Facultad de Ingeniería de Sistemas
CURSO
DE
INGENIERÍA ECONÓMICA
Prof. Econ. José Pinto
MODULO I
ASPECTOS GENERALES
• Definición.
• Representación gráfica.
• Principios fundamentales de ingeniería
económica.
• ...
MODULO I
ASPECTOS GENERALES
• Soles corrientes y Soles constantes.
• Liquidez, rentabilidad y riesgo.
• Tipos de evaluació...
INGENIERÍA ECONÓMICA
DEFINICIÓN:
• Conceptos y técnicas matemáticas
aplicadas en el análisis, comparación y
evaluación fin...
REPRESENTACIÓN GRÁFICA
INGRESO (EFECTIVO)
TIEMPO
(PERÍODOS)
EGRESO (EFECTIVO)
1 2 3
n
0
+
-
• PRINCIPIO N°1: DEL VALOR DEL
DINERO EN EL TIEMPO
Un moneda de hoy vale mas que una
moneda de mañana
PRINCIPIOS FUNDAMENT...
PRINCIPIOS FUNDAMENTALES
D D + D
Tiempo
El prestatario después de un plazo pagará una
cantidad de dinero mayor que lo pre...
•Elevación del nivel general de los precios,
ello implica perdida del poder adquisitivo.
Por lo tanto el dinero se desvalo...
1-I-2001 1-I-2002
PRECIO 160$ 200$
Poder de compra 1/160 huevo 1/200 huevo
INFLACIÓN
EL HUEVO
Se pude observar que el pode...
PRINCIPIO N°1 VS. LA INFLACIÓN
Con la tasa de interés el dinero se valoriza, pero
con la inflación se desvaloriza ¿entonce...
•No se pueden aplicar las operaciones
aritméticas con cantidad de dinero ubicadas
en diferentes puntos del tiempo.
•El din...
PRINCIPIOS FUNDAMENTALES
• PRINCIPIO N° 2: DE EQUIVALENCIA
Dos cantidades de dinero ubicadas en
diferentes puntos del tiem...
Q0
Q1 Q2 Q3 Qn
Interés: i
0 1 2 3 n
PRINCIPIOS FUNDAMENTALES
¿Cuándo Q1 + Q2 + Q3 + ... + Qn serán
equivalentes a Q0?
ENUNCIADO SIMPLE:
$100 HOY SON EQUIVALENTES A $120 DENTRO
DE UN AÑO CON RELACIÓNA UNA TASA DEL
20% ANUAL.
=
$100
$120
20%0...
 Las personas y los agentes económicos siempre
buscaran maximizar beneficios y reducir costos para
un nivel de riesgo dad...
Disminuir por ley o por las fuerzas del
mercado el valor de la moneda nacional
frente a una extranjera (divisa).
La deva...
DEVALUACIÓN
Tasa de interés
interna
Tasa de
devaluación
Tasa de
interés externa+
SOLES CORRIENTES Y SOLES
CONSTANTES
 En soles constantes hacemos
abstracción de la inflación y la
devaluación.
 En soles...
LIQUIDEZ, RENTABILIDAD Y
RIESGO
 Liquidez: disponibilidad de dinero,
capacidad de pagar deudas a corto plazo.
 Rentabili...
LIQUIDEZ, RENTABILIDAD Y
RIESGO
Ilustración:
 Liquidez: la leche (diaria) de la vaca
 Rentabilidad: La cría de la vaca.
...
TIPOS DE EVALUACIÓN DE
PROYECTOS
1. Evaluación financiera: es una relación entre los
ingresos y los egresos de efectivo pa...
TASA DE INTERÉS
INTERÉS:
 Cantidad de dinero que excede a lo prestado.
 Es el costo de un préstamo.
Interés = cantidad p...
TASA DE INTERÉS
Si nos referimos a un periodo tendremos
la siguiente fórmula:
P: préstamo o valor presente al principio
de...
TASA DE INTERÉS
Ejemplo: se invirtieron $10´000.000 el 17 de
mayo y se retiro un total de $10´600.000
exactamente un año d...
INTERÉS SIMPLE E INTERÉS
COMPUESTO
INTERÉS SIMPLE:
Los intereses no se capitalizan. Se calcula con
base a la inversión o p...
INTERÉS SIMPLE E INTERÉS
COMPUESTO
Ejemplo: se prestan $1.000 al 14 % anual.
¿Cuánto dinero se deberá al cabo de tres años...
INTERÉS SIMPLE E INTERÉS
COMPUESTO
Fin de
año
Cantidad
prestada
Interés Cantidad adeudada
Cantidad
pagada
0 1.000
1 ... 14...
Fin de
año
Cantidad
prestada
Interés Cantidad adeudada
Cantidad
pagada
0 1.000
1 ... 140,00 1.000 + 140 = 1.140 0
2 ... 15...
Upcoming SlideShare
Loading in …5
×

