SlideShare a Scribd company logo

ようこそAAへ

J
jsoarai

ようこそ、アルコホーリクス・アノニマス(A.A.)のミーティングへいらっしゃいました。心から歓迎します。まずは気を楽にしてください。私たちはみな、飲酒の問題から解放され、飲まないで生きていきたいと願っています。 私たちもあなたと同じようにして、数カ月前、数年前、あるいはもっと前にAAにたどりつきました。そして今は、飲まないで生きることを楽しんでいます。 もし、飲酒をコントロールできないようでしたら、AAを試してみてください。AAの回復のプログラムと、私たち一人ひとりの経験が役に立つことでしょう。

1 of 21
Download to read offline
ようこそAAへ
ようこそAAへ
ようこそAAへ
ようこそAAへ
ようこそAAへ
ようこそAAへ
ようこそAAへ
ようこそAAへ
ようこそAAへ
ようこそAAへ
ようこそAAへ
ようこそAAへ
ようこそAAへ
ようこそAAへ
ようこそAAへ
ようこそAAへ
ようこそAAへ
ようこそAAへ
ようこそAAへ
ようこそAAへ
ようこそAAへ

Recommended

2012-1110「マルチレベルモデルのはなし」(censored)
2012-1110「マルチレベルモデルのはなし」(censored)2012-1110「マルチレベルモデルのはなし」(censored)
2012-1110「マルチレベルモデルのはなし」(censored)Mizumoto Atsushi
 
マルチレベルモデル講習会 理論編
マルチレベルモデル講習会 理論編マルチレベルモデル講習会 理論編
マルチレベルモデル講習会 理論編Hiroshi Shimizu
 
媒介分析について
媒介分析について媒介分析について
媒介分析についてHiroshi Shimizu
 
LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~
LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~
LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~RyuichiKanoh
 
変数同士の関連_MIC
変数同士の関連_MIC変数同士の関連_MIC
変数同士の関連_MICShushi Namba
 
Sift特徴量について
Sift特徴量についてSift特徴量について
Sift特徴量についてla_flance
 
混合モデルを使って反復測定分散分析をする
混合モデルを使って反復測定分散分析をする混合モデルを使って反復測定分散分析をする
混合モデルを使って反復測定分散分析をするMasaru Tokuoka
 

More Related Content

What's hot

Multi-agent actor-critic for mixed cooperative-competitive environmentsの紹介
Multi-agent actor-critic for mixed cooperative-competitive environmentsの紹介Multi-agent actor-critic for mixed cooperative-competitive environmentsの紹介
Multi-agent actor-critic for mixed cooperative-competitive environmentsの紹介Yusuke Nakata
 
一般化線形混合モデル入門の入門
一般化線形混合モデル入門の入門一般化線形混合モデル入門の入門
一般化線形混合モデル入門の入門Yu Tamura
 
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​SSII
 
機械学習を用いた異常検知入門
機械学習を用いた異常検知入門機械学習を用いた異常検知入門
機械学習を用いた異常検知入門michiaki ito
 
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)RyuichiKanoh
 
先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15Yoichi Ochiai
 
時系列解析の使い方 - TokyoWebMining #17
時系列解析の使い方 - TokyoWebMining #17時系列解析の使い方 - TokyoWebMining #17
時系列解析の使い方 - TokyoWebMining #17horihorio
 
RでGPU使ってみた
RでGPU使ってみたRでGPU使ってみた
RでGPU使ってみたKazuya Wada
 
5分で分かる自己組織化マップ
5分で分かる自己組織化マップ5分で分かる自己組織化マップ
5分で分かる自己組織化マップDaisuke Takai
 
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII
 
SVMについて
SVMについてSVMについて
SVMについてmknh1122
 
最適輸送の解き方
最適輸送の解き方最適輸送の解き方
最適輸送の解き方joisino
 
(実験心理学徒だけど)一般化線形混合モデルを使ってみた
(実験心理学徒だけど)一般化線形混合モデルを使ってみた(実験心理学徒だけど)一般化線形混合モデルを使ってみた
(実験心理学徒だけど)一般化線形混合モデルを使ってみたTakashi Yamane
 
