GOWind!GhentOstend Wind Research Institute<br />Extendedversion<br />Founded in Ghenton 06 April 2011<br />
GOwind!<br />
PoweredbyAUGent<br />AssociationGhentUniversity (AUGent) is groupedaroundGhentUniversity, one of the two major universitie...
Table of contents<br />Research topics<br />Test infrastructure<br />Research groups<br />Contact<br />
Small, large and off-shore<br />Small and medium turbines<br />Large turbines<br />Off-shore turbines<br />
Research topics<br />Conditionmonitoring<br />Drive train<br />Blades<br />Tower<br />Foundations<br />Gridcoupling<br />
Blades<br />BLADES<br />Composite blades<br />Structural design of composites<br />Fatigue of composites models<br />Nonde...
Structural design of composites<br />Advanced calculation environment:<br />CAE/CAD: SolidWorks, Catia<br />Finite element...
Structural design of composites<br />Adhesive joints in composite materials and hybrid materials<br />Simulation of “mode ...
Fatigue of composites<br />Damage behaviour of fibre-reinforced composites under biaxial fatigue loading<br />Shape optimi...
Fatigue of composites<br />Residual stiffness models account for stress redistribution and load history dependence of dama...
Structural health monitoring<br />New SIM project on self-healing polymers and composites<br /><ul><li>Focus on cold-curin...
Collaboration with Momentive Specialty Systems (formerly Hexion)</li></ul>Simulation of crack growth and self-healing -> r...
Nondestructive inspection<br />NDT-characterization of fibre-reinforced composites<br />C-scan of a delaminated carbon/epo...
Simulation of Fluid-Structure Interaction<br />Simulation of interaction between deforming or moving structures and the su...
Tower/Foundation<br />TOWER/FOUNDATION<br />Foundations<br />Sourprotectionaroundmono-pile foundations<br />Wave slamming<...
Sourprotectionmono-piles<br />Test setup for sour protection<br />Optimal size of bricks (riprap)<br />Design method for c...
Offshore foundations<br />Wave run-up of off-shorestructures<br />Simulationresults are validatedwithexperimentalresults<b...
Coupled tower/blades sim<br />Kinematic analysis of rotating vertical axis wind turbine with effects of imbalance (due to ...
Drive train<br />DRIVE TRAIN<br />Bearings and vibrations<br />Frettingfatigue<br />Precitionvibrations in drive trains<br...
Axial-flux generators<br />Axial flux generator forsmall wind turbines show excellent (low) coggingtorque and high efficie...
Impact of magneticmaterial<br />Optimisation of annualyield (opex)fortwomagneticmaterialswitha different cost (capex). <br...
Control of electric machines<br />Efficient control, control of dynamics, field weakening at high speed<br />Induction mac...
Model PredictiveControl<br />MPC canbeappliedfor the supervisorycontrol of the MASTER of the wind turbine<br />Challenges:...
Sensorlesscontrol<br />Position sensors forelectrical machines are costly and vulnerable. This leads to additional black-o...
Modeling of SMWT<br />Full system model of small and medium wind turbines including the turbine rotor, the generator and t...
Frettingfatigue<br />A wind turbine gearbox is susceptible to fretting wear. With the high-speed pinion of a modern wind t...
Blade pitch bearings are susceptible to fretting wear if the blades remain at one pitch angle for too long, and the lubric...
Gridinteraction<br />GRID INTERACTION<br />Gridcoupling of decentralised units<br />Power electronicsforimproved power qua...
Gridcoupling<br />Full threephase power gridinvertersfordecentralisedenergy resources. The invertersimplementing a three-p...
Wind turbines in µ-grids<br />Small and medium wind turbines canbeincorporatedinto a µ-gridwetherornotconnected to the dis...
Eco-industrial park<br />The potential of wind energycanonlyberealisedif wind turbines becomemore acceptedby the different...
