Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Jürgen ’Juxi’ Leitner                                                    S. Harding, A. Förster, J. Schmidhuber           ...
thanks to G. Metta and IIT for this picture                                                   visual                      ...
detecting            objectsWednesday, September 5, 2012
learning                               approachWednesday, September 5, 2012
INP               INP     INP     +      dilate     min     avg                                                           ...
Image credit: NASA              space        applicationsWednesday, September 5, 2012
Image credit: NASA              space        applicationsWednesday, September 5, 2012
cgp             approachWednesday, September 5, 2012
INP               INP     INP     +      dilate     min     avg                                                           ...
INP               INP     INP     +      dilate     min     avg               ()*+,-*"             .-**/+,-*"%"           ...
detectWednesday, September 5, 2012
detectWednesday, September 5, 2012
!"#$%&$()*+,%-$&+*,.%                        •      /+0%)1#2$3%"4%)"-$.%5%677%                        •      /1&+8")%3+&$%...
detecting        rocksWednesday, September 5, 2012
Wednesday, September 5, 2012
icImage* RockDetector::runFilter() {                 !     icImage* node0 = InputImages[6]->gauss(3);                 !   ...
detecting             specific               rocksWednesday, September 5, 2012
detectingspecificrocksWednesday, September 5, 2012
classifying             martian              terrainWednesday, September 5, 2012
martian                            terrain classificationI.Halatci,K.Iagnemma,etal.Astudyofvisualand tactile terrain classi...
Shang et al.                                                                          CGP-IP                           mar...
martian                            terrain classificationI.Halatci,K.Iagnemma,etal.Astudyofvisualand tactile terrain classi...
Shang et al.                                                                          CGP-IP                           mar...
collaboration                               if you have (labelled) data                                    please contact ...
conclusions                 combining cgp with opencv creates possibilities                 output: executable, human-read...
thanks                                                                                                for listening       ...
Upcoming SlideShare
Loading in …5
×

Mars Terrain Image Classification Using Cartesian Genetic Programming #isairas 2012

1,141 views

Published on

My presentation at the International Symposium on Artificial Intelligence, Robotics and Automation in Space i-SAIRAS. 4-6 September 2012. Turin, Italy

Published in: Technology, Education
  • Be the first to comment

Mars Terrain Image Classification Using Cartesian Genetic Programming #isairas 2012

