Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

「ガロア表現」を使って素数の分解法則を考える #mathmoring

4,763 views

Published on

松森さん歓迎&数理学院立ち上げ記念セミナー
https://connpass.com/event/82142/

で発表したスライドです。

tsujimotter
http://tsujimotter.info

Published in: Science
  • If u need a hand in making your writing assignments - visit ⇒ www.WritePaper.info ⇐ for more detailed information.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • ⇒ www.HelpWriting.net ⇐ This service will write as best as they can. So you do not need to waste the time on rewritings.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Follow the link, new dating source: ❶❶❶ http://bit.ly/2u6xbL5 ❶❶❶
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Dating for everyone is here: ♥♥♥ http://bit.ly/2u6xbL5 ♥♥♥
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

「ガロア表現」を使って素数の分解法則を考える #mathmoring

  1. 1. tsujimotter tsujimotter.info 2018.04.14 #mathmoring
  2. 2. •  tsujimotter •  •  • 
  3. 3. Def. GK : K V : E – etc.`C ⇢ : GK cont. hom. ! AutEV (⇢, V ) V etc.
  4. 4. K L Gal(L/K) Gal(L/L) = 1 K = LGal(L/K)
  5. 5. K L K K K L/K
  6. 6. K L Gal(K/K) = GK K Gal(K/L) Gal(K/K) K K
  7. 7. K K K L Gal(K/K) = GK K Gal(K/L) Gal(K/K) ' GK/Gal(K/L) L/K
  8. 8. K L K ' GK/Gal(K/L) K K K K ' GK/Gal(K/L0 ) ' GK/Gal(K/L00 ) L0 L00 ( )K GK
  9. 9. GK y K VGK GK y V V GK GK
  10. 10. E n E E ℓ ℓ E ℓ GLn(E) V GK
  11. 11. p = x2 + y2 p : = (x + y p 1)(x y p 1) () p ⌘ 1 (mod 4) 2 pQ( p 1) 13 = 22 + 32 29 = 22 + 52
  12. 12. (1 + p 1)2 ( p 1) 2 p (⌘ 1 (mod 4)) (⌘ 3 (mod 4))p (x + y p 1)(x y p 1) pK Q = Q( p 1)
  13. 13. Q K = Q( p 1)K Q Gal(Q/Q) = GQ Gal(Q/K) Gal(Q/Q) 2 2 p Frobp
  14. 14. 1 ◆⇤ p : Gal(Qp/Qp) ! GQ ◆p : Q ,! Qp Gal(Qp/Qp) ⇢ GQ p
  15. 15. Gal(Qp/Qp) ⇣ Gal(Fp/Fp)
  16. 16. : 0 ! Ip ,! Gal(Qp/Qp) ⇣ Gal(Fp/Fp) ! 0 K p Ip K/Q
  17. 17. : 0 ! Ip ,! Gal(Qp/Qp) ⇣ Gal(Fp/Fp) ! 0 2 (x 7! xp ) ( ) K p Ip K/Q
  18. 18. : 0 ! Ip ,! Gal(Qp/Qp) ⇣ Gal(Fp/Fp) ! 0 2 2 (x 7! xp ) ( ) 7!Frobp p Frobp|K K/Q K p Ip K/Q Gal(K/Q)
  19. 19. K/QFrobp|K = idK () p K/QpProp.
  20. 20. 1◆p : Q ,! Qp Frobp ◆p, ◆0 p : Q ,! Qp Frobp, Frob0 p 2 Gal(K/Q) Frob0 p|K = Frobp|K 1 Frobp, Frob0 p Frob0 p|K ⇠ Frobp|K Def. Frob0 p|K ⇠ Frobp|KGal(K/Q)
  21. 21. 1. 1K/Q Frob0 p|K ⇠ Frobp|K () Frob0 p|K = Frobp|K 1 = ( 1 ) Frobp|K = Frobp|K OK 2. 1K/Q
  22. 22. Q Q Gal(Q/Q) = GQ Gal(Q/Q) K 0 ! Ker ⇢ ,! GQ ⇣ GLn(E) ! 0 ⇢ : GQ ! GLn(E) 0 ! Ker ⇢ ,! GQ ⇣ GLn(E) ! 0K/Q Prop. K/Q Prop. K/Q ⇢(Ip) = { 1 } () p ⇢(Frobp) = 1 () p K/Q K := Q Ker ⇢