Model PredictiveControl<br />Wind parks: SELFISH CONTROL (onesection) vs. SOLIDARY CONTROL (globaloptimization)<br />Chall...
Conditionmonitoring<br />CONDITION MONITORING<br />Optical sensors embedded in bladesforconditionmonitoring<br />Accelerom...
Structural health monitoring<br />Multi-axialopticalfibre sensors + smaller diameter 80 m -> idealforembedding in composi...
Structural health monitoring<br />Perfect relationship between optical fibre sensors and external extensometer!<br />incre...
Structural health monitoring<br />New FP7 project “SMARTFIBER”, aiming at embedding wireless miniaturized strain sensors i...
Vibrations<br />Torsional vibrations of coupled rotors: transient and stationairy vibrations, techniques for absorption of...
Argus<br />Modular platform withuser-friendlyinterface forremotemonitoring of plants of decentralisedenergy resources<br /...
Exploitation<br />EXPLOITATION<br />Noise<br />Generation<br />Propagation<br />Annoyance research<br />Repair and mainten...
Acoustics<br />Microphones array allows identification of sources and feeds propagation models.<br />Shortterm and longter...
Acoustics<br />Annoyanceresearch te Oostakker (turbines @ Volvo).<br />Most noise isgenerated in the direction in which th...
Planning<br />Industrial management and planning.<br />Leanmanufacturing.<br />Impact in terms of efficiency and costof ma...
R&M activities of wind turbines<br />Repair and maintenanceactivitieson windturbines need to beminimised. <br />Stillsucha...
Table of contents<br />Research topics<br />Test infrastructure<br />Research groups<br />Contact<br />
SWT-FieldLaboratory<br />Field laboratory @ Greenbridge, Ostend (B)<br />10 turbine mastsoperating as a field laboratory (...
Materials<br />Tribology<br />Fatigue<br />Fracture<br />µ-tomografie<br />Stress<br />
Electrical test infrastructure<br />Power electronics and electrical machines, e.g. <br />240kVA power source<br />Test ri...
Simulation tools<br />Expertise and knowhow in using, a.o.<br /> Matlab/simulink<br />Mathcad<br /> CAD<br />Abaqus<br />F...
Table of contents<br />Research topics<br />Test infrastructure<br />Research groups<br />Contact<br />
Research groups (1)<br />Mechanics of Materials and Structures – J. Degrieck, W. Van Paepegem<br />Structural design of co...
Research groups (2)<br />Mechanical Construction and Production - LaboratorySoete – P. De Baets<br />Frictions, bearings, ...
Research groups (3)<br />UGent – Associate partners<br />HoGent – Electrotechnics – P. Sergeant<br />Design and testing of...
Upcoming SlideShare
Loading in …5
×

GOwind! - Full version

1,596 views

Published on

This is the full version of the presentation of GOwind!, Ghent Ostend Wind Research Insitute, powered by Ghent University Association (Belgium).

