SlideShare a Scribd company logo
Virtual Machine Construction
for Dummies
Jim Huang <jserv@0xlab.org>
Rifur Ni <rifurdoma@gmail.com>
Xatier Lee <xatierlike@gmail.com>
Jan 29, 2013 ! TOSSUG / March 7, 2013 ! 新竹碼農
Rights to copy
Attribution – ShareAlike 3.0
You are free
to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work
Under the following conditions
Attribution. You must give the original author credit.
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.
For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions can be waived if you get permission from the copyright holder.
Your fair use and other rights are in no way affected by the above.
License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode
© Copyright 2015 0xlab
contact@0xlab.org
Corrections, suggestions, contributions and translations
are welcome!
Latest update: Feb 21, 2015
Goals of this Presentation
• Build a full-functioned virtual machine from scratch
– The full source code is inside the slides.
• Basic concepts about interpreter, optimizations
techniques, language specialization, and platform
specific tweaks.
• Brainfuck is selected as the primary programming
language because
– it's a very simple turing-complete programming
language.
– it's easier to write its compiler than its interpreter.
– it's easier to write its interpreter than its real
programs.
Brainfuck Programming Language
• created in 1993 by Urban Müller
• Only 8 instructions
– Müller's Amiga compiler was 240 bytes in size
– x86/Linux by Brian Raiter had 171 Bytes!
+++[>+++++[>+++++>+++++>++++>++
++>+<<<<<-]>++++>+++>+++>+<<<<<
-]>>.>.>+.>.>-----.
Learn such a stupid language! Why?
• Understand how basic a Turing-complete
programming language can be.
– A common argument when programmers compare
languages is “well they’re all Turing-complete”,
meaning that anything you can do in one language
you can do in another.
• Once you’ve learnt brainfuck, you’ll understand just
how difficult it can be to use a Turing-complete
language, and how that argument holds no water.
Source: http://skilldrick.co.uk/2011/02/why-you-should-learn-brainfuck-or-learn-you-a-brainfuck-
for-great-good/
Brainfuck: Turing Complete
Source:
http://jonfwilkins.blogspot.tw/2011/06/happy-99th-birthday-alan-turing.html
http://bugrammer.g.hatena.ne.jp/nisemono_san
/20111114/1321218802
Brainfuck Instructions
(mapped to C language)
Increment the byte value at the data pointer.
Decrement the data pointer to point to the previous cell.
Increment the data pointer to point to the next cell.
Decrement the byte value at the data pointer.
Output the byte value at the data pointer.
Input one byte and store its value at the data pointer.
If the byte value at the data pointer is zero, jump to the
instruction following the matching ] bracket. Otherwise,
continue execution.
Unconditionally jump back to the
matching [ bracket.
Writing a Brainfuck compiler is Easy!
#!/usr/bin/awk -f
BEGIN {
print "int main() {";
print " int c = 0;"; print " static int b[30000];n";
}
{
gsub(/]/, " }n");
gsub(/[/, " while(b[c] != 0) {n");
gsub(/+/, " ++b[c];n");
gsub(/-/, " --b[c];n");
gsub(/>/, " ++c;n");
gsub(/</, " --c;n");
gsub(/./, " putchar(b[c]);n");
gsub(/,/, " b[c] = getchar();n");
print $0
}
END {
print "n return 0;";
print "}";
}
Brainfuck interpreter in portable C (1/3)
#include <stdio.h>
#include <stdlib.h>
int p, r, q;
char a[5000], f[5000], b, o, *s = f;
void interpret(char *c)
{
char *d;
r++;
while (*c) {
switch (o = 1, *c++) {
case '<': p--; break;
case '>': p++; break;
case '+': a[p]++; break;
case '-': a[p]--; break;
Brainfuck interpreter in portable C (2/3)
case '.':
putchar(a[p]);
fflush(stdout); break;
case ',':
a[p] = getchar();
fflush(stdout); break;
case '[':
for (b = 1, d = c; b && *c; c++)
b += *c == '[', b -= *c == ']';
if (!b) {
c[-1] = 0;
while (a[p]) interpret(d);
c[-1] = ']'; break;
}
case ']':
puts("Unblanced brackets"),exit(0);
Brainfuck interpreter in portable C (3/3)
default: o = 0;
}
if (p < 0 || p > 100)
puts("Range error"), exit(0);
}
r--;
}
int main(int argc, char *argv[])
{
FILE *z; q = argc;
if ((z = fopen(argv[1], "r"))) {
while ((b = getc(z)) > 0) *s++ = b;
*s = 0; interpret(f);
}
return 0;
}
Self-Interpreter can be short!
Writen by Oleg Mazonka & Daniel B. Cristofani
21 November 2003
>>>+[[-]>>[-]++>+>+++++++[<++++>>++<-]++>>+>+>+++++[>
++>++++++<<-]+>>>,<++[[>[->>]<[>>]<<-]<[<]<+>>[>]>[<+
>-[[<+>-]>]<[[[-]<]++<-[<+++++++++>[<->-]>>]>>]]<<]<]
<
[[<]>[[>]>>[>>]+[<<]<[<]<+>>-]>[>]+[->>]<<<<[[<<]<[<]
+<<[+>+<<-[>-->+<<-[>+<[>>+<<-]]]>[<+>-]<]++>>-->[>]>
>[>>]]<<[>>+<[[<]<]>[[<<]<[<]+[-<+>>-[<<+>++>-[<->[<<
+>>-]]]<[>+<-]>]>[>]>]>[>>]>>]<<[>>+>>+>>]<<[->>>>>>>
>]<<[>.>>>>>>>]<<[>->>>>>]<<[>,>>>]<<[>+>]<<[+<<]<]
Turing Complete (again)
• In fact, Brianfuck has 6 opcode + Input/Output
commands
• gray area for I/O (implementation dependent)
– EOF
– tape length
– cell type
– newlines
• That is enough to program!
• Extension: self-modifying Brainfuck
https://soulsphere.org/hacks/smbf/
Statement: while
• Implementing a while statement is easy, because the
Brainfuck [ .. ] statement is a while loop.
• Thus, while (x) { <foobar> } becomes
(move pointer to a)
[
(foobar)
(move pointer to a)
]
Statement: x=y
• Implementing assignment (copy) instructions is
complex.
• Straightforward way of doing that resets y to zero:
(move pointer to y) [ ­
(move pointer to x) +
(move pointer to y) ]
• A temporary variable t is needed:
(move pointer to y) [ ­
(move pointer to t) +
(move pointer to y) ]
(move pointer to t) [ ­
(move pointer to x) +
(move pointer to y) +
(move pointer to t) ]
Statement: if
• The if statement is like a while-loop, but it should run
its block only once. Again, a temporary variable is
needed to implement if (x) { <foobar> }:
(move pointer to x) [ ­
(move pointer to t) +
(move pointer to x) ]
(move pointer to t) [
    [ ­
    (move pointer to x) +
    (move pointer to t) ]
    (foobar)
(move pointer to t) ]
Example: clean
[-]
while(cell[0]) {
--cell[0];
}
Example: cat
+ [ , . ]
cell[0] ← 1
while(cell[0]) {
Read-in a character
print it
}
Example: if-endif
$f +
$A + [
$B + /* $B = $B + 1 */
$f [-] /* end if */
]
$A = 1;
if($A) {
$B = $B + 1;
}
Example: if-else-endif
$f +
$A + [
$B + /* $B = $B + 1 */
$f [-] /* end if */
] $f [
$B - /* $B = $B - 1 */
$f [-] /* end if */
]
$A = 1;
if($A) { ++$B; } else { --$B; }
Example: Multiply (6x7)
+++ +++
[ > +++ +++ +
< - ]
cell[0] ← 6
while(cell[0]) {
cell[1] += 7;
--cell[0];
}
Example: Division (12/4)
++++++++++++ // Loop 12 times
[
>+ // Increment second cell
<---- // Subtract 4 from first cell
]
>. // Display second cell's value
Example: Hello World!
++++++++[>+++++++++<-]>. // 8 x 9 = 72 (H)
<+++++[>++++++<-]>-. // 72 + (6 x 5) - 1 = 101 (e)
+++++++.. // 101 + 7 = 108 (l)
+++. // 108 + 3 = 111 (o)
<++++++++[>>++++<<-]>>. // 8 x 4 = 32 (SPACE)
<<++++[>------<-]>. // 111 - 24 = 87 (W)
<++++[>++++++<-]>. // 87 + 24 = 111 (o)
+++. // 111 + 3 = 114 (r)
------. // 114 - 6 = 108 (l)
--------. // 108 - 8 = 100 (d)
>+. // 32 + 1 = 33 (!)
Example: Hello World!
0 0
72 0
p
...a: 0 0 9
72 0 H
101 0 e
108 0 ll
111 0 o
0 0
a[0] a[1]
111 0
87 0
114 0
108 0
100 0
33 0
10 0
32 0
W
o
r
l
d
n
!
>+++++++++[<++++++++>-]<.>+++++++[<++++>-]<+.
+++++++..+++.[-]>++++++++[<++++>-]<.
>+++++++++++[<+++++>-]<.>++++++++[<+++>-]<.
+++.------.--------.[-]>++++++++[<++++>-]<+.
[-]++++++++++.
Example: Bubble Sort
>>>>>,.[>>>,.]
<<<
[<<<
[>>>
[-<<<-<+>[>]>>]
<<<[<]>>
[>>>+<<<-]<
[>+>>>+<<<<-]
<<]
>>>[.[-]]
>>>[>>>]<<<]
Example: Bubble Sort
>>>>>,.[>>>,.]
<<<
[<<<
[>>>
[-<<<-<+>[>]>>]
<<<[<]>>
[>>>+<<<-]<
[>+>>>+<<<<-]
<<]
>>>[.[-]]
>>>[>>>]<<<]
Idea: if(b>a): swap(a, b)
Operation: decrement $a and
$b. Then, store the smaller one
