Successfully reported this slideshow.
Upcoming SlideShare
×

# 素数の星空の中から星座を探せ！ #日曜数学会

1,570 views

Published on

テレンス・タオの論文の定理を、プログラミングを通して確かめてみよう、というお話です。テレンス・タオは天才。

Terrence Tao, “The Gaussian Primes Contain Arbitrarily Shaped Constellations”, arXiv:math/0501314 [math.CO]
http://arxiv.org/abs/math/0501314

http://www.nicovideo.jp/watch/sm29119106

デモページはこちら：
http://tsujimotter.info/works/constellation/

tsujimotterのポートフォリオ：
http://tsujimotter.info

Published in: Education
• Full Name
Comment goes here.

Are you sure you want to Yes No

Are you sure you want to  Yes  No

Are you sure you want to  Yes  No
• ..............ACCESS that WEBSITE Over for All Ebooks ................ ......................................................................................................................... DOWNLOAD FULL PDF EBOOK here { http://bit.ly/2m6jJ5M } ......................................................................................................................... Download Full EPUB Ebook here { http://bit.ly/2m6jJ5M } .........................................................................................................................

Are you sure you want to  Yes  No
• ..............ACCESS that WEBSITE Over for All Ebooks ................ ......................................................................................................................... DOWNLOAD FULL PDF EBOOK here { http://bit.ly/2m6jJ5M } ......................................................................................................................... Download Full EPUB Ebook here { http://bit.ly/2m6jJ5M } .........................................................................................................................

Are you sure you want to  Yes  No

Are you sure you want to  Yes  No

### 素数の星空の中から星座を探せ！ #日曜数学会

1. 1. Constellations in the Gaussian primes @tsujimotter http://tsujimotter.info/ # 2016/06/18
2. 2. Who are you tsujimotter
3. 3. Terrence Tao, “The Gaussian Primes Contain Arbitrarily Shaped Constellations”, arXiv:math/0501314 [math.CO] http://arxiv.org/abs/math/0501314
4. 4. Z[ i ] (Shape) P[ i ] (Constellation) 1.2
5. 5. “ ”
6. 6. i 2i 3i -i -2i -3i -1 0 1 2 3 4 5 “ ” -1 0 1 2 3 4 5
7. 7. -1 0 1 2 3 4 5 “ ” -1 0 1 2 3 4 5 i 2i 3i -i -2i -3i
8. 8. 5 + 2i 7 3i {1, -1, i, -i } {p, -p, pi, -pi} p {1, -1} {p, -p} p
9. 9. 5+0i-5+0i 0+5i 0-5i 5 + 2i 3i
10. 10. 100+0i-100+0i 0+100i 0-100i
11. 11. 300+0i-300+0i 0+300i 0-300i
12. 12. Z[ i ] (Shape) P[ i ] (Constellation) 1.2 Shape
13. 13. Shape Constellation
14. 14. +30 -30 - 5 - 2i - 1 - 4i 1 - 6i 3 - 8i 3 - 10i 7 - 12i 9 - 10i
15. 15. +100 -100 -70 + 71i 10 + 61i - 10 - 9i - 20 - 19i - 30 - 29i 30 - 89i - 50 - 99i
16. 16. 4/21 5/20
17. 17. +50 -50 -30 + 23i -38 + 7i -2 + 3i 2 - 1i 2 - 5i - 2 - 5i - 6 - 5i
18. 18. 6 8 10 +300 -300
19. 19. 5/21 6/21
20. 20. +50 -50 -38 + 23i -44 + 15i -16 + 9i -6 + 5i -2 + 5i -32 + 3i -26 + 1i - 12 - 7i
21. 21. { -30 + 23i, -38 + 7i, -2 + 3i, 2 - 1i, 2 - 5i, - 2 - 5i, - 6 - 5i }
22. 22.
23. 23. 8/24 9/23
24. 24. +30 -30 -13 + 2i 7 - 2i - 11 - 6i 7 - 8i - 21 - 10i - 7 - 10i - 1 - 10i - 15 - 14i - 19 - 20i
25. 25. +1200 -1200
26. 26. http://tsujimotter.info/works/constellation/