  23. 23. K := Q Ker ⇢ g K () p K/Q Prop. K/Q⇢(Ip) = { 1 } () p Ip ⇢ Ker ⇢ g 2 Ip K ⇢(Ip) = { 1 } () Ip|K = {idK}
  24. 24. Prop. K/Q⇢(Frobp) = 1 () p g 2 GQ K := Q Ker ⇢ ⇢(g) = 1 g K g|K = idK ⇢(Frobp) = 1 () Frobp|K = idK () p K/Q
  25. 25. Frob0 p|K = Frobp|K 1 ⇢(Frob0 p) = ⇢( )⇢(Frobp)⇢( ) 1 B = PAP 1 Tr ⇢(Frob0 p) = Tr ⇢(Frobp) well-defined
  26. 26. K = Q( p 1) ⇢ : GQ ⇣ Gal(K/Q) ' {±1} ,! C⇥ = GL1(C) 2 2 idK 7! +1 17! ⇢(g) = 1 () g|K = idK Q Ker ⇢ = K K/Q
  27. 27. K = Q( p 1) ⇢ : GQ ⇣ Gal(K/Q) ' {±1} ,! C⇥ = GL1(C) Gal(Q(⇣N )/Q) ' (Z/NZ)⇥ GQ ! Gal(K/Q) ! C⇥ ' ⇢ : (Z/4Z)⇥ ! : (Z/4Z)⇥ ! C⇥
  28. 28. ⇢ : GQ ! Gal(Q( p 1)/Q) ' (Z/4Z)⇥ 2 2 Frobp p ! GL1(C) (p) 2 p 1 7! ( p 1)p 7! 7! 2 ⇢(Frobp) = (p)
  29. 29. { Q 1 ⇢ } ! { }
  30. 30. { Q 1 ⇢ } ! { } { Q 2 ` ⇢ } ! { f } 2
  31. 31. f = P1 n=1 anqn Q { Q 2 ` ⇢f,` } { f } ⇢f,` : Gal(Q/Q) ! GL2(E) Tr(⇢f,`(Frob 1 p )) = ap k 2
  32. 32. f = P1 n=1 anqn Q { Q 2 ` ⇢f,` } { f } ⇢f,` : Gal(Q/Q) ! GL2(E) Tr(⇢f,`(Frob 1 p )) = ap
  33. 33. f = P1 n=1 anqn 2 ℓ ⇢f,` : Gal(Q/Q) ! GL2(E) Prop. =) p K/Q p K/Q character table ap = 2 Ker ⇢f,` K/Q ap = Tr ⇢f,`(Frob 1 p ) = 2⇢f,`(Frob 1 p ) = ✓ 1 0 0 1 ◆ =)
  34. 34. Q( p 1)/Q K/Q f = q 1Y n=1 (1 qn )(1 q23n ) = 1X n=1 anqn K X3 X2 + 1 ap = 2 () p p ⌘ 1 (mod 4) () p
  35. 35. •  •  •  •  •  ( ) ︎ mod N •  (ℓ ) ︎
  36. 36. •  2009 l •  •  http://tsujimotter.hatenablog.com/entry/2018-april
  37. 37. sage: M = NumberField(x^2 + 23, 'a’); M Number Field in a with defining polynomial x^2 + 23 sage: K = M.hilbert_class_field('b’); K Number Field in b with defining polynomial x^3 - x^2 + 1 over its base field sage: I = K.ideal(59); I Fractional ideal (59) sage: I.factor() (Fractional ideal ((6/23*a + 1)*b^2 - 2/23*a*b + 5/46*a + 1/2)) * (Fractional ideal ((-1/46*a - 3/2)*b^2 + (4/23*a + 1)*b - 5/23*a + 1)) * (Fractional ideal ((-6/23*a + 1)*b^2 + 2/23*a*b - 5/46*a + 1/2)) * (Fractional ideal ((-13/46*a + 1/2)*b^2 + (6/23*a - 1)*b + 4/23*a + 1)) * (Fractional ideal ((1/46*a - 3/2)*b^2 + (-4/23*a + 1)*b + 5/23*a + 1)) * (Fractional ideal ((-13/46*a - 1/2)*b^2 + (6/23*a + 1)*b + 4/23*a - 1))
  38. 38. K/Q K ap = 2 () p X5 X4 + X3 + X2 2X + 1 f = q 1Y n=1 (1 qn )(1 q23n ) = 1X n=1 anqn f(⌧) = ✓A(⌧) 1 + p 5 2 ! ✓B(⌧) 1 p 5 2 ! ✓C(⌧) 2 S1 ✓ 0(47), ✓ 47 ⇤ ◆◆ 1 p 5 2 ! ✓C(⌧) 2 S1 ✓ 0(47), ✓ 47 ⇤ ◆◆ ✓A(⌧) = X m,n2Z qm2 +mn+12n2 ✓B(⌧) = X m,n2Z q3m2 +mn+4n2 ✓C(⌧) = X m,n2Z q2m2 +mn+6n2

×