into $t
Example: Bubble Sort
>>>>>,.[>>>,.]
<<<
[<<<
[>>>
[-<<<-<+>[>]>>]
<<<[<]>>
[>>>+<<<-]<
[>+>>>+<<<<-]
<<]
>>>[.[-]]
>>>[>>>]<<<]
Idea: if(a>b): swap(a, b)
Operation: when b > a, assign
the value of $b to $a
Example: Bubble Sort
>>>>>,.[>>>,.]
<<<
[<<<
[>>>
[-<<<-<+>[>]>>]
<<<[<]>>
[>>>+<<<-]<
[>+>>>+<<<<-]
<<]
>>>[.[-]]
>>>[>>>]<<<]
Idea: if(b>a): swap(a, b)
Example: Bubble Sort
>>>>>,.[>>>,.]
<<<
[<<<
[>>>
[-<<<-<+>[>]>>]
<<<[<]>>
[>>>+<<<-]<
[>+>>>+<<<<-]
<<]
>>>[.[-]]
>>>[>>>]<<<]
Example: Bubble Sort
>>>>>,.[>>>,.]
<<<
[<<<
[>>>
[-<<<-<+>[>]>>]
<<<[<]>>
[>>>+<<<-]<
[>+>>>+<<<<-]
<<]
>>>[.[-]]
>>>[>>>]<<<]
Online interpreter: http://work.damow.net/random/bf-turing/
Brainfuck Toolchain
:: interpreter, translator, virtual machine, nested runtime ::
Nested Interpreting
• Translation:
– BF extensions → Brainfuck
– Other languages → Brainfuck
• Interpreter written in Brainfuck runs on BF VM
DEF
def Copy(s, d, t) {
s [ d+ t+ s- ]
t [ s+ t- ]
}
END
MAIN
$100=10 $200=0 $300=0
Copy($100, $200, $300)
#define Copy(argc, s, d, t) 
s[d+t+s-] t[s+d+t-]
$100 =10 $200 =0 $300 =0 Copy(3,
$100, $200, $300)
$100 =10 $200 =0 $300 =0
$100 [ $200+ $300+ $100- ]
$300 [ $100+ $200+ $300- ]
Brainfuck translator
(use BF as the backend)
• Translate C-like language to Brainfuck
– bfc [C] → bfa [Assembly] → bf [Machine/CPU]
http://www.clifford.at/bfcpu/bfcomp.html
• Another C to Brainfuck
http://esolangs.org/wiki/C2BF
• BASIC to Brainfuck
http://esolangs.org/wiki/BFBASIC
Compile Brainfuck into ELF
Using Artificial Intelligence to Write Self-
Modifying/Improving Programs
• AI program works, as follows:
– A genome consists of an array of doubles.
– Each gene corresponds to an instruction in the brainf-ck
programming language.
– Start with a population of random genomes.
– Decode each genome into a resulting program by converting
each double into its corresponding instruction and execute the
program.
– Get each program's fitness score, based upon the output it
writes to the console (if any), and rank them.
– Mate the best genomes together using roulette selection,
crossover, and mutation to produce a new generation.
– Repeat the process with the new generation until the target
fitness score is achieved.
Source: http://www.primaryobjects.com/CMS/Article149
Runtime Optimizations
Mandelbrot
Incremental optimizing interpreter
https://github.com/xatier/brainfuck-tools
https://github.com/xatier/brainfuck-bench
Interpreter vs. Static Compiler
Implementation (user-space)
Execution Time
( in second)
simple bf 91.50
slight
optimizations
8.03
bff 5.04
vff 3.10
vm +
optimizations
3.02
BF-JIT 17.78
BF-JIT +
optimizations
1.37
simple xbyak JIT 3.25
xbyak JIT +
optimizations
0.93
custom JIT +
aggressive
optimizations
0.77
Simple lightning
JIT
1.27
Implementation (user-space)
Execution Time
( in second)
simple BF to C 1.27
awib to C 1.05
esotope-bfc 0.72
bftran to C 0.66
bftran to ELF32c 3.58
The executable generated by
static compiler (2 pass: BF → C
→ x86_64) is likely slower than
optimized interpreters.
The fastest interpreter record
appears on Lenovo X230
[Intel(R) Core(TM) i5-3320M CPU
@ 2.60GHz].
Plain JIT compilation without effective
optimizations is slower than portable interpreters!
11x speedup!
Walk through typical Design Patterns
• Classify the executions of Brainfuck programs
• Eliminate the redundant
– CSE: common sub-expression elimination
• Quick instructions
• Hotspot
– Replace with faster implementation
• Enable Just-In-Time compilation
Pattern: +++
++++++++++
*ptr += 10
Pattern: >>>
>>>>>>>>>>
ptr += 10
Pattern: +++
++++++++++
*ptr += 10
Fetch
Instruction
Eval
Increment
Fetch
Instruction
Eval
Increment
…
10 Instructions
Fetch
Instruction
Eval Calc
+10
1 instruction
Pattern: [-]
[-]
*ptr = 0
Pattern: [>+<-]
[>+<-]
*(ptr+1) += *ptr
*ptr = 0
Pattern: [-]
[-]
Interpret:
if(!*ptr) goto ];--*ptr;goto [;
Fetch
Instruction
Jump If
Zero
Fetch
Instruction
Eval
Decrement
Fetch
Instruction
Jump
Contains Branch
Fetch
Instruction
Eval Reset
Zero
1 Instruction,
No Branch
Optimization Techniques
• To evaluate the impact different optimization
techniques can have on performance, we need a
set of Brainfuck programs that are sufficiently
non-trivial for optimization to make sense.
– awib-0.4 (Brainfuck compiler)
– factor.b
– mandelbrot.b
– hanoi.b
– dbfi.b (self-interpreter)
– long.b
• source: https://github.com/matslina/bfoptimization
Benchmark Results
(without optimizations)
Benchmark Results
(w/ and w/o optimizations)
Benchmark Results
(Contraction)
IR C
add(x) mem[p] += x;
sub(x) mem[p] -= x;
right(x) p += x;
left(x) p -= x;
output putchar(mem[p]);
input mem[p] = getchar();
open_loop while(mem[p]) {
close_loop }
+++++[­>>>++<<<]>>>.
mem[p]++;
mem[p]++;
mem[p]++;
mem[p]++;
mem[p]++;
while (mem[p]) {
    mem[p]­­;
    p++;
    p++;
    p++;
    mem[p]++;
    mem[p]++;
    p­­;
    p­­;
    p­­;
}
p++;
p++;
p++;
putchar(mem[p]);
mem[p] += 5;
while (mem[p]) {
    mem[p] ­= 1;
    p += 3;
    mem[p] += 2;
    p ­= 3;
}
p += 3;
putchar(mem[p]);
Benchmark Results
(Clear loops)
IR C
add mem[p]++;
sub mem[p]--;
right p++
left p--
output putchar(mem[p]);
input mem[p] = getchar();
open_loop while(mem[p]) {
close_loop }
clear mem[p] = 0;
[­]
Eval Reset Zero
Benchmark Results
(Copy loops)
[­>+>+<<])
mem[p+1] += mem[p];
mem[p+2] += mem[p];
mem[p] = 0;
IR C
add(x) mem[p] += x;
sub(x) mem[p] -= x;
right(x) p += x;
left(x) p -= x;
output putchar(mem[p]);
input mem[p] = getchar();
open_loop while(mem[p]) {
close_loop }
clear mem[p] = 0;
copy(x) mem[p+x] += mem[p];
Benchmark Results
(Multiplication loops)
IR C
add(x) mem[p] += x;
sub(x) mem[p] -= x;
right(x) p += x;
left(x) p -= x;
output putchar(mem[p]);
input mem[p] = getchar();
open_loop while(mem[p]) {
close_loop }
clear mem[p] = 0;
mul(x,y) mem[p+x] += mem[p] * y;
[­>+++>+++++++<<]
mem[p+1] += mem[p] * 3;
mem[p+2] += mem[p] * 7;
mem[p] = 0
Benchmark Results
(Operation offsets)
IR C
add(x,off) mem[p+off] += x;
sub(x,off) mem[p+off] -= x;
right(x) p++
left(x) p--
output putchar(mem[p+off]);
input mem[p+off] = getchar();
open_loop while(mem[p]) {
close_loop }
clear mem[p+off] = 0;
mul(x,y) mem[p+x+off] +=
mem[p+off] * y;
Both the copy loop and multiplication loop
optimizations share an interesting trait: they
perform an arithmetic operation at an offset from
the current cell. In brainfuck we often find long
sequences of non-loop operations and these
sequences typically contain a fair number of <
and >. Why waste time moving the pointer
around?
Benchmark Results
(Scan loops)
IR C
add(x) mem[p] += x;
sub(x) mem[p] -= x;
right(x) p += x;
left(x) p -= x;
output putchar(mem[p]);
input mem[p] = getchar();
open_loop while(mem[p]) {
close_loop }
clear mem[p] = 0;
mul(x,y) mem[p+x] += mem[p] * y;
ScanLeft p -= (long)((void *)(mem
+ p) - memrchr(mem, 0, p
+ 1));
ScanRight p += (long)(memchr(mem
+ p, 0, sizeof(mem)) -
(void *)(mem + p));
 +<[>­]>[>]<
The problem of efficiently searching a memory
area for occurrences of a particular byte is mostly
solved by the C standard library’s memchr()
function, which operates by loading full memory
words (typically 32 or 64 bits) into a CPU register
and checking the individual 8-bit components in
parallel. This proves to be much more efficient
than loading and inspecting bytes one at a time.
Benchmark Results
(apply all techniques)
2.4x speedup
130x speedup
Reference
1. Principles of Compiler Design: The Brainf*ck Compiler
http://www.clifford.at/papers/2004/compiler/
2. brainfuck optimization strategies
http://calmerthanyouare.org/2015/01/07/optimizing-brainfuck.html
3. Brainf*ck Compiler Project
http://www.clifford.at/bfcpu/bfcomp.html
4. Brainfuck code generation
http://esolangs.org/wiki/Brainfuck_code_generation