Unmsm fisi-01-ingeniería económica - introducción

626 views

Published on

0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
626
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
24
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Unmsm fisi-01-ingeniería económica - introducción

  1. 1. Facultad de Ingeniería de Sistemas CURSO DE INGENIERÍA ECONÓMICA Prof. Econ. José Pinto
  2. 2. MODULO I ASPECTOS GENERALES • Definición. • Representación gráfica. • Principios fundamentales de ingeniería económica. • Inflación. • Devaluación
  3. 3. MODULO I ASPECTOS GENERALES • Soles corrientes y Soles constantes. • Liquidez, rentabilidad y riesgo. • Tipos de evaluación de proyectos. • Tasa de interés • Interés simple e interés compuesto
  4. 4. INGENIERÍA ECONÓMICA DEFINICIÓN: • Conceptos y técnicas matemáticas aplicadas en el análisis, comparación y evaluación financiera de alternativas relativas a proyectos de ingeniería generados por sistemas, productos, recursos, inversiones y equipos. • Es una herramienta de decisión por medio de la cual se podrá escoger una alternativa como el más económica
  5. 5. REPRESENTACIÓN GRÁFICA INGRESO (EFECTIVO) TIEMPO (PERÍODOS) EGRESO (EFECTIVO) 1 2 3 n 0 + -
  6. 6. • PRINCIPIO N°1: DEL VALOR DEL DINERO EN EL TIEMPO Un moneda de hoy vale mas que una moneda de mañana PRINCIPIOS FUNDAMENTALES El dinero se valoriza a través del tiempo a una tasa de interés.
  7. 7. PRINCIPIOS FUNDAMENTALES D D + D Tiempo El prestatario después de un plazo pagará una cantidad de dinero mayor que lo prestado. Ello implica que el dinero del prestamista se incremento en una cantidad que llamaremos intereses (D). Por esto decimos que el dinero se valoriza a través del tiempo. ¿Pero que pasa cuando simultáneamente hay inflación?
  8. 8. •Elevación del nivel general de los precios, ello implica perdida del poder adquisitivo. Por lo tanto el dinero se desvaloriza debido a la inflación.  Tasa de inflación: porcentaje promedio del alza de precios en un período. INFLACIÓN
  9. 9. 1-I-2001 1-I-2002 PRECIO 160$ 200$ Poder de compra 1/160 huevo 1/200 huevo INFLACIÓN EL HUEVO Se pude observar que el poder de compra disminuye de un año a otro debido a la inflación ( desvalorización del dinero).
  10. 10. PRINCIPIO N°1 VS. LA INFLACIÓN Con la tasa de interés el dinero se valoriza, pero con la inflación se desvaloriza ¿entonces en que quedamos? Si partimos del supuesto que la tasa de interés es mayor que la tasa de inflación: Valoración a una tasa de interés Desvalorización por inflación Valoración real Con o sin inflación, el dinero se valoriza a través del tiempo.
  11. 11. •No se pueden aplicar las operaciones aritméticas con cantidad de dinero ubicadas en diferentes puntos del tiempo. •El dinero se valoriza si aumenta su poder de compra. •Como la tasa de interés es mayor que la tasa de inflación: el dinero siempre se valoriza (“y la excepción confirma la regla”) CONSECUENCIAS DEL PRINCIPIO Nº1
  12. 12. PRINCIPIOS FUNDAMENTALES • PRINCIPIO N° 2: DE EQUIVALENCIA Dos cantidades de dinero ubicadas en diferentes puntos del tiempo son equivalentes si al trasladarlas al mismo punto, se hacen iguales en magnitud. $Q0 $Q1 Interés: i0 1
  13. 13. Q0 Q1 Q2 Q3 Qn Interés: i 0 1 2 3 n PRINCIPIOS FUNDAMENTALES ¿Cuándo Q1 + Q2 + Q3 + ... + Qn serán equivalentes a Q0?
  14. 14. ENUNCIADO SIMPLE: $100 HOY SON EQUIVALENTES A $120 DENTRO DE UN AÑO CON RELACIÓNA UNA TASA DEL 20% ANUAL. = $100 $120 20%0 1
  15. 15.  Las personas y los agentes económicos siempre buscaran maximizar beneficios y reducir costos para un nivel de riesgo dado  Si se tiene disponible una cantidad de dinero, siempre se encontrará en el mercado una tasa de interés mayor que la inflación (tasa real positiva). PRINCIPIOS FUNDAMENTALES • PRINCIPIO No3: LA RACIONALIDAD FINANCIERA DE LOS AGENTES
