Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Semiconductores intrínsecos y semiconductores dopados

754 views

Published on

Semiconductores

Published in: Technology
  • Login to see the comments

  • Be the first to like this

Semiconductores intrínsecos y semiconductores dopados

  1. 1. Semiconductores Intrínsecos y Semiconductores Dopados Ingeniería de Sistemas e Informática IV Ciclo Trabajo presentado por: Jorge Zevallos Valdivia
  2. 2. Los semiconductores son elementos que tienen una conductividad eléctrica inferior a la de un conductor metálico pero superior a la de un buen aislante. El semiconductor más utilizado es el silicio, que es el elemento más abundante en la naturaleza, después del oxígeno. Otros semiconductores son el germanio y el selenio Semiconductores http://fisicadesemiconductores.blogspot.com
  3. 3. Se dice que un semiconductor es “intrínseco” cuando se encuentra en estado puro, o sea, que no contiene ninguna impureza, ni átomos de otro tipo dentro de su estructura. En ese caso, la cantidad de huecos que dejan los electrones en la banda de valencia al atravesar la banda prohibida será igual a la cantidad de electrones libres que se encuentran presentes en la banda de conducción. Cuando se eleva la temperatura de la red cristalina de un elemento semiconductor intrínseco, algunos de los enlaces covalentes se rompen y varios electrones pertenecientes a la banda de valencia se liberan de la atracción que ejerce el núcleo del átomo sobre los mismos. Esos electrones libres saltan a la banda de conducción y allí funcionan como “electrones de conducción”, pudiéndose desplazar libremente de un átomo a otro dentro de la propia estructura cristalina, siempre que el elemento semiconductor se estimule con el paso de una corriente eléctrica. Semiconductores Intrínsecos
  4. 4. Como se puede observar en la ilustración, en el caso de los semiconductores el espacio correspondiente a la banda prohibida es mucho más estrecho en comparación con los materiales aislantes. La energía de salto de banda (Eg) requerida por los electrones para saltar de la banda de valencia a la de conducción es de 1 eV aproximadamente. En los semiconductores de silicio (Si), la energía de salto de banda requerida por los electrones es de 1,21 eV, mientras que en los de germanio (Ge) es de 0,785 eV. Semiconductores Intrínsecos http://www.asifunciona.com/fisica/ke_semiconductor/ke_semiconductor_4.htm
  5. 5. Estructura cristalina de un semiconductor intrínseco, compuesta solamente por átomos de silicio (Si) que forman una celosía. Como se puede observar en la ilustración, los átomos de silicio (que sólo poseen cuatro electrones en la última órbita o banda de valencia), se unen formando enlaces covalente para completar ocho electrones y crear así un cuerpo sólido semiconductor. En esas condiciones el cristal de silicio se comportará igual que si fuera un cuerpo aislante. http://www.asifunciona.com/fisica/ke_semiconductor/ke_semiconductor_4.htm Semiconductores Intrínsecos
  6. 6. Cuando los electrones libres llegan la extremo derecho del cristal, entran al conductor externo (normalmente un hilo de cobre) y circulan hacia el terminal positivo de la batería. Por otro lado, los electrones libres en el terminal negativo de la batería fluirían hacia el extremos izquierdo del cristal. Así entran en el cristal y se recombinan con los huecos que llegan al extremo izquierdo del cristal. Se produce un flujo estable de electrones libres y huecos dentro del semiconductor. Semiconductores Intrínsecos http://www.sc.ehu.es/sbweb/electronica/elec_basica/tema2/Paginas/Pagina4.htm
  7. 7. En la producción de semiconductores, se denomina dopaje al proceso intencional de agregar impurezas en un semiconductor extremadamente puro (también referido como intrínseco) con el fin de cambiar sus propiedades eléctricas. Las impurezas utilizadas dependen del tipo de semiconductores a dopar. A los semiconductores con dopajes ligeros y moderados se los conoce como extrínsecos. Un semiconductor altamente dopado, que actúa más como un conductor que como un semiconductor, es llamado degenerado. El número de átomos dopantes necesitados para crear una diferencia en las capacidades conductoras de un semiconductor es muy pequeña. Cuando se agregan un pequeño número de átomos dopantes (en el orden de 1 cada 100.000.000 de átomos) entonces se dice que el dopaje es bajo o ligero. Cuando se agregan muchos más átomos (en el orden de 1 cada 10.000 átomos) entonces se dice que el dopaje es alto o pesado. Este dopaje pesado se representa con la nomenclatura N+ para material de tipo N, o P+ para material de tipo P. Semiconductores Dopados
  8. 8. Semiconductores Dopados Semiconductor tipo P : se emplean elementos trivalentes (3 electrones de valencia) como el Boro (B), Indio (In) o Galio (Ga) como dopantes. Puesto que no aportan los 4 electrones necesarios para establecer los 4 enlaces covalentes, en la red cristalina éstos átomos presentarán un defecto de electrones (para formar los 4 enlaces covalentes). De esa manera se originan huecos que aceptan el paso de electrones que no pertenecen a la red cristalina. Así, al material tipo P también se le denomina donador de huecos (o aceptador de electrones). http://pelandintecno.blogspot.com/2014/04/semiconductores-intrinsecos-y.html
  9. 9. Semiconductores Dopados Semiconductor tipo N: Se emplean como impurezas elementos pentavalentes (con 5 electrones de valencia) como el Fósforo (P), el Arsénico (As) o el Antimonio (Sb). El donante aporta electrones en exceso, los cuales al no encontrarse enlazados, se moverán fácilmente por la red cristalina aumentando su conductividad. De ese modo, el material tipo N se denomina también donador de electrones. http://pelandintecno.blogspot.com/2014/04/semiconductores-intrinsecos-y.html
  10. 10. Estructura cristalina compuesta por átomos de silicio (Si) formando una celosía. Como se puede observar, esta estructura se ha dopado añadiendo átomos de antimonio (Sb) para crear un material semiconductor “extrínseco”. Los átomos de silicio (con cuatro electrones en la última órbita o banda de valencia) se unen formando enlaces covalentes con los átomos de antimonio (con cinco en su última órbita banda de valencia). En esa unión quedará un electrón libre dentro de la estructura cristalina del silicio por cada átomo de antimonio que se haya añadido. De esa forma el cristal. de silicio se convierte en material semiconductor tipo-N (negativo) debido al exceso electrones libres con cargas negativas presentes en esa estructura. Semiconductor de Silicio Tipo N http://www.asifunciona.com/fisica/ke_semiconductor/ke_semiconductor_7.htm
  11. 11. Semiconductor de Silicio Tipo P Estructura cristalina compuesta por átomos de silicio (Si). que forman, como en el caso anterior, una celosía, dopada. ahora con átomos de galio (Ga) para formar un. semiconductor “extrínseco”. Como se puede observar en. la. ilustración, los átomos de silicio (con cuatro electrones en. la. última órbita o banda de valencia) se unen formando. enlaces covalente con los átomos de galio (con tres. electrones en su banda de valencia). En esas condiciones. quedará un hueco con defecto de electrones en la. estructura. cristalina de silicio, convirtiéndolo en un. semiconductor tipo-P (positivo) provocado por el defecto de. electrones en la estructura. http://www.asifunciona.com/fisica/ke_semiconductor/ke_semiconductor_8.htm

×