SlideShare a Scribd company logo
1 of 20
Download to read offline
The Schema Editor of OpenIoT
for Semantic Sensor Networks
Prem P. Jayaraman, Jean-Paul Calbimonte and Hoan Nguyen Mau Quoc
RMIT University, LSIR EPFL, Insight – NUI Galway
SSN-TC 2015. International Semantic Web Conference ISWC 2015
Bethlehem, PA, October 2015
@jpcik
1
OpenIoT FP7
Open Source Cloud solution for the Internet of Things
http://openiot.eu
Established Open-source platform for IoT
• Integrate sensors & things with cloud computing
• Configure, deploy and use IoT services
• Auditing/assessing privacy of IoT apps in the cloud
• Semantic annotations of internet-connected objects
• Energy-efficient data harvesting
• Publish/subscribe for continuous processing and
sensor data filtering
• Mobility of sensors and QoS aspects in IoT
https://github.com/OpenIotOrg/openiot
Use cases and validation scenarios
Smart
Manufacturing Campus Guide
Air Monitoring
Agriculture
Sensing
2
The OpenIoT Architecture
Sensor data management
Semantic data management
Applications
3
Security
(CAS)
Physical
Technology
Plane
Xively
(Cosm - Pachube)
CoAP
(Sensors)
MQTT
Request
Definition (IDE)
ServiceDelivery
&UtilityManager
Request
Presentation (IDE)
Scheduler
Configuration/
Monitor
Console(IDE)
Utility
Application
Plane
Cloud DataBase
(LSM-Light)
Discovery
Services
X-GSN X-GSN
Virtualized
Plane
User User
2
4
5
7
12
6
8
9
10
11
3
2
3
4
5
6
7
9
1
8
10
End User Request
Discovery Services
Query Content
Collect Content / Mobile
Sensor Configuration
Content Adaptation
Utility Service Feedback
Service Delivery
Service Visualisation
Get Visualisation
11 Data Presentation
12
InfoSphere
Streams
1
OthersUtility Metrics /Service Report
X-GSN…
Cloud Pub/Sub
5’
Pub/Sub Enabled
Mobile
Broker
(Sensors)
0
0 Setup and Management
0’’
0’’
12
5’’
0’
0’
X-GSN
0’
OpenIoT Services and Components
Application
Plane
4
Request Definition & Presentation
5
Everything nice if your data is also nice
Query
Operators
Data sources
Output Widgets
Find data streams
Request Definition & Presentation
Data at this level is already RDF-ized
Generated
SPARQL queries
6
OpenIoT and the SSN Ontology
7
ssn:Sensor
ssn:Platform
ssn:FeatureOfInterest
ssn:Deployment
ssn:Property
cf-prop:air_temperature
ssn:observes
ssn:onPlatform
dul:Place
dul:hasLocation
ssn:SensingDevicessn:inDeployment
ssn:MeasurementCapability
ssn:MeasurementProperty
geo:lat, geo:lng
xsd:double
ssn:hasMeasurementProperty
ssn:Accuracy
ssn:ofFeature
aws:TemperatureSensor
aws:Thermistor
ssn:Latency
dim:Temperature
qu:QuantityKind
cf-prop:soil_temperature
cf-feat:Wind
cf-feat:Surface
cf-feat:Medium
cf-feat:air
cf-feat:soil
dim:VelocityOrSpeed
cf-prop:wind_speed
cf-prop:rainfall_rate
aws:CapacitiveBead …
…
…
Where to look for vocabs?
When do we set up the onto?
Who sets it up?
http://lsm.deri.ie/resource/4039002668863045 http://lsm.deri.ie/ont/lsm.owl#unit "Percent"
Generated URIs? Vocabulary? Literals?
http://purl.oclc.org/NET/ssnx/cf/cf-property
http://www.w3.org/2005/Incubator/ssn/XGR-ssn/
Register metadata
8
If ontologies change…
If we add new types of sensors?
Do I have control over my sensor metadata?
Virtual Sensor configuration
9
<virtual-sensor name="room-monitor" >
<addressing>
<predicate key="geographical">BC143</predicate>
<predicate key="usage">
room monitoring</predicate>
</addressing>
<life-cycle pool-size="10" />
<output-structure>
<field name="image" type="binary:image/jpeg" />
<field name="temp" type="int" />
</output-structure>
<storage permanent="true" history-size="10h" />
<input-streams>
<input-stream name="cam">
<stream-source alias="cam" storage-size="1“
sampling-rate=“1”>
<address wrapper=“tinyos2.x">
<predicate key=“host">tinybox.epfl.ch