Published in: Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,596
On SlideShare
0
From Embeds
0
Number of Embeds
314
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide
  • Meetresultaat offshore tijdens operatie gemeten onder de turbine.De kleinere turbines van BelPower zijn beduidend stiller dan de grote van C-PowerDe trubines werken vanaf 3m/s maar dan draaien ze gewoon zonder meer, vanaf 4m/s beginnen ze goed te werkenTot 4MW draaien ze gewoon met de wind mee, vanaf dan gaan de windturbine bladen reageren door minder energie te produceren en dat levert veel extra geluid op
  • Neem het vlak van de windmolenGa aan de kant staan waar je de turbine naar beneden ziet gaanDaar vind je het meest geluid en de grootste klachtenDie zijn groter als de windsnelheid groter is
  • GOwind! - Full version

    1. 1. GOWind!GhentOstend Wind Research Institute<br />Extendedversion<br />Founded in Ghenton 06 April 2011<br />
    2. 2. GOwind!<br />
    3. 3. PoweredbyAUGent<br />AssociationGhentUniversity (AUGent) is groupedaroundGhentUniversity, one of the two major universities in Flanders, Belgium. <br />In totalit is home to 5.000 researchers and 32.000 students.<br />It has 11 faculties, of which the Faculty of Engineering and Architecture is one of the biggestwith 2200 students and 850 (a.o. 150 professors) researchersworking in different fieldsrangingfromarchitecture, ICT, materials as well as electrical, mechanical and thermalenergysystems.<br />The associate partners relevant forGOwind! are the university colleges HoGent(Ghent, Belgium) and HoWest (Kortrijk, Belgium). Both are stronglyconnected to the localSME-market and canrelyon excellent and extensive test infrastructure.<br />More info and links at www.set.ugent.be/GOwind<br />
    4. 4. Table of contents<br />Research topics<br />Test infrastructure<br />Research groups<br />Contact<br />
    5. 5. Small, large and off-shore<br />Small and medium turbines<br />Large turbines<br />Off-shore turbines<br />
    6. 6. Research topics<br />Conditionmonitoring<br />Drive train<br />Blades<br />Tower<br />Foundations<br />Gridcoupling<br />
    7. 7. Blades<br />BLADES<br />Composite blades<br />Structural design of composites<br />Fatigue of composites models<br />Nondestructive inspection of composites using optic fibers<br />Structural health monitoring using ultra sound polar plots<br />Self-healing composite materials<br />Smart blades<br />Combined fluid-structural simulation<br />
    8. 8. Structural design of composites<br />Advanced calculation environment:<br />CAE/CAD: SolidWorks, Catia<br />Finite elements: Abaqus, LS-Dyna<br />Composite draping modules: Catia/CPD, Simulayt<br />Optimization software iSight<br />UM software for kinematics and multibody dynamics<br />Access to HPC cluster with 2000+ cores<br />
    9. 9. Structural design of composites<br />Adhesive joints in composite materials and hybrid materials<br />Simulation of “mode I” crack growth in a Double Cantilever Beam (DCB) specimen<br />
    10. 10. Fatigue of composites<br />Damage behaviour of fibre-reinforced composites under biaxial fatigue loading<br />Shape optimization with evolutionary strategies: coupling of Java master routine, ABAQUS FEA analysis and Python scripting in a fully automated loop for complicated optimization problems.<br />
    11. 11. Fatigue of composites<br />Residual stiffness models account for stress redistribution and load history dependence of damage evolution<br />(in contrast to Miner’s rule)<br />
    12. 12. Structural health monitoring<br />New SIM project on self-healing polymers and composites<br /><ul><li>Focus on cold-curing resins for infusion of wind turbine blades
    13. 13. Collaboration with Momentive Specialty Systems (formerly Hexion)</li></ul>Simulation of crack growth and self-healing -> regaining of static and fatigue strength<br />
    14. 14. Nondestructive inspection<br />NDT-characterization of fibre-reinforced composites<br />C-scan of a delaminated carbon/epoxycomposite<br />Polar scan<br />