More Related Content

What's hot

The Microkernel Mach Under NeXTSTEP
The Microkernel Mach Under NeXTSTEPThe Microkernel Mach Under NeXTSTEP
The Microkernel Mach Under NeXTSTEPGregor Schmidt
 
用十分鐘 向jserv學習作業系統設計
用十分鐘  向jserv學習作業系統設計用十分鐘  向jserv學習作業系統設計
用十分鐘 向jserv學習作業系統設計鍾誠 陳鍾誠
 
Understand more about C
Understand more about CUnderstand more about C
Understand more about CYi-Hsiu Hsu
 
ARM Trusted FirmwareのBL31を単体で使う!
ARM Trusted FirmwareのBL31を単体で使う!ARM Trusted FirmwareのBL31を単体で使う!
ARM Trusted FirmwareのBL31を単体で使う!Mr. Vengineer
 
Kernel Recipes 2015: Kernel packet capture technologies
Kernel Recipes 2015: Kernel packet capture technologiesKernel Recipes 2015: Kernel packet capture technologies
Kernel Recipes 2015: Kernel packet capture technologiesAnne Nicolas
 
Interrupt Affinityについて
Interrupt AffinityについてInterrupt Affinityについて
Interrupt AffinityについてTakuya ASADA
 
Launch the First Process in Linux System
Launch the First Process in Linux SystemLaunch the First Process in Linux System
Launch the First Process in Linux SystemJian-Hong Pan
 
New Ways to Find Latency in Linux Using Tracing
New Ways to Find Latency in Linux Using TracingNew Ways to Find Latency in Linux Using Tracing
New Ways to Find Latency in Linux Using TracingScyllaDB
 
Introduction to gdb
Introduction to gdbIntroduction to gdb
Introduction to gdbOwen Hsu
 
Performance Wins with eBPF: Getting Started (2021)
Performance Wins with eBPF: Getting Started (2021)Performance Wins with eBPF: Getting Started (2021)
Performance Wins with eBPF: Getting Started (2021)Brendan Gregg
 
Address/Thread/Memory Sanitizer
Address/Thread/Memory SanitizerAddress/Thread/Memory Sanitizer
Address/Thread/Memory SanitizerPlatonov Sergey
 
Q2.12: Debugging with GDB
Q2.12: Debugging with GDBQ2.12: Debugging with GDB
Q2.12: Debugging with GDBLinaro
 
Kernel Recipes 2017 - Understanding the Linux kernel via ftrace - Steven Rostedt
Kernel Recipes 2017 - Understanding the Linux kernel via ftrace - Steven RostedtKernel Recipes 2017 - Understanding the Linux kernel via ftrace - Steven Rostedt
Kernel Recipes 2017 - Understanding the Linux kernel via ftrace - Steven RostedtAnne Nicolas
 
The linux networking architecture
The linux networking architectureThe linux networking architecture
The linux networking architecturehugo lu
 

What's hot (20)

The Microkernel Mach Under NeXTSTEP
The Microkernel Mach Under NeXTSTEPThe Microkernel Mach Under NeXTSTEP
The Microkernel Mach Under NeXTSTEP
 
用十分鐘 向jserv學習作業系統設計
用十分鐘  向jserv學習作業系統設計用十分鐘  向jserv學習作業系統設計
用十分鐘 向jserv學習作業系統設計
 
Understand more about C
Understand more about CUnderstand more about C
Understand more about C
 
ARM Trusted FirmwareのBL31を単体で使う!
ARM Trusted FirmwareのBL31を単体で使う!ARM Trusted FirmwareのBL31を単体で使う!
ARM Trusted FirmwareのBL31を単体で使う!
 