</predicate>
<predicate key=“port">9001</predicate>
</address>
select * from WRAPPER
</stream-source>
<stream-source alias="temperature1“
storage-size="1m“ sampling-rate=“1”>
<address wrapper="remote">
<predicate key="type">temperature</predicate>
<predicate key="geographical">BC143-N
</predicate>
</address>
select AVG(temp1) as T1 from WRAPPER
</stream-source>
<stream-source alias="temperature2“
storage-size="1m“>
<address wrapper="remote">
<predicate key="type“>temperature</predicate>
<predicate key="geographical“>BC143-S
</predicate>
</address>
select AVG(temp2) as T2 from WRAPPER
</stream-source>
<query>
select cam.picture as image, temperature.T1
as temp from cam, temperature1
where temperature1.T1 > 30 AND
temperature1.T1 = temperature2.T2
</query>
</input-stream>
</input-streams>
</virtual-sensor>
Some metadata is here
Sensor metadata configuration
Metadata properties
10
sensorID="http://lsm.deri.ie/resource/1099207032411018"
sensorName=closedsense
source=“Some source"
sourceType=lausanne
sensorType=lausanne
information=Air Quality Sensors from Lausanne station 1
author=opensense
feature="http://lsm.deri.ie/OpenIoT/opensensefeature"
fields="humidity,temperature"
field.temperature.propertyName="http://lsm.deri.ie/OpenIoT/
Temperature"
field.temperature.unit=C
field.humidity.propertyName="http://lsm.deri.ie/OpenIoT/Hu
midity"
field.humidity.unit=Percent
field.co.propertyName="http://lsm.deri.ie/OpenIoT/CO"
field.co.unit=PPM
latitude=46.529838
longitude=6.596818
Turtle RDF registration
11
<sensor/5010> rdf:type aws:CapacitiveBead,ssn:Sensor;
rdfs:label "Sensor 5010";
ssn:observes aws:air_temperature ;
phenonet:hasSerialNumber
<sensor/5010/serial/serial2> ;
ssn:onPlatform <site/narrabri/Pweather> ;
ssn:ofFeature <site/narrabri/sf/sf_narrabri> ;
ssn:hasMeasurementProperty
<sensor/5010/accuracy/acc_1> ;
prov:wasGeneratedBy "AuthorName";
DUL:hasLocation <place/location1>;
lsm:hasSensorType <sensorType1>;
lsm:hasSourceType "SourceType".
<sensorType1> rdfs:label "TypeName".
<sensor/5010/serial/serial2> rdf:type phenonet:SerialNumber;
phenonet:hasId "5010" .
<sensor/5010> rdf:type aws:CapacitiveBead,ssn:Sensor;
rdfs:label "Sensor 5010";
ssn:observes aws:air_temperature ;
phenonet:hasSerialNumber
<sensor/5010/serial/serial2> ;
ssn:onPlatform <site/narrabri/Pweather> ;
ssn:ofFeature <site/narrabri/sf/sf_narrabri> ;
ssn:hasMeasurementProperty
<sensor/5010/accuracy/acc_1> ;
prov:wasGeneratedBy "AuthorName";
DUL:hasLocation <place/location1>;
lsm:hasSensorType <sensorType1>;
lsm:hasSourceType "SourceType".
<sensorType1> rdfs:label "TypeName".
<sensor/5010/serial/serial2> rdf:type phenonet:SerialNumber;
phenonet:hasId "5010" .
A bit more of semantics
Need tools for this
Editing Ontologies?
12
Standard Tools
Better Suited for ontologists
Complex for small tasks
No integration with IoT platofrms
Generate RDF instances?
OpenIoT Schema Editor
13
Existing Sensor
Types Observed
properties
Users exposed to URIs as identifiers
Sensor Types
14
Schema Editor: Sensor Types
15
Observed properties
New Type
Measurement
Capabilities
Generated RDF
Sensor Instances
16
Schema Editor: New Instances
17
OpenIoT Schema Editor
18
Based on Standards
Schema Editor
based on SSN Ontology
Facilitates Extensions
Integrated with OpenIoT
Sensor Types and Instances
Extensible Editor?
URI generation?
Link to Vocab Libraries?
Validation of content?
Beyond OpenIoT-only?Web User Interface
OpenIoT resources
19
OpenIoT Github
https://github.com/OpenIotOrg/openiot
OpenIoT VDK virtual Machine
https://github.com/OpenIotOrg/openiot/wiki/VDKv2---OpenIoT-Rele
Viedo Demos:
http://www.youtube.com/user/OpenIoT
Muchas gracias!
Jean-Paul Calbimonte
LSIR EPFL
@jpcik
20

