17. 17. Thank You

×