Kernel Recipes 2015: Kernel packet capture technologies
Kernel Recipes 2015: Kernel packet capture technologiesKernel Recipes 2015: Kernel packet capture technologies
Kernel Recipes 2015: Kernel packet capture technologies
 
Learn C Programming Language by Using GDB
Learn C Programming Language by Using GDBLearn C Programming Language by Using GDB
Learn C Programming Language by Using GDB
 
Interrupt Affinityについて
Interrupt AffinityについてInterrupt Affinityについて
Interrupt Affinityについて
 
Launch the First Process in Linux System
Launch the First Process in Linux SystemLaunch the First Process in Linux System
Launch the First Process in Linux System
 
Improve Android System Component Performance
Improve Android System Component PerformanceImprove Android System Component Performance
Improve Android System Component Performance
 
New Ways to Find Latency in Linux Using Tracing
New Ways to Find Latency in Linux Using TracingNew Ways to Find Latency in Linux Using Tracing
New Ways to Find Latency in Linux Using Tracing
 
Introduction to gdb
Introduction to gdbIntroduction to gdb
Introduction to gdb
 
Performance Wins with eBPF: Getting Started (2021)
Performance Wins with eBPF: Getting Started (2021)Performance Wins with eBPF: Getting Started (2021)
Performance Wins with eBPF: Getting Started (2021)
 
GDB Rocks!
GDB Rocks!GDB Rocks!
GDB Rocks!
 
Address/Thread/Memory Sanitizer
Address/Thread/Memory SanitizerAddress/Thread/Memory Sanitizer
Address/Thread/Memory Sanitizer
 
Qemu JIT Code Generator and System Emulation
Qemu JIT Code Generator and System EmulationQemu JIT Code Generator and System Emulation
Qemu JIT Code Generator and System Emulation
 
Making Linux do Hard Real-time
Making Linux do Hard Real-timeMaking Linux do Hard Real-time
Making Linux do Hard Real-time
 
Making Linux do Hard Real-time
Making Linux do Hard Real-timeMaking Linux do Hard Real-time
Making Linux do Hard Real-time
 
Q2.12: Debugging with GDB
Q2.12: Debugging with GDBQ2.12: Debugging with GDB
Q2.12: Debugging with GDB
 
Kernel Recipes 2017 - Understanding the Linux kernel via ftrace - Steven Rostedt
Kernel Recipes 2017 - Understanding the Linux kernel via ftrace - Steven RostedtKernel Recipes 2017 - Understanding the Linux kernel via ftrace - Steven Rostedt
Kernel Recipes 2017 - Understanding the Linux kernel via ftrace - Steven Rostedt
 
The linux networking architecture
The linux networking architectureThe linux networking architecture
The linux networking architecture
 

Viewers also liked

進階嵌入式系統開發與實做 (2014 年秋季 ) 課程說明
進階嵌入式系統開發與實做 (2014 年秋季 ) 課程說明進階嵌入式系統開發與實做 (2014 年秋季 ) 課程說明
進階嵌入式系統開發與實做 (2014 年秋季 ) 課程說明National Cheng Kung University
 
中輟生談教育: 完全用開放原始碼軟體進行 嵌入式系統教學
中輟生談教育: 完全用開放原始碼軟體進行 嵌入式系統教學中輟生談教育: 完全用開放原始碼軟體進行 嵌入式系統教學
中輟生談教育: 完全用開放原始碼軟體進行 嵌入式系統教學National Cheng Kung University
 
Develop Your Own Operating Systems using Cheap ARM Boards
Develop Your Own Operating Systems using Cheap ARM BoardsDevelop Your Own Operating Systems using Cheap ARM Boards
Develop Your Own Operating Systems using Cheap ARM BoardsNational Cheng Kung University
 
給自己更好未來的 3 個練習:嵌入式作業系統設計、實做,與移植 (2015 年春季 ) 課程說明
給自己更好未來的 3 個練習:嵌入式作業系統設計、實做,與移植 (2015 年春季 ) 課程說明給自己更好未來的 3 個練習:嵌入式作業系統設計、實做,與移植 (2015 年春季 ) 課程說明
給自己更好未來的 3 個練習:嵌入式作業系統設計、實做,與移植 (2015 年春季 ) 課程說明National Cheng Kung University
 
Lecture notice about Embedded Operating System Design and Implementation
Lecture notice about Embedded Operating System Design and ImplementationLecture notice about Embedded Operating System Design and Implementation
Lecture notice about Embedded Operating System Design and ImplementationNational Cheng Kung University
 
PyPy's approach to construct domain-specific language runtime
PyPy's approach to construct domain-specific language runtimePyPy's approach to construct domain-specific language runtime
PyPy's approach to construct domain-specific language runtimeNational Cheng Kung University
 

Viewers also liked (11)

進階嵌入式系統開發與實做 (2014 年秋季 ) 課程說明
進階嵌入式系統開發與實做 (2014 年秋季 ) 課程說明進階嵌入式系統開發與實做 (2014 年秋季 ) 課程說明
進階嵌入式系統開發與實做 (2014 年秋季 ) 課程說明
 
中輟生談教育: 完全用開放原始碼軟體進行 嵌入式系統教學
中輟生談教育: 完全用開放原始碼軟體進行 嵌入式系統教學中輟生談教育: 完全用開放原始碼軟體進行 嵌入式系統教學
中輟生談教育: 完全用開放原始碼軟體進行 嵌入式系統教學
 
Xvisor: embedded and lightweight hypervisor
Xvisor: embedded and lightweight hypervisorXvisor: embedded and lightweight hypervisor
Xvisor: embedded and lightweight hypervisor
 
Develop Your Own Operating Systems using Cheap ARM Boards
Develop Your Own Operating Systems using Cheap ARM BoardsDevelop Your Own Operating Systems using Cheap ARM Boards
Develop Your Own Operating Systems using Cheap ARM Boards
 
從線上售票看作業系統設計議題
從線上售票看作業系統設計議題從線上售票看作業系統設計議題
從線上售票看作業系統設計議題
 
Explore Android Internals
Explore Android InternalsExplore Android Internals
Explore Android Internals
 
給自己更好未來的 3 個練習:嵌入式作業系統設計、實做,與移植 (2015 年春季 ) 課程說明
給自己更好未來的 3 個練習:嵌入式作業系統設計、實做,與移植 (2015 年春季 ) 課程說明給自己更好未來的 3 個練習:嵌入式作業系統設計、實做,與移植 (2015 年春季 ) 課程說明
給自己更好未來的 3 個練習:嵌入式作業系統設計、實做,與移植 (2015 年春季 ) 課程說明
 
Implement Runtime Environments for HSA using LLVM
Implement Runtime Environments for HSA using LLVMImplement Runtime Environments for HSA using LLVM
Implement Runtime Environments for HSA using LLVM
 
Lecture notice about Embedded Operating System Design and Implementation
Lecture notice about Embedded Operating System Design and ImplementationLecture notice about Embedded Operating System Design and Implementation
Lecture notice about Embedded Operating System Design and Implementation
 
PyPy's approach to construct domain-specific language runtime
PyPy's approach to construct domain-specific language runtimePyPy's approach to construct domain-specific language runtime
PyPy's approach to construct domain-specific language runtime
 
Priority Inversion on Mars
Priority Inversion on MarsPriority Inversion on Mars
Priority Inversion on Mars
 