    15. 15. Simulation of Fluid-Structure Interaction<br />Simulation of interaction between deforming or moving structures and the surrounding fluid (gas or liquid)<br />Improved prediction of load on wind turbine blades<br />Flow-induced vibration of turbine blades<br />Additional motion when wake of blade passes tower<br />Linked to so-called smart rotor blades<br />Blade shape changes over wind speed and rotor speed to alleviate loads<br />Fluid-structure interaction code Tango<br />Used in several ongoing researchprojects, on own cluster and HPC<br />Validated with internationallyaccepted benchmarks<br />www.FSI.UGent.be<br />FSI2 benchmark: Flexible beam behind a rigid cylinder in a horizontal channel<br />
    16. 16. Tower/Foundation<br />TOWER/FOUNDATION<br />Foundations<br />Sourprotectionaroundmono-pile foundations<br />Wave slamming<br />Prediction of wave run up <br />Predicition of structural stress<br />Tower<br />Impact of imbalance of bladesontotower<br />
    17. 17. Sourprotectionmono-piles<br />Test setup for sour protection<br />Optimal size of bricks (riprap)<br />Design method for cost-effective sour protectionbased on dynamically stabile erosion protection strategies<br />
    18. 18. Offshore foundations<br />Wave run-up of off-shorestructures<br />Simulationresults are validatedwithexperimentalresults<br />
    19. 19. Coupled tower/blades sim<br />Kinematic analysis of rotating vertical axis wind turbine with effects of imbalance (due to small mass differences between blades), resulting in precession motion.<br />Body Element Model<br />
    20. 20. Drive train<br />DRIVE TRAIN<br />Bearings and vibrations<br />Frettingfatigue<br />Precitionvibrations in drive trains<br />Generator<br />Design, simulation and prototyping of electrical machines<br />Capex vs. Opex: impact of magneticmaterialchoicesonenergyyield<br />Control<br />Maximum power pointrackingtechniquesforsmall wind turbines<br />Model predictivecontrol<br />Sensorlesscontrol of electrical machines<br />Vector control of permanent magnetelectrical machines<br />
    21. 21. Axial-flux generators<br />Axial flux generator forsmall wind turbines show excellent (low) coggingtorque and high efficiency<br />Electrical, mechanical and thermaldesign and simulation of the generator<br />Prototype building<br />Experimentalresults<br />
    22. 22. Impact of magneticmaterial<br />Optimisation of annualyield (opex)fortwomagneticmaterialswitha different cost (capex). <br />Does a more expensivematerialchoicepayoff?<br />
    23. 23. Control of electric machines<br />Efficient control, control of dynamics, field weakening at high speed<br />Induction machines, permanent-magnet machines (PMSM)<br />Modellingdynamicalbehaviour, stability studies<br />Stabilitystudy of a digitallycontrolled PMSM drive byusing the root locus method<br />vector controlled PMSM drive with rotor positionestimator<br />
    24. 24. Model PredictiveControl<br />MPC canbeappliedfor the supervisorycontrol of the MASTER of the wind turbine<br />Challenges: <br />Control over communciationnetworks<br />Hierarchicalcontrol<br />
    25. 25. Sensorlesscontrol<br />Position sensors forelectrical machines are costly and vulnerable. This leads to additional black-out times. <br />The use of sensors canbeavoidedbyinterpreting the electricalsignals of the electrical machines, this is sensorlesscontrol.<br />UGent has patentedtechnology in this field.<br />
    26. 26. Modeling of SMWT<br />Full system model of small and medium wind turbines including the turbine rotor, the generator and the power electronics.<br />An important parameter in predicting the energyyieldfrom wind turbines is the Cp. Three traditional models are used. However in realitythisCp is almostneverobserveddue to suboptimal maximum power point trackingalgoritms.<br />
    27. 27. Frettingfatigue<br />A wind turbine gearbox is susceptible to fretting wear. With the high-speed pinion of a modern wind turbine stopped by the brake, and the rotor buffeted by the wind, the mating gear rocks back and forth through small amplitude motion.<br /><ul><li>Fretting corrosion also can occur in splines which have small sliding motion with essentially no motion to entrain lubricant between mating spline teeth.