心理学におけるベイズ統計の流行を整理する
心理学におけるベイズ統計の流行を整理する心理学におけるベイズ統計の流行を整理する
心理学におけるベイズ統計の流行を整理するHiroshi Shimizu
 
画像認識の初歩、SIFT,SURF特徴量
画像認識の初歩、SIFT,SURF特徴量画像認識の初歩、SIFT,SURF特徴量
画像認識の初歩、SIFT,SURF特徴量takaya imai
 
2 6.ゼロ切断・過剰モデル
2 6.ゼロ切断・過剰モデル2 6.ゼロ切断・過剰モデル
2 6.ゼロ切断・過剰モデルlogics-of-blue
 
因果関係を時系列変化で分析
因果関係を時系列変化で分析因果関係を時系列変化で分析
因果関係を時系列変化で分析DaikiNagamine
 
Uplift Modelling 入門(1)
Uplift Modelling 入門(1)Uplift Modelling 入門(1)
Uplift Modelling 入門(1)Yohei Sato
 
一般線形モデル
一般線形モデル一般線形モデル
一般線形モデルMatsuiRyo
 

What's hot (20)

Multi-agent actor-critic for mixed cooperative-competitive environmentsの紹介
Multi-agent actor-critic for mixed cooperative-competitive environmentsの紹介Multi-agent actor-critic for mixed cooperative-competitive environmentsの紹介
Multi-agent actor-critic for mixed cooperative-competitive environmentsの紹介
 
一般化線形混合モデル入門の入門
一般化線形混合モデル入門の入門一般化線形混合モデル入門の入門
一般化線形混合モデル入門の入門
 
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​
SSII2020TS: 機械学習モデルの判断根拠の説明​ 〜 Explainable AI 研究の近年の展開 〜​
 
機械学習を用いた異常検知入門
機械学習を用いた異常検知入門機械学習を用いた異常検知入門
機械学習を用いた異常検知入門
 
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
 
研究効率化Tips Ver.2
研究効率化Tips Ver.2研究効率化Tips Ver.2
研究効率化Tips Ver.2
 
先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15
 
時系列解析の使い方 - TokyoWebMining #17
時系列解析の使い方 - TokyoWebMining #17時系列解析の使い方 - TokyoWebMining #17
時系列解析の使い方 - TokyoWebMining #17
 
RでGPU使ってみた
RでGPU使ってみたRでGPU使ってみた
RでGPU使ってみた
 
5分で分かる自己組織化マップ
5分で分かる自己組織化マップ5分で分かる自己組織化マップ
5分で分かる自己組織化マップ
 
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
 
SVMについて
SVMについてSVMについて
SVMについて
 
最適輸送の解き方
最適輸送の解き方最適輸送の解き方
最適輸送の解き方
 
(実験心理学徒だけど)一般化線形混合モデルを使ってみた
(実験心理学徒だけど)一般化線形混合モデルを使ってみた(実験心理学徒だけど)一般化線形混合モデルを使ってみた
(実験心理学徒だけど)一般化線形混合モデルを使ってみた
 
心理学におけるベイズ統計の流行を整理する
心理学におけるベイズ統計の流行を整理する心理学におけるベイズ統計の流行を整理する
心理学におけるベイズ統計の流行を整理する
 
画像認識の初歩、SIFT,SURF特徴量
画像認識の初歩、SIFT,SURF特徴量画像認識の初歩、SIFT,SURF特徴量
画像認識の初歩、SIFT,SURF特徴量
 
2 6.ゼロ切断・過剰モデル
2 6.ゼロ切断・過剰モデル2 6.ゼロ切断・過剰モデル
2 6.ゼロ切断・過剰モデル
 
因果関係を時系列変化で分析
因果関係を時系列変化で分析因果関係を時系列変化で分析
因果関係を時系列変化で分析
 
Uplift Modelling 入門(1)
Uplift Modelling 入門(1)Uplift Modelling 入門(1)
Uplift Modelling 入門(1)
 
一般線形モデル
一般線形モデル一般線形モデル
一般線形モデル