Similar to Virtual Machine Constructions for Dummies

Τα Πολύ Βασικά για την Python
Τα Πολύ Βασικά για την PythonΤα Πολύ Βασικά για την Python
Τα Πολύ Βασικά για την PythonMoses Boudourides
 
Tree Top
Tree TopTree Top
Tree TopeventRT
 
Building a DSL with GraalVM (VoxxedDays Luxembourg)
Building a DSL with GraalVM (VoxxedDays Luxembourg)Building a DSL with GraalVM (VoxxedDays Luxembourg)
Building a DSL with GraalVM (VoxxedDays Luxembourg)Maarten Mulders
 
Python于Web 2.0网站的应用 - QCon Beijing 2010
Python于Web 2.0网站的应用 - QCon Beijing 2010Python于Web 2.0网站的应用 - QCon Beijing 2010
Python于Web 2.0网站的应用 - QCon Beijing 2010Qiangning Hong
 
Building a DSL with GraalVM (CodeOne)
Building a DSL with GraalVM (CodeOne)Building a DSL with GraalVM (CodeOne)
Building a DSL with GraalVM (CodeOne)Maarten Mulders
 
PesterSec: Using Pester & ScriptAnalyzer to Detect Obfuscated PowerShell
PesterSec: Using Pester & ScriptAnalyzer to Detect Obfuscated PowerShellPesterSec: Using Pester & ScriptAnalyzer to Detect Obfuscated PowerShell
PesterSec: Using Pester & ScriptAnalyzer to Detect Obfuscated PowerShellDaniel Bohannon
 
A Few of My Favorite (Python) Things
A Few of My Favorite (Python) ThingsA Few of My Favorite (Python) Things
A Few of My Favorite (Python) ThingsMichael Pirnat
 
Python for High School Programmers
Python for High School ProgrammersPython for High School Programmers
Python for High School ProgrammersSiva Arunachalam
 
Python quickstart for programmers: Python Kung Fu
Python quickstart for programmers: Python Kung FuPython quickstart for programmers: Python Kung Fu
Python quickstart for programmers: Python Kung Fuclimatewarrior
 
Byterun, a Python bytecode interpreter - Allison Kaptur at NYCPython
Byterun, a Python bytecode interpreter - Allison Kaptur at NYCPythonByterun, a Python bytecode interpreter - Allison Kaptur at NYCPython
Byterun, a Python bytecode interpreter - Allison Kaptur at NYCPythonakaptur
 
Nosql hands on handout 04
Nosql hands on handout 04Nosql hands on handout 04
Nosql hands on handout 04Krishna Sankar
 
忙しい人のためのSphinx 入門 demo
忙しい人のためのSphinx 入門 demo忙しい人のためのSphinx 入門 demo
忙しい人のためのSphinx 入門 demoFumihito Yokoyama
 
Pycon 2011 talk (may not be final, note)
Pycon 2011 talk (may not be final, note)Pycon 2011 talk (may not be final, note)
Pycon 2011 talk (may not be final, note)c.titus.brown
 
JSDC 2014 - functional java script, why or why not
JSDC 2014 - functional java script, why or why notJSDC 2014 - functional java script, why or why not
JSDC 2014 - functional java script, why or why notChengHui Weng
 

Similar to Virtual Machine Constructions for Dummies (20)

Τα Πολύ Βασικά για την Python
Τα Πολύ Βασικά για την PythonΤα Πολύ Βασικά για την Python
Τα Πολύ Βασικά για την Python
 
Python 1
Python 1Python 1
Python 1
 
Tree Top
Tree TopTree Top
Tree Top
 
Building a DSL with GraalVM (VoxxedDays Luxembourg)
Building a DSL with GraalVM (VoxxedDays Luxembourg)Building a DSL with GraalVM (VoxxedDays Luxembourg)
Building a DSL with GraalVM (VoxxedDays Luxembourg)
 
Python于Web 2.0网站的应用 - QCon Beijing 2010
Python于Web 2.0网站的应用 - QCon Beijing 2010Python于Web 2.0网站的应用 - QCon Beijing 2010
Python于Web 2.0网站的应用 - QCon Beijing 2010
 
03 tk2123 - pemrograman shell-2
03   tk2123 - pemrograman shell-203   tk2123 - pemrograman shell-2
03 tk2123 - pemrograman shell-2
 
Building a DSL with GraalVM (CodeOne)
Building a DSL with GraalVM (CodeOne)Building a DSL with GraalVM (CodeOne)
Building a DSL with GraalVM (CodeOne)
 
PesterSec: Using Pester & ScriptAnalyzer to Detect Obfuscated PowerShell
PesterSec: Using Pester & ScriptAnalyzer to Detect Obfuscated PowerShellPesterSec: Using Pester & ScriptAnalyzer to Detect Obfuscated PowerShell
PesterSec: Using Pester & ScriptAnalyzer to Detect Obfuscated PowerShell
 
A Few of My Favorite (Python) Things
A Few of My Favorite (Python) ThingsA Few of My Favorite (Python) Things
A Few of My Favorite (Python) Things
 
Python for High School Programmers
Python for High School ProgrammersPython for High School Programmers
Python for High School Programmers
 
Malcon2017
Malcon2017Malcon2017
Malcon2017
 
901131 examples
901131 examples901131 examples
901131 examples
 
Python quickstart for programmers: Python Kung Fu
Python quickstart for programmers: Python Kung FuPython quickstart for programmers: Python Kung Fu
Python quickstart for programmers: Python Kung Fu
 
Pdxpugday2010 pg90
Pdxpugday2010 pg90Pdxpugday2010 pg90
Pdxpugday2010 pg90
 
Byterun, a Python bytecode interpreter - Allison Kaptur at NYCPython
Byterun, a Python bytecode interpreter - Allison Kaptur at NYCPythonByterun, a Python bytecode interpreter - Allison Kaptur at NYCPython
Byterun, a Python bytecode interpreter - Allison Kaptur at NYCPython
 
Nosql hands on handout 04
Nosql hands on handout 04Nosql hands on handout 04
Nosql hands on handout 04
 
Groovy
GroovyGroovy
Groovy
 
忙しい人のためのSphinx 入門 demo
忙しい人のためのSphinx 入門 demo忙しい人のためのSphinx 入門 demo
忙しい人のためのSphinx 入門 demo
 
Pycon 2011 talk (may not be final, note)
Pycon 2011 talk (may not be final, note)Pycon 2011 talk (may not be final, note)
Pycon 2011 talk (may not be final, note)
 
JSDC 2014 - functional java script, why or why not
JSDC 2014 - functional java script, why or why notJSDC 2014 - functional java script, why or why not
JSDC 2014 - functional java script, why or why not
 

More from National Cheng Kung University

進階嵌入式作業系統設計與實做 (2015 年秋季 ) 課程說明
進階嵌入式作業系統設計與實做 (2015 年秋季 ) 課程說明進階嵌入式作業系統設計與實做 (2015 年秋季 ) 課程說明
進階嵌入式作業系統設計與實做 (2015 年秋季 ) 課程說明National Cheng Kung University
 
F9: A Secure and Efficient Microkernel Built for Deeply Embedded Systems
F9: A Secure and Efficient Microkernel Built for Deeply Embedded SystemsF9: A Secure and Efficient Microkernel Built for Deeply Embedded Systems
F9: A Secure and Efficient Microkernel Built for Deeply Embedded SystemsNational Cheng Kung University
 
進階嵌入式系統開發與實作 (2013 秋季班 ) 課程說明
進階嵌入式系統開發與實作 (2013 秋季班 ) 課程說明進階嵌入式系統開發與實作 (2013 秋季班 ) 課程說明
進階嵌入式系統開發與實作 (2013 秋季班 ) 課程說明National Cheng Kung University
 