  1. 1. Jürgen ’Juxi’ Leitner S. Harding, A. Förster, J. Schmidhuber istituto dalle molle di studi sull’intelligenza artificiale università della svizzera italiana idsia / usi / supsi mars terrain image classification using CGP #iSAIRAS 2012Wednesday, September 5, 2012
  2. 2. thanks to G. Metta and IIT for this picture visual perceptionWednesday, September 5, 2012
  3. 3. detecting objectsWednesday, September 5, 2012
  4. 4. learning approachWednesday, September 5, 2012
  5. 5. INP   INP   INP   +   dilate   min   avg   cartesian genetic programmingWednesday, September 5, 2012
  6. 6. Image credit: NASA space applicationsWednesday, September 5, 2012
  7. 7. Image credit: NASA space applicationsWednesday, September 5, 2012
  8. 8. cgp approachWednesday, September 5, 2012
  9. 9. INP   INP   INP   +   dilate   min   avg   cartesian genetic programmingWednesday, September 5, 2012
  10. 10. INP   INP   INP   +   dilate   min   avg   ()*+,-*" .-**/+,-*"%" .-**/+,-*"$" !" "#$" "#%" cartesian genetic 0"1/23"*)45/1" &!" """ " programmingWednesday, September 5, 2012
  11. 11. detectWednesday, September 5, 2012
  12. 12. detectWednesday, September 5, 2012
  13. 13. !"#$%&$()*+,%-$&+*,.% •  /+0%)1#2$3%"4%)"-$.%5%677% •  /1&+8")%3+&$%5%679% •  :1)8").%5%;<7%% •  =)>1&%"1)&%5%?@%%A1&>1&%"1)&5%6% •  =.,+)-%#"-$,%4"3%$B",18")% –  C<%D"3%."E%*.,+)-.% –  FB",18")+3G%.&3+&$HG%D6I<E%*)%$+(%*.,+)-% •  J$+K%.$,$8")%>3$..13$%+>>,*$-%4"3%$0$18")% .>$$-% technical detailsWednesday, September 5, 2012
  14. 14. detecting rocksWednesday, September 5, 2012
  15. 15. Wednesday, September 5, 2012
  16. 16. icImage* RockDetector::runFilter() { ! icImage* node0 = InputImages[6]->gauss(3); ! icImage* node1 = node0->sqrt(); ! icImage* node9 = InputImages[5]; ! icImage* node12 = node9->unsharpen(13); ! icImage* node15 = node1->mulc(7.00936886295676); ! icImage* node24 = node15->SmoothBilateral(9); ! icImage* node31 = node24->Normalize(); ! icImage* node33 = node12->mulc(4.03286868333817); ! icImage* node35 = node33->add(node31); ! icImage* node99 = node35->SmoothBilateral(11); //cleanup ... // return ! return node99->threshold(177.2417f); } detecting rocksWednesday, September 5, 2012
  17. 17. detecting specific rocksWednesday, September 5, 2012
  18. 18. detectingspecificrocksWednesday, September 5, 2012
  19. 19. classifying martian terrainWednesday, September 5, 2012
  20. 20. martian terrain classificationI.Halatci,K.Iagnemma,etal.Astudyofvisualand tactile terrain classification and classifier fusion for planetary exploration rovers. Robotica, 26(6):767– 779, 2008.C. Shang, D. Barnes, and Q. Shen. Facilitating effi- cient mars terrain image classification with fuzzy- rough feature selection. International Journal of Hybrid Intelligent Systems, 8(1):3–13, 2011.C. Shang and D. Barnes. Classification of mars mcmurdo panorama images using machine learning techniques. Acta Futura, 5:29–38, 2012.Wednesday, September 5, 2012
  21. 21. Shang et al. CGP-IP martian terrain classificationI.Halatci,K.Iagnemma,etal.Astudyofvisualand tactile terrain classification and classifier fusion for planetary exploration rovers. Robotica, 26(6):767– 779, 2008.C. Shang, D. Barnes, and Q. Shen. Facilitating effi- cient mars terrain image classification with fuzzy- rough feature selection. International Journal of Hybrid Intelligent Systems, 8(1):3–13, 2011.C. Shang and D. Barnes. Classification of mars mcmurdo panorama images using machine learning techniques. Acta Futura, 5:29–38, 2012.Wednesday, September 5, 2012
  22. 22. martian terrain classificationI.Halatci,K.Iagnemma,etal.Astudyofvisualand tactile terrain classification and classifier fusion for planetary exploration rovers. Robotica, 26(6):767– 779, 2008.C. Shang, D. Barnes, and Q. Shen. Facilitating effi- cient mars terrain image classification with fuzzy- rough feature selection. International Journal of Hybrid Intelligent Systems, 8(1):3–13, 2011.C. Shang and D. Barnes. Classification of mars mcmurdo panorama images using machine learning techniques. Acta Futura, 5:29–38, 2012.Wednesday, September 5, 2012
  23. 23. Shang et al. CGP-IP martian terrain classificationI.Halatci,K.Iagnemma,etal.Astudyofvisualand tactile terrain classification and classifier fusion for planetary exploration rovers. Robotica, 26(6):767– 779, 2008.C. Shang, D. Barnes, and Q. Shen. Facilitating effi- cient mars terrain image classification with fuzzy- rough feature selection. International Journal of Hybrid Intelligent Systems, 8(1):3–13, 2011.C. Shang and D. Barnes. Classification of mars mcmurdo panorama images using machine learning techniques. Acta Futura, 5:29–38, 2012.Wednesday, September 5, 2012
  24. 24. collaboration if you have (labelled) data please contact us we are not martian terrain specialists :) juxi@idsia.ch http://Juxi.net/projectsWednesday, September 5, 2012
  25. 25. conclusions combining cgp with opencv creates possibilities output: executable, human-readable code for detection and identification impressive performance (and robustness)Wednesday, September 5, 2012
  26. 26. thanks for listening juxi@idsia.ch http://Juxi.net/projects further references Vincent Graziano, Tobias Glasmachers, Tom Schaul, Leo Pape, Giuseppe Cuccu,Jürgen Leitner and Jürgen Schmidhuber. Artificial Curiosity for Autonomous Space Exploration. Acta Futura, 4, pp.41-52, 2011. M. Frank, J. Leitner, M. Stollenga, S. Harding, A. Förster, and J. Schmidhuber. The modular behavioral environment for humanoids and other robots (MoBeE). In Proceedings of the International Conference on Informatics in Control, Automation and Robotics (ICINCO), 2012. S. Harding, V. Graziano, J. Leitner, J. Schmidhuber. MT-CGP: Mixed Type Cartesian Genetic Programming. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO). Philadelphia, USA. July 2012. Leitner, J., Harding, S., Förster, A., and Schmidhuber, J.. Mars Terrain Classification using Cartesian Genetic Programming. In the Proceedings of the International Symposium on AI and Robotics for Space (I-SAIRAS). 2012. S. Harding, J. Leitner, and J. Schmidhuber. Cartesian genetic programming for image processing. Book Chapter in Genetic Programming Theory and Practice X. Springer, 2012. (in print) Leitner, J., Harding, S., Frank, M., Förster, A., and Schmidhuber, J. Towards Spatial Perception: Learning to Locate Objects From Vision. In Proceedings of the Postgraduate Conference on Robotics and Development of Cognition RobotDoc, 2012. J. Leitner, S. Harding, M. Frank, A. Förster, and J. Schmidhuber. Transferring spatial perception between robots operating in a shared workspace. In Intelligent Robots and Systems, 2012. accepted.Wednesday, September 5, 2012

×