    28. 28. Blade pitch bearings are susceptible to fretting wear if the blades remain at one pitch angle for too long, and the lubricant is not replenished by movement of the rolling elements.</li></li></ul><li>Vibrations<br />Torsional vibrations of coupled rotors: transient and stationairy vibrations, techniques for absorption of vibrations, experimental test setups. <br />Rotordynamics: analysis and experimental modelling, non-linear vibrations, model reduction, experimental test setups<br />
    29. 29. Gridinteraction<br />GRID INTERACTION<br />Gridcoupling of decentralised units<br />Power electronicsforimproved power quality<br />Advancedcontrol in µ-gridoperation<br />LESTS aspectsoneco-industrialparks<br />Farm operation<br />
    30. 30. Gridcoupling<br />Full threephase power gridinvertersfordecentralisedenergy resources. The invertersimplementing a three-phasedampingcontrolstrategy.<br />Suchcontrolstrategyresults in the inverterbehavingresistivelytowardsunbalance and distortions in the grid voltage.<br />Hence, the gridinverter supports the grid and improves power quality.<br />
    31. 31. Wind turbines in µ-grids<br />Small and medium wind turbines canbeincorporatedinto a µ-gridwetherornotconnected to the distributedgrid. <br />Thisincorporationrequires special controlstrategies and power electronics.<br />
    32. 32. Eco-industrial park<br />The potential of wind energycanonlyberealisedif wind turbines becomemore acceptedby the different stake-holders. This is facilitatedbytechnicaladvances as well as non-technicalaspects. <br />Oneway to structure and tackle these is using and investigating the LESTS:<br />Legal aspects<br />Economicalaspects<br />Socialaspects<br />Technicalaspects<br />Spatialaspects<br />
    33. 33. Model PredictiveControl<br />Wind parks: SELFISH CONTROL (onesection) vs. SOLIDARY CONTROL (globaloptimization)<br />Challenges: <br />Control over communciationnetworks<br />Hierarchicalcontrol<br />
    34. 34. Conditionmonitoring<br />CONDITION MONITORING<br />Optical sensors embedded in bladesforconditionmonitoring<br />Accelerometers to detectvibrations and wear<br />Argus data-acquistion and communication platform to collect sensor readings<br />
    35. 35. Structural health monitoring<br />Multi-axialopticalfibre sensors + smaller diameter 80 m -> idealforembedding in compositestructures<br />
    36. 36. Structural health monitoring<br />Perfect relationship between optical fibre sensors and external extensometer!<br />increasing<br />number of cycles<br />Embedded optical fibre sensors showing no stiffness degradation, and small permanent strain<br />
    37. 37. Structural health monitoring<br />New FP7 project “SMARTFIBER”, aiming at embedding wireless miniaturized strain sensors inside the composite blades<br />
    38. 38. Vibrations<br />Torsional vibrations of coupled rotors: transient and stationairy vibrations, techniques for absorption of vibrations, experimental test setups. <br />Rotordynamics: analysis and experimental modelling, non-linear vibrations, model reduction, experimental test setups<br />
    39. 39. Argus<br />Modular platform withuser-friendlyinterface forremotemonitoring of plants of decentralisedenergy resources<br />Allows to include the sensor read out ofnumerous sensors e.g. wind speed, direction, humidity, inverter temp., gridinjected power <br />Possibility to remotelyreset the power inverter<br />
    40. 40. Exploitation<br />EXPLOITATION<br />Noise<br />Generation<br />Propagation<br />Annoyance research<br />Repair and maintenance<br />Planning<br />System for lifting person and goods<br />
    41. 41. Acoustics<br />Microphones array allows identification of sources and feeds propagation models.<br />Shortterm and longterm monitoring of windturbines at different sites, e.g. off-shoreduringpiling (C-power) and operation (BelPower).<br />
    42. 42. Acoustics<br />Annoyanceresearch te Oostakker (turbines @ Volvo).<br />Most noise isgenerated in the direction in which the turbine blades are coming down and in case of higherwind speeds.<br />