Shorten Device Boot Time for Automotive IVI and Navigation Systems
Shorten Device Boot Time for Automotive IVI and Navigation SystemsShorten Device Boot Time for Automotive IVI and Navigation Systems
Shorten Device Boot Time for Automotive IVI and Navigation SystemsNational Cheng Kung University
 

More from National Cheng Kung University (13)

2016 年春季嵌入式作業系統課程說明
2016 年春季嵌入式作業系統課程說明2016 年春季嵌入式作業系統課程說明
2016 年春季嵌入式作業系統課程說明
 
進階嵌入式作業系統設計與實做 (2015 年秋季 ) 課程說明
進階嵌入式作業系統設計與實做 (2015 年秋季 ) 課程說明進階嵌入式作業系統設計與實做 (2015 年秋季 ) 課程說明
進階嵌入式作業系統設計與實做 (2015 年秋季 ) 課程說明
 
Construct an Efficient and Secure Microkernel for IoT
Construct an Efficient and Secure Microkernel for IoTConstruct an Efficient and Secure Microkernel for IoT
Construct an Efficient and Secure Microkernel for IoT
 
F9: A Secure and Efficient Microkernel Built for Deeply Embedded Systems
F9: A Secure and Efficient Microkernel Built for Deeply Embedded SystemsF9: A Secure and Efficient Microkernel Built for Deeply Embedded Systems
F9: A Secure and Efficient Microkernel Built for Deeply Embedded Systems
 
Open Source from Legend, Business, to Ecosystem
Open Source from Legend, Business, to EcosystemOpen Source from Legend, Business, to Ecosystem
Open Source from Legend, Business, to Ecosystem
 
Summer Project: Microkernel (2013)
Summer Project: Microkernel (2013)Summer Project: Microkernel (2013)
Summer Project: Microkernel (2013)
 
進階嵌入式系統開發與實作 (2013 秋季班 ) 課程說明
進階嵌入式系統開發與實作 (2013 秋季班 ) 課程說明進階嵌入式系統開發與實作 (2013 秋季班 ) 課程說明
進階嵌入式系統開發與實作 (2013 秋季班 ) 課程說明
 
Faults inside System Software
Faults inside System SoftwareFaults inside System Software
Faults inside System Software
 
Hints for L4 Microkernel
Hints for L4 MicrokernelHints for L4 Microkernel
Hints for L4 Microkernel
 
Shorten Device Boot Time for Automotive IVI and Navigation Systems
Shorten Device Boot Time for Automotive IVI and Navigation SystemsShorten Device Boot Time for Automotive IVI and Navigation Systems
Shorten Device Boot Time for Automotive IVI and Navigation Systems
 
Microkernel Evolution
Microkernel EvolutionMicrokernel Evolution
Microkernel Evolution
 
Develop Your Own Operating System
Develop Your Own Operating SystemDevelop Your Own Operating System
Develop Your Own Operating System
 
olibc: Another C Library optimized for Embedded Linux
olibc: Another C Library optimized for Embedded Linuxolibc: Another C Library optimized for Embedded Linux
olibc: Another C Library optimized for Embedded Linux
 

Recently uploaded

Powerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara LaskowskaPowerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara LaskowskaCzechDreamin
 
PLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. StartupsPLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. StartupsStefano
 
Connecting the Dots in Product Design at KAYAK
Connecting the Dots in Product Design at KAYAKConnecting the Dots in Product Design at KAYAK
Connecting the Dots in Product Design at KAYAKUXDXConf
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaRTTS
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonDianaGray10
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Jeffrey Haguewood
 
What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024Stephanie Beckett
 
IESVE for Early Stage Design and Planning
IESVE for Early Stage Design and PlanningIESVE for Early Stage Design and Planning
IESVE for Early Stage Design and PlanningIES VE
 
Optimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through ObservabilityOptimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through ObservabilityScyllaDB
 
ECS 2024 Teams Premium - Pretty Secure
ECS 2024   Teams Premium - Pretty SecureECS 2024   Teams Premium - Pretty Secure
ECS 2024 Teams Premium - Pretty SecureFemke de Vroome
 
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone KomSalesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone KomCzechDreamin
 
AI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří KarpíšekAI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří KarpíšekCzechDreamin
 
UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1DianaGray10
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backElena Simperl
 
IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoTAnalytics
 
Motion for AI: Creating Empathy in Technology
Motion for AI: Creating Empathy in TechnologyMotion for AI: Creating Empathy in Technology
Motion for AI: Creating Empathy in TechnologyUXDXConf
 
WSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptxWSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptxJennifer Lim
 
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...CzechDreamin
 
Intelligent Gimbal FINAL PAPER Engineering.pdf
Intelligent Gimbal FINAL PAPER Engineering.pdfIntelligent Gimbal FINAL PAPER Engineering.pdf
Intelligent Gimbal FINAL PAPER Engineering.pdfAnthony Lucente
 
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)Julian Hyde
 

Recently uploaded (20)

Powerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara LaskowskaPowerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara Laskowska
 
PLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. StartupsPLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. Startups
 
Connecting the Dots in Product Design at KAYAK
Connecting the Dots in Product Design at KAYAKConnecting the Dots in Product Design at KAYAK
Connecting the Dots in Product Design at KAYAK
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
 
What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024
 
IESVE for Early Stage Design and Planning
IESVE for Early Stage Design and PlanningIESVE for Early Stage Design and Planning
IESVE for Early Stage Design and Planning
 
Optimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through ObservabilityOptimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through Observability
 
ECS 2024 Teams Premium - Pretty Secure
ECS 2024   Teams Premium - Pretty SecureECS 2024   Teams Premium - Pretty Secure
ECS 2024 Teams Premium - Pretty Secure
 
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone KomSalesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
 
AI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří KarpíšekAI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří Karpíšek
 
UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024
 
Motion for AI: Creating Empathy in Technology
Motion for AI: Creating Empathy in TechnologyMotion for AI: Creating Empathy in Technology
Motion for AI: Creating Empathy in Technology
 
WSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptxWSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptx
 
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...
 
Intelligent Gimbal FINAL PAPER Engineering.pdf
Intelligent Gimbal FINAL PAPER Engineering.pdfIntelligent Gimbal FINAL PAPER Engineering.pdf
Intelligent Gimbal FINAL PAPER Engineering.pdf
 
