Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Keynote icdcm Josep Guerrero

9,024 views

Published on

Keynote icdcm Josep Guerrero

Published in: Environment
  • Be the first to comment

Keynote icdcm Josep Guerrero

  1. 1. Advanced Control Architectures of DC Microgrids Josep M. Guerrero, Prof. in microgrid, IEEE Fellow joz@et.aau.dk
  2. 2. 2 MicroGrid Research Programme Areas AC MicroGrids DC MicroGrids  Modeling  Control & Operation  Energy Storage  Protection  Power Quality  Standard-based ICT  Networked Control  EMS & Optimization  Multi-Agents MICROGRID RESEARCH PROGRAMME
  3. 3. 3
  4. 4. Every setup is able to emulate a multi-converter low-voltage Microgrid, local and energy management control programmed in dSPACE real-time control platforms. 4 444 4
  5. 5. 5 555 5
  6. 6. 6 6
  7. 7. 7
  8. 8. 8 888 8
  9. 9.  Kamstrup Omnia scheme in iMGlab
  10. 10. 10 Load Main Grid PV . . . to Workstation 3-6 Power flow Load Main Grid PV WT Local distribution network L
  11. 11. 11 11
  12. 12. Main Utility Grid PCC Household appliances and electronics The concept of Microgrids Grid connected mode Islanded mode 12
  13. 13. Setup 1 Setup 2Setup 3 Setup 5 Setup 6Setup 7 EMS/MGCC
  14. 14. • Remote telecom applications • Coupled renewable systems • DC powered homes • Fast HEV charging stations Basic control Basic control Configuration 14
  15. 15. AC Low voltage MicroGrid coordinated control: AC Microgrids: Bus frequency signaling DC Microgrids: Bus voltage signaling 15
  16. 16. 16 16
  17. 17. 1717 17
  18. 18. 181818 18
  19. 19. Inner loop: ESS:Voltage Controlled Mode RES:Current Controlled Mode Primary loop: ESS:Bus signaling control RES:Virtual inertia control  PWMPIPI Vref Vdc  Vdc Iref Vin L C  PWMPI Vdc  Vdc Iref Vin L C PRES PMPP Vdc V* dc Vmeas DC Bus ESS Unit RES Unit LPFPI Vsec * Secondary Coordinated Control Virtual Inertia Control d d iL iL 2measV  Vdc SoC  1SoCdV Table I. V* dc dV Innerloop control DVL Innerloop control dV dV LOAD1 Relay Demand Side Control Table II. LOAD3 Relay ON/OFF LOAD2 RelayON/OFF DVH LPF m n CommunicationLink Low SoC Control Bus-signaling Control High SoC Control Demand Side Control Table II. 19 Coordinated control when high SoC
  20. 20. 07-07-2015 20 07-07-2015 20 20 Voltage regulator - Centralized for each dc MG - Distributed over the MG cluster - Regulates the voltage inside each MG to the nominal value when they are not connected. - Maintains the bus voltages within an acceptable range when they are connected. 1d iv LBC MG-ibus ji DC source m + DC-DC Primary control j ... ... iv miiv DC source j + DC-DC Power flow controller (DPFC)  MGv j m jj PI controller iSOC 2d iv ( )iG s avg iv Voltage controller (DVSC) Proposed distributed control avg jv jSOC FromneighborMGsToneighborMGs avg iv,iSOC ijb ija Primary control m iv ( )iF s Dynamic consensus protocol PI controller SOC estimator d iSOC Cybernetwork Power flow regulator - Using the distributed voltage regulator power flow control is achieved. - Regulates the power flow between dc MGs when they are connected. - Power flow is regulated according to SOC of batteries inside the MGs. Power flow regulator - Using the distributed voltage regulator power flow control is achieved. - Regulates the power flow between dc MGs when they are connected. - Power flow is regulated according to SOC of batteries inside the MGs.
  21. 21. Distributed Hierarchical Control 21
  22. 22. Distributed Hierarchical Control 22
  23. 23. DCA based distributed optimization for paralleled DC-DC Converters 23
  24. 24. 24 24
  25. 25. 25 25
  26. 26. DCA based distributed optimization for paralleled DC-DC Converters 26
  27. 27. DCA based distributed optimization for paralleled DC-DC Converters 27
