Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Complex arithmetic

892 views

Published on

swdqd

Published in: Technology, Business
  • Be the first to comment

Complex arithmetic

  1. 1. Prepared by:<br />Mr. Raymond B. Canlapan<br />COMPLEX ARITHMETIC<br />
  2. 2. 1.4. Operations on Complex Numbers<br /> 1.4.1. Addition<br /> 1.4.2. Subtraction<br /> 1.4.3. Multiplication<br /> 1.4.3.1. Monomial: Distribution <br /> 1.4.3.2. Binomials<br /> 1.4.3.3. Special Products<br /> 1.4.3.3.1. Binomial Square<br /> 1.4.3.3.2. Conjugates<br /> 1.4.4. Division<br /> 1.4.4.1. Monomial Divisor<br /> 1.4.4.2. Binomial Divisor<br />SCOPE<br />
  3. 3. ADDITION<br />
  4. 4. (2x + 3y) + (x + 2y)<br />(3x + 5y) + (2x + y)<br />(3x + 3y) + (3x + 3y)<br />SET INDUCTION: Review of Adding Polynomials<br />To add polynomials, simply combine like terms.<br />
  5. 5. Does the method of combining like terms in polynomials also applied in adding complex numbers?<br />What are the steps to be followed in adding complex numbers?<br />ESSENTIAL QUESTIONs:<br />
  6. 6. 2+3𝑖+(3+5𝑖)<br />Β <br />ADD:<br />=5+8𝑖<br />Β <br />
  7. 7. How do we add complex numbers?<br />Add the real parts.<br />Add the imaginary parts.<br />Express sum in standard form.<br />
  8. 8. 2βˆ’3𝑖+3+5𝑖<br />7+2𝑖+(βˆ’2+𝑖)<br />2+6𝑖+7+6𝑖<br />3βˆ’3𝑖+3+3𝑖<br />6π‘–βˆ’3+3+8𝑖<br />2𝑖+4+(1βˆ’3𝑖)<br />3+βˆ’16+(2+βˆ’4)<br />Β <br />Illustrative examples: Add these complex numbers<br />
  9. 9. SUBTRACTION<br />
  10. 10. (6x + 7y) – (2x – 5y)<br />Review: Subtracting polynomials<br />= 4x + 12y<br />Change the sign of the subtrahend.<br />Proceed to addition. <br />
  11. 11. Does the procedure in subtracting polynomials applied in complex numbers?<br />ESSENTIAL QUESTIONs:<br />
  12. 12. 5+5π‘–βˆ’(3+4𝑖)<br />Β <br />FIND THE DIFFERENCE:<br />=2+𝑖<br />Β <br />
  13. 13. How do we SUBTRACT complex numbers?<br />Change the sign of the subtrahend.<br />Proceed to addition.<br />Express difference in standard form.<br />
  14. 14. 2βˆ’4π‘–βˆ’(3+5𝑖)<br />4βˆ’4π‘–βˆ’(1βˆ’3𝑖)<br />3βˆ’3π‘–βˆ’(8+5𝑖)<br />12βˆ’3π‘–βˆ’(4+6𝑖)<br />2π‘–βˆ’14βˆ’6βˆ’4𝑖<br />2βˆ’βˆ’25βˆ’Β (βˆ’11+3βˆ’49) <br />Β <br />Illustrative examples: Subtract<br />
  15. 15. 2+4𝑖+(3+6𝑖)<br />4βˆ’2π‘–βˆ’(7+𝑖)<br />11βˆ’2𝑖+(3βˆ’15𝑖)<br />5βˆ’π‘–+(3+5𝑖)<br />3βˆ’10𝑖+16+3π‘–βˆ’(2+3𝑖)<br />Β <br />SEATWORK: Perform the Indicated Operation<br />
  16. 16. MULTIPLICATION<br />Monomial Factor<br />Binomial Factors<br />
  17. 17. 3(2x + 5)<br />2x(5 + 3x)<br />7x(3x – 2y)<br />(3x – 2) (5x + 3)<br />(4x + 5) (3x – 7) <br />SET INDUCTION (QUIZ GAME): FIND THE PRODUCT (5 MINUTES)<br />
  18. 18. How do we multiply polynomials with a monomial factor?<br />How do we multiply polynomials with two binomial factors?<br />QUESTIONS:<br />Distribution Property<br />FOIL Method<br />
