This talk, given by Maryann Xue and Julian Hyde at Hadoop Summit, San Jose on June 30th, 2016, describes how we re-engineered Apache Phoenix with a cost-based optimizer based on Apache Calcite. Apache Phoenix has rapidly become a workhorse in many organizations, providing a convenient standard SQL interface to HBase suitable for a wide variety of workloads from transactions to ETL and analytics. But Phoenix's initial query optimizer was based on static optimization procedures and thus could not choose between several potential plans or indices based on cost metrics. We describe how we rebuilt Phoenix's parser and query optimizer using the Calcite framework, improving Phoenix's performance and SQL compliance. The new architecture uses relational algebra as an intermediate language, and this enables you to switch in other engines, especially those also based on Calcite. As an example of this, we demonstrate querying a Phoenix database via Apache Drill.