More Related Content

What's hot

Semantic Support for Complex Ecosystem Research Environments
Semantic Support for Complex Ecosystem Research EnvironmentsSemantic Support for Complex Ecosystem Research Environments
Semantic Support for Complex Ecosystem Research EnvironmentsHenrique O. Santos
 
GRIMES_Visualizing_Telemetry
GRIMES_Visualizing_TelemetryGRIMES_Visualizing_Telemetry
GRIMES_Visualizing_TelemetryKevin Grimes
 
The Discovery Cloud: Accelerating Science via Outsourcing and Automation
The Discovery Cloud: Accelerating Science via Outsourcing and AutomationThe Discovery Cloud: Accelerating Science via Outsourcing and Automation
The Discovery Cloud: Accelerating Science via Outsourcing and AutomationIan Foster
 
Coding the Continuum
Coding the ContinuumCoding the Continuum
Coding the ContinuumIan Foster
 
Characterizing a High Throughput Computing Workload: The Compact Muon Solenoi...
Characterizing a High Throughput Computing Workload: The Compact Muon Solenoi...Characterizing a High Throughput Computing Workload: The Compact Muon Solenoi...
Characterizing a High Throughput Computing Workload: The Compact Muon Solenoi...Rafael Ferreira da Silva
 
Overview of the W3C Semantic Sensor Network (SSN) ontology
Overview of the W3C Semantic Sensor Network (SSN) ontologyOverview of the W3C Semantic Sensor Network (SSN) ontology
Overview of the W3C Semantic Sensor Network (SSN) ontologyRaúl García Castro
 
A science-gateway for workflow executions: online and non-clairvoyant self-h...
A science-gateway for workflow executions: online and non-clairvoyant self-h...A science-gateway for workflow executions: online and non-clairvoyant self-h...
A science-gateway for workflow executions: online and non-clairvoyant self-h...Rafael Ferreira da Silva
 
Sgg crest-presentation-final
Sgg crest-presentation-finalSgg crest-presentation-final
Sgg crest-presentation-finalmarpierc
 
Virtual Science in the Cloud
Virtual Science in the CloudVirtual Science in the Cloud
Virtual Science in the Cloudthetfoot
 
Distributed Near Real-Time Processing of Sensor Network Data Flows for Smart ...
Distributed Near Real-Time Processing of Sensor Network Data Flows for Smart ...Distributed Near Real-Time Processing of Sensor Network Data Flows for Smart ...
Distributed Near Real-Time Processing of Sensor Network Data Flows for Smart ...Otávio Carvalho
 
Cyberinfrastructure and Applications Overview: Howard University June22
Cyberinfrastructure and Applications Overview: Howard University June22Cyberinfrastructure and Applications Overview: Howard University June22
Cyberinfrastructure and Applications Overview: Howard University June22marpierc
 
Demonstrating a Pre-Exascale, Cost-Effective Multi-Cloud Environment for Scie...
Demonstrating a Pre-Exascale, Cost-Effective Multi-Cloud Environment for Scie...Demonstrating a Pre-Exascale, Cost-Effective Multi-Cloud Environment for Scie...
Demonstrating a Pre-Exascale, Cost-Effective Multi-Cloud Environment for Scie...Igor Sfiligoi
 
Burst data retrieval after 50k GPU Cloud run
Burst data retrieval after 50k GPU Cloud runBurst data retrieval after 50k GPU Cloud run
Burst data retrieval after 50k GPU Cloud runIgor Sfiligoi
 
SkyhookDM - Towards an Arrow-Native Storage System
SkyhookDM - Towards an Arrow-Native Storage SystemSkyhookDM - Towards an Arrow-Native Storage System
SkyhookDM - Towards an Arrow-Native Storage SystemJayjeetChakraborty
 
Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all ...
Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all ...Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all ...
Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all ...Igor Sfiligoi
 