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
 

Virtual Machine Constructions for Dummies

  • 1. Virtual Machine Construction for Dummies Jim Huang <jserv@0xlab.org> Rifur Ni <rifurdoma@gmail.com> Xatier Lee <xatierlike@gmail.com> Jan 29, 2013 ! TOSSUG / March 7, 2013 ! 新竹碼農
  • 2. Rights to copy Attribution – ShareAlike 3.0 You are free to copy, distribute, display, and perform the work to make derivative works to make commercial use of the work Under the following conditions Attribution. You must give the original author credit. Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode © Copyright 2015 0xlab contact@0xlab.org Corrections, suggestions, contributions and translations are welcome! Latest update: Feb 21, 2015
  • 3. Goals of this Presentation • Build a full-functioned virtual machine from scratch – The full source code is inside the slides. • Basic concepts about interpreter, optimizations techniques, language specialization, and platform specific tweaks. • Brainfuck is selected as the primary programming language because – it's a very simple turing-complete programming language. – it's easier to write its compiler than its interpreter. – it's easier to write its interpreter than its real programs.
  • 4. Brainfuck Programming Language • created in 1993 by Urban Müller • Only 8 instructions – Müller's Amiga compiler was 240 bytes in size – x86/Linux by Brian Raiter had 171 Bytes! +++[>+++++[>+++++>+++++>++++>++ ++>+<<<<<-]>++++>+++>+++>+<<<<< -]>>.>.>+.>.>-----.
  • 5. Learn such a stupid language! Why? • Understand how basic a Turing-complete programming language can be. – A common argument when programmers compare languages is “well they’re all Turing-complete”, meaning that anything you can do in one language you can do in another. • Once you’ve learnt brainfuck, you’ll understand just how difficult it can be to use a Turing-complete language, and how that argument holds no water. Source: http://skilldrick.co.uk/2011/02/why-you-should-learn-brainfuck-or-learn-you-a-brainfuck- for-great-good/
  • 8. Brainfuck Instructions (mapped to C language) Increment the byte value at the data pointer. Decrement the data pointer to point to the previous cell. Increment the data pointer to point to the next cell. Decrement the byte value at the data pointer. Output the byte value at the data pointer. Input one byte and store its value at the data pointer. If the byte value at the data pointer is zero, jump to the instruction following the matching ] bracket. Otherwise, continue execution. Unconditionally jump back to the matching [ bracket.
  • 9. Writing a Brainfuck compiler is Easy! #!/usr/bin/awk -f BEGIN { print "int main() {"; print " int c = 0;"; print " static int b[30000];n"; } { gsub(/]/, " }n"); gsub(/[/, " while(b[c] != 0) {n"); gsub(/+/, " ++b[c];n"); gsub(/-/, " --b[c];n"); gsub(/>/, " ++c;n"); gsub(/</, " --c;n"); gsub(/./, " putchar(b[c]);n"); gsub(/,/, " b[c] = getchar();n"); print $0 } END { print "n return 0;"; print "}"; }
  • 10. Brainfuck interpreter in portable C (1/3) #include <stdio.h> #include <stdlib.h> int p, r, q; char a[5000], f[5000], b, o, *s = f; void interpret(char *c) { char *d; r++; while (*c) { switch (o = 1, *c++) { case '<': p--; break; case '>': p++; break; case '+': a[p]++; break; case '-': a[p]--; break;
  • 11. Brainfuck interpreter in portable C (2/3) case '.': putchar(a[p]); fflush(stdout); break; case ',': a[p] = getchar(); fflush(stdout); break; case '[': for (b = 1, d = c; b && *c; c++) b += *c == '[', b -= *c == ']'; if (!b) { c[-1] = 0; while (a[p]) interpret(d); c[-1] = ']'; break; } case ']': puts("Unblanced brackets"),exit(0);
  • 12. Brainfuck interpreter in portable C (3/3) default: o = 0; } if (p < 0 || p > 100) puts("Range error"), exit(0); } r--; } int main(int argc, char *argv[]) { FILE *z; q = argc; if ((z = fopen(argv[1], "r"))) { while ((b = getc(z)) > 0) *s++ = b; *s = 0; interpret(f); } return 0; }
  • 13. Self-Interpreter can be short! Writen by Oleg Mazonka & Daniel B. Cristofani 21 November 2003 >>>+[[-]>>[-]++>+>+++++++[<++++>>++<-]++>>+>+>+++++[> ++>++++++<<-]+>>>,<++[[>[->>]<[>>]<<-]<[<]<+>>[>]>[<+ >-[[<+>-]>]<[[[-]<]++<-[<+++++++++>[<->-]>>]>>]]<<]<] < [[<]>[[>]>>[>>]+[<<]<[<]<+>>-]>[>]+[->>]<<<<[[<<]<[<] +<<[+>+<<-[>-->+<<-[>+<[>>+<<-]]]>[<+>-]<]++>>-->[>]> >[>>]]<<[>>+<[[<]<]>[[<<]<[<]+[-<+>>-[<<+>++>-[<->[<< +>>-]]]<[>+<-]>]>[>]>]>[>>]>>]<<[>>+>>+>>]<<[->>>>>>> >]<<[>.>>>>>>>]<<[>->>>>>]<<[>,>>>]<<[>+>]<<[+<<]<]
  • 14. Turing Complete (again) • In fact, Brianfuck has 6 opcode + Input/Output commands • gray area for I/O (implementation dependent) – EOF – tape length – cell type – newlines • That is enough to program! • Extension: self-modifying Brainfuck https://soulsphere.org/hacks/smbf/
  • 15. Statement: while • Implementing a while statement is easy, because the Brainfuck [ .. ] statement is a while loop. • Thus, while (x) { <foobar> } becomes (move pointer to a) [ (foobar) (move pointer to a) ]
  • 16. Statement: x=y • Implementing assignment (copy) instructions is complex. • Straightforward way of doing that resets y to zero: (move pointer to y) [ ­ (move pointer to x) + (move pointer to y) ] • A temporary variable t is needed: (move pointer to y) [ ­ (move pointer to t) + (move pointer to y) ] (move pointer to t) [ ­ (move pointer to x) + (move pointer to y) + (move pointer to t) ]
  • 17. Statement: if • The if statement is like a while-loop, but it should run its block only once. Again, a temporary variable is needed to implement if (x) { <foobar> }: (move pointer to x) [ ­ (move pointer to t) + (move pointer to x) ] (move pointer to t) [     [ ­     (move pointer to x) +     (move pointer to t) ]     (foobar) (move pointer to t) ]
  • 19. Example: cat + [ , . ] cell[0] ← 1 while(cell[0]) { Read-in a character print it }
  • 20. Example: if-endif $f + $A + [ $B + /* $B = $B + 1 */ $f [-] /* end if */ ] $A = 1; if($A) { $B = $B + 1; }
  • 21. Example: if-else-endif $f + $A + [ $B + /* $B = $B + 1 */ $f [-] /* end if */ ] $f [ $B - /* $B = $B - 1 */ $f [-] /* end if */ ] $A = 1; if($A) { ++$B; } else { --$B; }
  • 22. Example: Multiply (6x7) +++ +++ [ > +++ +++ + < - ] cell[0] ← 6 while(cell[0]) { cell[1] += 7; --cell[0]; }
  • 23. Example: Division (12/4) ++++++++++++ // Loop 12 times [ >+ // Increment second cell <---- // Subtract 4 from first cell ] >. // Display second cell's value
  • 24. Example: Hello World! ++++++++[>+++++++++<-]>. // 8 x 9 = 72 (H) <+++++[>++++++<-]>-. // 72 + (6 x 5) - 1 = 101 (e) +++++++.. // 101 + 7 = 108 (l) +++. // 108 + 3 = 111 (o) <++++++++[>>++++<<-]>>. // 8 x 4 = 32 (SPACE) <<++++[>------<-]>. // 111 - 24 = 87 (W) <++++[>++++++<-]>. // 87 + 24 = 111 (o) +++. // 111 + 3 = 114 (r) ------. // 114 - 6 = 108 (l) --------. // 108 - 8 = 100 (d) >+. // 32 + 1 = 33 (!)
  • 25. Example: Hello World! 0 0 72 0 p ...a: 0 0 9 72 0 H 101 0 e 108 0 ll 111 0 o 0 0 a[0] a[1] 111 0 87 0 114 0 108 0 100 0 33 0 10 0 32 0 W o r l d n ! >+++++++++[<++++++++>-]<.>+++++++[<++++>-]<+. +++++++..+++.[-]>++++++++[<++++>-]<. >+++++++++++[<+++++>-]<.>++++++++[<+++>-]<. +++.------.--------.[-]>++++++++[<++++>-]<+. [-]++++++++++.