  28. 28. DCA based DC MG Modeling 40 1 2 3 5 6 8 0 0.02 0.04 0.06 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 Time (s) Converter 1~6 Inductor Current PCC Voltage Comm Topology 100 ; 0.3; caT ms    (a) System dynamic under LINE shaped network 7 0.08 40 1 2 3 5 6 87 4 51 3 62 2 36 5 4 1 2 36 5 4 1LINE RING CROSS FULL 40 1 2 3 5 6 0 0.02 0.04 0.06 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 Time (s) Comm Topology (b) System dynamic under RING shaped network 40 1 2 3 5 6 40 1 2 3 5 6 0 0.02 0.04 0.06 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 Time (s) Comm Topology (c) System dynamic under CROSS shaped network 40 1 2 3 5 6 40 1 2 3 5 6 0 0.02 0.04 0.06 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 Time (s) Comm Topology (d) System dynamic under FULL shaped network 40 1 2 3 5 6 2 36 5 4 1 Converter 1~6 Inductor Current PCC Voltage Converter 1~6 Inductor Current PCC Voltage Converter 1~6 Inductor Current PCC Voltage 100 ; 0.29; caT ms    100 ; 0.22; caT ms    100 ; 0.17; caT ms    28
  29. 29. Hierarchical Control of DC Microgrids 29 29
  30. 30. Danish 30http://www.residentialvdc.et.aau.dk
  31. 31. 31 REbus™ is an open standard for DC electricity distribution. REbus™ microgrid is a flexible energy network that lets you make and use clean renewable energy for home, business, school, or neighbourhood. (400V) Comercial DC Microgrid 31 31http://www.residentialvdc.et.aau.dk
  32. 32. 07.07.2015 Industrial/PhD Microgrids Course, Aalborg University 32 Primary Source Units (PSU) Load Units (LU) Powerline Communication • Robust narrowband FSK modulation • Programmable transmission data rate up to 30kbps • Programmable communication frequency from 50kHz to 500kHz • Complete Media Access Control (MAC) logic • CSMA/CD type collision detection and resolution • Programmable automatic preamble generation • Programmable automatic packet-priority management with four levels • Error detection (CRC 16) REbus™ Comercial DC microgrid 32 32http://www.residentialvdc.et.aau.dk
  33. 33. 3333 333333 33
  34. 34. 34  Phase I: Design, modelling and control.  Phase II: Coordination control schemes between microgrid elements, including communication systems and energy management systems for DC microgrids.  Phase III: Creation of two Living Labs as a user-centred research concept, to test innovation systems and elements that can conform a DC microgrid for different applications. • Home DC Microgrid Living Lab, at AAU to research and test DC distribution for 1-2 family houses • 工业微网设计 Industrial DC Microgrid Living Lab, At North China Electrical Power University (China), for research, demo and test of energy solutions for commercial buildings.
  35. 35. 35 Industrial DC Microgrid Living Laboratory, (NCEPU)  Phase I: DC MG Topology Design, Control, Simulation  Phase II:DC MG Faults Analysis and Protection  Phase III: Communication for DC MG
  36. 36. Communicationnetwork 380 Vdc 48 Vdc Air conditioner Ceiling fan Refrigerators Electric Vehicles Flywheels Chargers Li-on Batteries To another DC bus 24 Vdc 48 Vdc Washing machine Led Lighting Phase 1. Phase 2. Phase 3 36 36
  37. 37. 37 373737 37
  38. 38. 38 383838 38
  39. 39. 3939 393939 39
  40. 40. 40 EV charging stations • Nisan Leaf fast recharge profile • (Commercially available CHAdeMO compatible charger manufactured by ABB): Fast DC charging • Most attractive from the vehicle owner • point of view (around 30 minutes to recharge completely depleted batteries) • Appropriate for public charging stations • Distribution grid may experience problems 40
  41. 41. 41
  42. 42. 42
  43. 43. 4343 Stop charging
  44. 44. 44 44 Contact: Josep M. Guerrero joz@et.aau.dk

×