Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Yamakawa20141026

460 views

Published on

FOSS4G 2014 Osaka Core day 2014/10/26.
Presented by Junji Yamakawa (GNST, Okayama Univ. Japan).

Published in: Technology
  • Be the first to comment

Yamakawa20141026

  1. 1. FwSS4G4HRTSPMT@T@ Eääëãñäm ,ämw -Ww 9*(%@ @ae/a'e í/aúwecí@ t/wíháb/no/w _ in ;nyuma (mm:-mmüä)
  2. 2. šälāw . FOSS4GEñ1EáSöDFt 5 čëlAšísxz ' FOSS4GUJEIS7D(U`“T`/7"$üEH%7DV ü$&<Eöšbt! F( > _ ;ya JJ E - . . . T l - J Free8cOpen Source Software for Geospatial :u } i. à/w vífr« v |0/26(Sun)-'|0/28(TUe) 'lO/3|(FrI)-1|/2(SUn) / ?ar
  3. 3. :J: :t t-'-I *E I:: Wë ' TäfšCäiëíčatšliššāüäíí?4ič%ä(1 O u mWMNE TëEëFOSS4G à: Ršăãčäñ ~ iEEšâšë/hë < íšfcāblííšãã 'J ='-"`J7`(UK) %íăñā - UKí:FIāLš>?ăBíñ-"-90)575, IW77E?`JL 7-"`-97D*`TëE(C'ā-ăă?3%7ā1“âší
  4. 4. IO m FJ
  5. 5. ãăäü?-@N-X (āzãămää)
  6. 6. GRDINARY KRIGING 57.8 ug/rr? 4 66.5 55.0 68.0 PREDICTION VARIANCE
  7. 7. :I-v + /di5z IE37EEELBODD H š%,ää%tBwämšm “ãšāâ 'J ='-" >0"7šíëDT ,__:,,,; ?šEUGDñäQäTEPë ăč: äčükwökw ãëüš! 55.0
  8. 8. Hšäíšāiš 31 B } , ~ %Aëmsmatcāiāor < t-jà janfzzñšlüãëâñëgšâšlâälš -iaazwëg ”*5 "'=
  9. 9. %ME %EEFJL (ãiüãä) O Fáfšäílāí-*QN-X (ííääfščífäiāñ) o BI»-Auiwëm (wääāmâtya-) oñ ki.
  10. 10. 10 spmmwäāñããmàxāhä FLQSSë?-9U>7âüT%ä * `í`T`Tíñ7TbšTl [LINK-i ] (TāâJšTã-5%%IX%) A % F; (Q GDALL
  11. 11. íānäíăãš! 'J “b” `/ 7 'J 97 (PCRES 2 POSITION CONSERVATIVE RESAMPLING) Ršãă`ö7 El 75 S yä" /"7 hibzñāä 11 Relative difference Helght [m] -02 -0.1 00 0.1 02 0 100 200 300 400 l. n" ` I I | | I I I 200 400 600 800 1000 1200 1400 Location No I I I | I I I 200 400 600 800 1000 1200 1400 Location No
  12. 12. RESAMPLED DEM ~ 250 m / grid - %am ?āôñã (1 Hooícšñíëšz) Generated byihe R language! -0.l0 m 200 m 12
  13. 13. 13 fíāšííäü/ V “J 7 7 367171/ Iššiíăü/ ` *V 7 T 257171/
  14. 14. (why, z) + B 1) XP DEM nbx "14 um
  15. 15. SPM07 15 sPM 1 ašëxcá: šeăt/vy7?Eāãützxāšbnfrāāăëăí m uo O O o' o' IN I Q O. O O 8 _ 8 o' o d E a (n m m C? 0. o o V' V' o _ o _ o o c o ar: m O _ O _ o 0 o 0 | | | | I I l I I l I 0 50 100 150 200 250 0 10000 20000 30000 40000 Z Distance
  16. 16. 16 PREDICT ON (LAND PART) ORDINARY KRIGING UNIVERSAL KRIGING 66.5 57.8 Mg/mB
  17. 17. P RE DECTION (OCEAN PART) ORDINARY KRIGING 17 UNIVERSAL KRIGING 66.0 60.0 Mg/ma
  18. 18. 60.0 VARIANCE (OCEAN PART) NON BUFFERD 56.0 BUFFERD
  19. 19. 57.8 1 9
  20. 20. 20 // ..........> ?`-9'J`/7 [LINK-i] (E%@%%%m%) E KMLtljjJ sy (wGs84)
  21. 21. .-| . x 4 z .- ' f ' 11 r . ,r r na.. ' C `~ `1 ~ i 'J . 31 « is J . , - . . : 75.51 ,n».,r,-1ioi..cionvi...wíäăčzzágāa.@Hr 'r V h y xav--vxuítçu-h-neiiqiųaxų
  22. 22. 57.8 22 pg/n13 66.5 Data SIO. NOAA. U.S. Navy. NGA. GEBCO Image Landsat Data Japan Hydvographic Association
  23. 23. - äíăñítšwsPMi owăsăo u íëyâkwäiäà _ TcáHEiEEEFOSMG a Rāāāräñ
  24. 24. 24 FOSS4G + RTSFM 1 Cd) EFãáTEãHHíB " W* 05630, , _. C/ /,, Gougleearth wa Gbíli; K« 44 @J llllllíñliã (2014) ()©@XD GV NO"SA" UDFáHLXDFláWUJPf? i?? - 3 - Bšlääü: . HSHE 54129 'FlZERãnTiAãT ' ZE`JX

×