  16. 16. Disminuir por ley o por las fuerzas del mercado el valor de la moneda nacional frente a una extranjera (divisa). La devaluación estimula las exportaciones y desestimula las importaciones ¿por qué? Al devaluarse una moneda, pierde poder de compra en el mercado internacional. DEVALUACIÓN
  17. 17. DEVALUACIÓN Tasa de interés interna Tasa de devaluación Tasa de interés externa+
  18. 18. SOLES CORRIENTES Y SOLES CONSTANTES  En soles constantes hacemos abstracción de la inflación y la devaluación.  En soles corrientes trabajamos con los precios del mercado.
  19. 19. LIQUIDEZ, RENTABILIDAD Y RIESGO  Liquidez: disponibilidad de dinero, capacidad de pagar deudas a corto plazo.  Rentabilidad: grado de valorización del dinero o de una inversión a lo largo del tiempo.  Riesgo: posibilidad que se de o no un pago en el momento y en la cantidad estipulada.
  20. 20. LIQUIDEZ, RENTABILIDAD Y RIESGO Ilustración:  Liquidez: la leche (diaria) de la vaca  Rentabilidad: La cría de la vaca.  Riesgo: que se roben ó se muera la vaca.
  21. 21. TIPOS DE EVALUACIÓN DE PROYECTOS 1. Evaluación financiera: es una relación entre los ingresos y los egresos de efectivo para el dueño del proyecto o empresario. 2. Evaluación económica: es el efecto del proyecto en el país o la región. Por ejemplo: gasto o ahorro de divisas, empleo, impacto ambiental. 3. Evaluación social: Impacto en grupos o clases sociales. Efecto del proyecto en la distribución de la riqueza y de los ingresos.
  22. 22. TASA DE INTERÉS INTERÉS:  Cantidad de dinero que excede a lo prestado.  Es el costo de un préstamo. Interés = cantidad pagada - cantidad prestada TASA DE INTERÉS: Porcentaje que se cobra por una cantidad de dinero prestada durante un periodo específico.
  23. 23. TASA DE INTERÉS Si nos referimos a un periodo tendremos la siguiente fórmula: P: préstamo o valor presente al principio del periodo. F: pago o valor futuro al final del periodo. F - P: intereses del periodo. i: tasa efectiva de interés por periodo (vencido) F - P P x 100%i =
  24. 24. TASA DE INTERÉS Ejemplo: se invirtieron $10´000.000 el 17 de mayo y se retiro un total de $10´600.000 exactamente un año después. Calcular el interés ganado sobre la inversión inicial y la tasa de interés ganado sobre la inversión. Solución: interés = 10´600.000 - 10´000.000 = $ 600.000 x 100% = 6 % anual600.000 por año 10´000.000 tasa de interés =
  25. 25. INTERÉS SIMPLE E INTERÉS COMPUESTO INTERÉS SIMPLE: Los intereses no se capitalizan. Se calcula con base a la inversión o préstamo original. Interés = capital x n°de periodos x tasa de interés INTERÉS COMPUESTO: Se calcula con base en el saldo al principio del periodo. Los intereses generan intereses, es decir, se capitalizan.
  26. 26. INTERÉS SIMPLE E INTERÉS COMPUESTO Ejemplo: se prestan $1.000 al 14 % anual. ¿Cuánto dinero se deberá al cabo de tres años si se utiliza interés simple y cuánto si se utiliza interés compuesto? Solución:  Interés simple interés por año = 1.000 x 0.14 = $ 140 total de intereses = 1.000 x 3 x 0.14 = $ 420
  27. 27. INTERÉS SIMPLE E INTERÉS COMPUESTO Fin de año Cantidad prestada Interés Cantidad adeudada Cantidad pagada 0 1.000 1 ... 140 1.000 + 140 = 1.140 0 2 ... 140 1.140 + 140 = 1.280 0 3 ... 140 1.280 + 140 = 1.420 1.420  Interés simple
  28. 28. Fin de año Cantidad prestada Interés Cantidad adeudada Cantidad pagada 0 1.000 1 ... 140,00 1.000 + 140 = 1.140 0 2 ... 159,60 1.140 + 159,6 = 1.299,6 0 3 ... 181,94 1.299,6 + 181,94 = 1.481,54 1.481,54 INTERÉS SIMPLE E INTERÉS COMPUESTO  Interés compuesto

×