  19. 19. 62𝑖+3<br />𝑖7+2𝑖<br />2𝑖7βˆ’π‘–<br />2𝑖3βˆ’1+5𝑖 -> #1-10<br />4𝑖26+βˆ’25 -> # 11-20<br />Β <br />A. MONOMIAL FACTOR<br />Using DPMA or DPMS<br />
  20. 20. 1βˆ’3𝑖5+2𝑖<br />3βˆ’4𝑖7βˆ’2𝑖<br />6+𝑖2βˆ’π‘–-> # (21-30)<br />5+6𝑖3βˆ’2𝑖 # 31-40<br />Β <br />B. BINOMIAL FACTORS<br />Using FOIL<br />
  21. 21. SPECIAL products<br />1. Binomial Square<br />2. Conjugates<br />
  22. 22. C. BINOMIAL SQUARE<br />(π‘₯+𝑦)2=<br />Β <br />π‘₯2+2π‘₯𝑦+𝑦2<br />Β <br />
  23. 23. C. Binomial Square<br />(π‘Ž+𝑏𝑖)2=<br />Β <br />π‘Ž2+2π‘Žπ‘π‘–βˆ’π‘2<br />Β <br />Why?<br />
  24. 24. 3+𝑖2<br />6+2𝑖2<br />4βˆ’3𝑖2<br />1+𝑖2<br />5βˆ’2𝑖2<br />7+4𝑖2<br />Β <br />Illustrative Examples: Find the Product (TEAM-PAIR-SOLO)<br />
  25. 25. C. SPECIAL PRODUCT OF THE SUM AND DIFFERENCE OF TWO LIKE TERMS <br />π‘₯+𝑦π‘₯βˆ’π‘¦=<br />Β <br />π‘₯2βˆ’π‘¦2<br />Β <br />
  26. 26. C. SPECIAL PRODUCT OF THE SUM AND DIFFERENCE OF TWO LIKE TERMS <br />CONJUGATES<br />?<br />π‘Ž+π‘π‘–π‘Žβˆ’π‘π‘–=<br />Β <br />
  27. 27. complex numbers which differ only in the sign of their imaginary part<br />Find the conjugate of:<br />(6+2𝑖)<br />(3βˆ’7𝑖)<br />4+6𝑖<br />3+7𝑖<br />5βˆ’2𝑖<br />Β <br />Conjugates<br />
  28. 28. 2+3𝑖2βˆ’3𝑖<br />3+8𝑖3βˆ’8𝑖<br />6+7𝑖6βˆ’7𝑖<br />5+6𝑖5βˆ’6𝑖<br />9+10𝑖9βˆ’10𝑖<br />Β <br />ACTIVITY: PRODUCT OF CONJUGATES<br />
  29. 29. Tabulate the results:<br />ACTIVITY: PRODUCT OF CONJUGATES<br />
  30. 30. C. SPECIAL PRODUCT OF THE SUM AND DIFFERENCE OF TWO LIKE TERMS <br />π‘Ž+π‘π‘–π‘Žβˆ’π‘π‘–=<br />Β <br />π‘Ž2+𝑏2<br />Β <br />Why?<br />
  31. 31. 3+2𝑖2<br />6βˆ’2𝑖22<br />123+7𝑖2<br />5βˆ’3𝑖2<br />4βˆ’3𝑖2<br />Β <br />6βˆ’2𝑖6+2𝑖<br />(8+3𝑖)(8βˆ’3𝑖)<br />(7βˆ’6𝑖)(7+6𝑖)<br />7+11𝑖7βˆ’11𝑖<br />2𝑖+142π‘–βˆ’14<br />Β <br />Seatwork: FIND THE PRODUCT<br />
  32. 32. A. Monomial Divisor<br />B. Binomial Divisor<br />DIVISION<br />
  33. 33. How do we divide complex numbers with monomial divisor?<br />How do we divide complex numbers with binomial divisor?<br />ESSENTIAL QUESTIONS<br />
  34. 34. How do we simplify 12?<br />Β <br />SET INDUCTION<br />
  35. 35. A. MONOMIAL DIVISOR<br />RATIONALIZATION<br />
  36. 36. 6𝑖<br />15𝑖<br />43𝑖<br />112𝑖<br />Β <br />74𝑖<br />reciprocal of 𝑖<br />reciprocal of 2𝑖<br />Β <br />Illustrative examples<br />
  37. 37. How do we make the denominator a rational number?<br />B. BINOMIAL DIVISOR<br />12+𝑖<br />Β <br />
  38. 38. B. Binomial Divisor<br />CONJUGATION<br />
  39. 39. 12+𝑖<br />1+𝑖2βˆ’π‘–<br />4+3𝑖1βˆ’2𝑖<br />Β <br />5+3𝑖1+4𝑖<br />1+𝑖3βˆ’3𝑖<br />𝑖+3<br />Β <br />Illustrative Examples<br />
  40. 40. 32𝑖<br />47𝑖3<br />23+𝑖2𝑖<br />5βˆ’3𝑖6+2𝑖<br />Β <br />5βˆ’2𝑖3βˆ’8𝑖<br />3+2𝑖3βˆ’2𝑖<br />Reciprocal ofΒ 3βˆ’7𝑖<br />Β <br />SEATWORK: Simplify the following complex numbers<br />

Γ—