  • 27. Example: Bubble Sort >>>>>,.[>>>,.] <<< [<<< [>>> [-<<<-<+>[>]>>] <<<[<]>> [>>>+<<<-]< [>+>>>+<<<<-] <<] >>>[.[-]] >>>[>>>]<<<] Idea: if(b>a): swap(a, b) Operation: decrement $a and $b. Then, store the smaller one into $t
  • 32. Brainfuck Toolchain :: interpreter, translator, virtual machine, nested runtime ::
  • 33. Nested Interpreting • Translation: – BF extensions → Brainfuck – Other languages → Brainfuck • Interpreter written in Brainfuck runs on BF VM
  • 34. DEF def Copy(s, d, t) { s [ d+ t+ s- ] t [ s+ t- ] } END MAIN $100=10 $200=0 $300=0 Copy($100, $200, $300) #define Copy(argc, s, d, t) s[d+t+s-] t[s+d+t-] $100 =10 $200 =0 $300 =0 Copy(3, $100, $200, $300) $100 =10 $200 =0 $300 =0 $100 [ $200+ $300+ $100- ] $300 [ $100+ $200+ $300- ]
  • 35. Brainfuck translator (use BF as the backend) • Translate C-like language to Brainfuck – bfc [C] → bfa [Assembly] → bf [Machine/CPU] http://www.clifford.at/bfcpu/bfcomp.html • Another C to Brainfuck http://esolangs.org/wiki/C2BF • BASIC to Brainfuck http://esolangs.org/wiki/BFBASIC
  • 37. Using Artificial Intelligence to Write Self- Modifying/Improving Programs • AI program works, as follows: – A genome consists of an array of doubles. – Each gene corresponds to an instruction in the brainf-ck programming language. – Start with a population of random genomes. – Decode each genome into a resulting program by converting each double into its corresponding instruction and execute the program. – Get each program's fitness score, based upon the output it writes to the console (if any), and rank them. – Mate the best genomes together using roulette selection, crossover, and mutation to produce a new generation. – Repeat the process with the new generation until the target fitness score is achieved. Source: http://www.primaryobjects.com/CMS/Article149
  • 40. Interpreter vs. Static Compiler Implementation (user-space) Execution Time ( in second) simple bf 91.50 slight optimizations 8.03 bff 5.04 vff 3.10 vm + optimizations 3.02 BF-JIT 17.78 BF-JIT + optimizations 1.37 simple xbyak JIT 3.25 xbyak JIT + optimizations 0.93 custom JIT + aggressive optimizations 0.77 Simple lightning JIT 1.27 Implementation (user-space) Execution Time ( in second) simple BF to C 1.27 awib to C 1.05 esotope-bfc 0.72 bftran to C 0.66 bftran to ELF32c 3.58 The executable generated by static compiler (2 pass: BF → C → x86_64) is likely slower than optimized interpreters. The fastest interpreter record appears on Lenovo X230 [Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz]. Plain JIT compilation without effective optimizations is slower than portable interpreters! 11x speedup!
  • 41.
  • 42. Walk through typical Design Patterns • Classify the executions of Brainfuck programs • Eliminate the redundant – CSE: common sub-expression elimination • Quick instructions • Hotspot – Replace with faster implementation • Enable Just-In-Time compilation
  • 43. Pattern: +++ ++++++++++ *ptr += 10 Pattern: >>> >>>>>>>>>> ptr += 10
  • 44. Pattern: +++ ++++++++++ *ptr += 10 Fetch Instruction Eval Increment Fetch Instruction Eval Increment … 10 Instructions Fetch Instruction Eval Calc +10 1 instruction
  • 45. Pattern: [-] [-] *ptr = 0 Pattern: [>+<-] [>+<-] *(ptr+1) += *ptr *ptr = 0
  • 46. Pattern: [-] [-] Interpret: if(!*ptr) goto ];--*ptr;goto [; Fetch Instruction Jump If Zero Fetch Instruction Eval Decrement Fetch Instruction Jump Contains Branch Fetch Instruction Eval Reset Zero 1 Instruction, No Branch
  • 47. Optimization Techniques • To evaluate the impact different optimization techniques can have on performance, we need a set of Brainfuck programs that are sufficiently non-trivial for optimization to make sense. – awib-0.4 (Brainfuck compiler) – factor.b – mandelbrot.b – hanoi.b – dbfi.b (self-interpreter) – long.b • source: https://github.com/matslina/bfoptimization
  • 49. Benchmark Results (w/ and w/o optimizations)
  • 50. Benchmark Results (Contraction) IR C add(x) mem[p] += x; sub(x) mem[p] -= x; right(x) p += x; left(x) p -= x; output putchar(mem[p]); input mem[p] = getchar(); open_loop while(mem[p]) { close_loop } +++++[­>>>++<<<]>>>. mem[p]++; mem[p]++; mem[p]++; mem[p]++; mem[p]++; while (mem[p]) {     mem[p]­­;     p++;     p++;     p++;     mem[p]++;     mem[p]++;     p­­;     p­­;     p­­; } p++; p++; p++; putchar(mem[p]); mem[p] += 5; while (mem[p]) {     mem[p] ­= 1;     p += 3;     mem[p] += 2;     p ­= 3; } p += 3; putchar(mem[p]);
  • 51. Benchmark Results (Clear loops) IR C add mem[p]++; sub mem[p]--; right p++ left p-- output putchar(mem[p]); input mem[p] = getchar(); open_loop while(mem[p]) { close_loop } clear mem[p] = 0; [­] Eval Reset Zero
  • 52. Benchmark Results (Copy loops) [­>+>+<<]) mem[p+1] += mem[p]; mem[p+2] += mem[p]; mem[p] = 0; IR C add(x) mem[p] += x; sub(x) mem[p] -= x; right(x) p += x; left(x) p -= x; output putchar(mem[p]); input mem[p] = getchar(); open_loop while(mem[p]) { close_loop } clear mem[p] = 0; copy(x) mem[p+x] += mem[p];
  • 53. Benchmark Results (Multiplication loops) IR C add(x) mem[p] += x; sub(x) mem[p] -= x; right(x) p += x; left(x) p -= x; output putchar(mem[p]); input mem[p] = getchar(); open_loop while(mem[p]) { close_loop } clear mem[p] = 0; mul(x,y) mem[p+x] += mem[p] * y; [­>+++>+++++++<<] mem[p+1] += mem[p] * 3; mem[p+2] += mem[p] * 7; mem[p] = 0
  • 54. Benchmark Results (Operation offsets) IR C add(x,off) mem[p+off] += x; sub(x,off) mem[p+off] -= x; right(x) p++ left(x) p-- output putchar(mem[p+off]); input mem[p+off] = getchar(); open_loop while(mem[p]) { close_loop } clear mem[p+off] = 0; mul(x,y) mem[p+x+off] += mem[p+off] * y; Both the copy loop and multiplication loop optimizations share an interesting trait: they perform an arithmetic operation at an offset from the current cell. In brainfuck we often find long sequences of non-loop operations and these sequences typically contain a fair number of < and >. Why waste time moving the pointer around?
  • 55. Benchmark Results (Scan loops) IR C add(x) mem[p] += x; sub(x) mem[p] -= x; right(x) p += x; left(x) p -= x; output putchar(mem[p]); input mem[p] = getchar(); open_loop while(mem[p]) { close_loop } clear mem[p] = 0; mul(x,y) mem[p+x] += mem[p] * y; ScanLeft p -= (long)((void *)(mem + p) - memrchr(mem, 0, p + 1)); ScanRight p += (long)(memchr(mem + p, 0, sizeof(mem)) - (void *)(mem + p));  +<[>­]>[>]< The problem of efficiently searching a memory area for occurrences of a particular byte is mostly solved by the C standard library’s memchr() function, which operates by loading full memory words (typically 32 or 64 bits) into a CPU register and checking the individual 8-bit components in parallel. This proves to be much more efficient than loading and inspecting bytes one at a time.
  • 56. Benchmark Results (apply all techniques) 2.4x speedup 130x speedup
  • 57. Reference 1. Principles of Compiler Design: The Brainf*ck Compiler http://www.clifford.at/papers/2004/compiler/ 2. brainfuck optimization strategies http://calmerthanyouare.org/2015/01/07/optimizing-brainfuck.html 3. Brainf*ck Compiler Project http://www.clifford.at/bfcpu/bfcomp.html 4. Brainfuck code generation http://esolangs.org/wiki/Brainfuck_code_generation