Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Talk at RecSys 2017 in Como, Italy on 2017-08-29.
Abstract:
Time plays a key role in recommendation. Handling it properly is especially critical when using recommender systems in real-world applications, which may not be as clear when doing research with historical data. In this talk, we will discuss some of the important challenges of handling time in recommendation algorithms at Netflix. We will focus on challenges related to how our users, items, and systems all change over time. We will then discuss some strategies for tackling these challenges, which revolves around proper treatment of causality in our systems.