    43. 43. Planning<br />Industrial management and planning.<br />Leanmanufacturing.<br />Impact in terms of efficiency and costof materialkitting, sequencing and downsizingin the lineassembly.<br />
    44. 44. R&M activities of wind turbines<br />Repair and maintenanceactivitieson windturbines need to beminimised. <br />Stillsuchactivities are required and oneneeds to beable to performthemon asave, (cost)efficient and (energy)efficientmanner.<br />This project developsanefficient, user-friendlyelectricalpulleyfor R&M activitieson wind turbines.<br />(in collaborationwithFallProtec, Lux)<br />
    45. 45. Table of contents<br />Research topics<br />Test infrastructure<br />Research groups<br />Contact<br />
    46. 46. SWT-FieldLaboratory<br />Field laboratory @ Greenbridge, Ostend (B)<br />10 turbine mastsoperating as a field laboratory (not demo) for research institutes and manufacturers<br />Rearchinfrastructureincludes: <br />Noise camera’s and microphonearray to investigatenoisepropagation<br />Acoustic camera forstructuralhealthmonitoring<br />Meteo-mast<br />Mobile data aquistion systemincl. straingauges, speed, torque, voltage and currentsensors<br />
    47. 47. Materials<br />Tribology<br />Fatigue<br />Fracture<br />µ-tomografie<br />Stress<br />
    48. 48. Electrical test infrastructure<br />Power electronics and electrical machines, e.g. <br />240kVA power source<br />Test rigsforelectrical machines<br />Vibrations<br />
    49. 49. Simulation tools<br />Expertise and knowhow in using, a.o.<br /> Matlab/simulink<br />Mathcad<br /> CAD<br />Abaqus<br />Fluent<br />Ansys<br />Catia<br />Comsol<br />Own software tools<br />+ HPC cluster with 2000+ cores!<br />
    50. 50. Table of contents<br />Research topics<br />Test infrastructure<br />Research groups<br />Contact<br />
    51. 51. Research groups (1)<br />Mechanics of Materials and Structures – J. Degrieck, W. Van Paepegem<br />Structural design of composites<br />Fatigue of composites<br />Nondestructive inspection of composites<br />Wave slamming on offshore structures<br />Structural health monitoring<br />Acoustics – D. Botteldooren<br />Noisesources and propagationfrom wind turbines and monitoring<br />MER-reports (Environmental Impact Reports)<br />Annoyanceresearch<br />Coastal Engineering – J. De Rouck, P. Troch<br />Sourprotection of foundation<br />Mobility and Spatial Planning – G. Van Eetvelde<br />Use of wind turbines in eco-industrialparks<br />
    52. 52. Research groups (2)<br />Mechanical Construction and Production - LaboratorySoete – P. De Baets<br />Frictions, bearings, frettingfatigue, <br />Electrical Energy Laboratory – J. Melkebeek, A. Van den Bossche, L. Dupré, L. Vandevelde<br />Electrical, magnetic and thermal design of electrical machines<br />Power electronics<br />Gridcoupling and incorporation in µ-grids<br />SYSTeMS – R. De keyser, M. Loccufier<br />Controltheoryfor low level control of individualcomponents, model predictivecontrolformastercontrol of wind turbines/farms, analysis and prevention of vibrations<br />FluidMechanics – J. Vierendeels<br />ComputationalFluid Dynamics (CFD)<br />Simulation of Fluid-StructureInteraction (FSI)<br />Industrial management – H. Van Landegem<br />Leanmanufacturing, cost and efficiency impact of industrial planning<br />
    53. 53. Research groups (3)<br />UGent – Associate partners<br />HoGent – Electrotechnics – P. Sergeant<br />Design and testing of electrical machines<br />HoWest – Electromechanics – K. Stockman, J. Desmet<br />Gridcoupling<br />Test infrastructureforelectrical machines<br />Vibrations<br />Ostendbased – G. Van Eetvelde<br />UGent-Greenbridge: clean tech incubator and science park located in the inner harbour of Ostend (B)<br />UGent-Power-Link: clean techknowledge platform coupled to the incubator<br />
    54. 54. More information<br />Jeroen De Maeyer<br />p/a UGent-EELAB<br />Sint-Pietersnieuwstraat 41<br />B-9000 Ghent<br />T +32 9 264 79 14<br />M +32 471 58 88 32<br />Jeroen.demaeyer@ugent.be<br />www.set.ugent.be/GOwind<br />

    ×