Grid'5000: Running a Large Instrument for Parallel and Distributed Computing ...
Grid'5000: Running a Large Instrument for Parallel and Distributed Computing ...Grid'5000: Running a Large Instrument for Parallel and Distributed Computing ...
Grid'5000: Running a Large Instrument for Parallel and Distributed Computing ...Frederic Desprez
 
NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic...
 NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic... NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic...
NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic...Igor Sfiligoi
 
How HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental scienceHow HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental scienceinside-BigData.com
 
Data-intensive IceCube Cloud Burst
Data-intensive IceCube Cloud BurstData-intensive IceCube Cloud Burst
Data-intensive IceCube Cloud BurstIgor Sfiligoi
 
Human-Aware Sensor Network Ontology: Semantic Support for Empirical Data Coll...
Human-Aware Sensor Network Ontology: Semantic Support for Empirical Data Coll...Human-Aware Sensor Network Ontology: Semantic Support for Empirical Data Coll...
Human-Aware Sensor Network Ontology: Semantic Support for Empirical Data Coll...Paulo Pinheiro
 

What's hot (20)

Semantic Support for Complex Ecosystem Research Environments
Semantic Support for Complex Ecosystem Research EnvironmentsSemantic Support for Complex Ecosystem Research Environments
Semantic Support for Complex Ecosystem Research Environments
 
GRIMES_Visualizing_Telemetry
GRIMES_Visualizing_TelemetryGRIMES_Visualizing_Telemetry
GRIMES_Visualizing_Telemetry
 
The Discovery Cloud: Accelerating Science via Outsourcing and Automation
The Discovery Cloud: Accelerating Science via Outsourcing and AutomationThe Discovery Cloud: Accelerating Science via Outsourcing and Automation
The Discovery Cloud: Accelerating Science via Outsourcing and Automation
 
Coding the Continuum
Coding the ContinuumCoding the Continuum
Coding the Continuum
 
Characterizing a High Throughput Computing Workload: The Compact Muon Solenoi...
Characterizing a High Throughput Computing Workload: The Compact Muon Solenoi...Characterizing a High Throughput Computing Workload: The Compact Muon Solenoi...
Characterizing a High Throughput Computing Workload: The Compact Muon Solenoi...
 
Overview of the W3C Semantic Sensor Network (SSN) ontology
Overview of the W3C Semantic Sensor Network (SSN) ontologyOverview of the W3C Semantic Sensor Network (SSN) ontology
Overview of the W3C Semantic Sensor Network (SSN) ontology
 
A science-gateway for workflow executions: online and non-clairvoyant self-h...
A science-gateway for workflow executions: online and non-clairvoyant self-h...A science-gateway for workflow executions: online and non-clairvoyant self-h...
A science-gateway for workflow executions: online and non-clairvoyant self-h...
 
Sgg crest-presentation-final
Sgg crest-presentation-finalSgg crest-presentation-final
Sgg crest-presentation-final
 
Virtual Science in the Cloud
Virtual Science in the CloudVirtual Science in the Cloud
Virtual Science in the Cloud
 
Distributed Near Real-Time Processing of Sensor Network Data Flows for Smart ...
Distributed Near Real-Time Processing of Sensor Network Data Flows for Smart ...Distributed Near Real-Time Processing of Sensor Network Data Flows for Smart ...
Distributed Near Real-Time Processing of Sensor Network Data Flows for Smart ...
 
Cyberinfrastructure and Applications Overview: Howard University June22
Cyberinfrastructure and Applications Overview: Howard University June22Cyberinfrastructure and Applications Overview: Howard University June22
Cyberinfrastructure and Applications Overview: Howard University June22
 
Demonstrating a Pre-Exascale, Cost-Effective Multi-Cloud Environment for Scie...
Demonstrating a Pre-Exascale, Cost-Effective Multi-Cloud Environment for Scie...Demonstrating a Pre-Exascale, Cost-Effective Multi-Cloud Environment for Scie...
Demonstrating a Pre-Exascale, Cost-Effective Multi-Cloud Environment for Scie...
 
Burst data retrieval after 50k GPU Cloud run
Burst data retrieval after 50k GPU Cloud runBurst data retrieval after 50k GPU Cloud run
Burst data retrieval after 50k GPU Cloud run
 
SkyhookDM - Towards an Arrow-Native Storage System
SkyhookDM - Towards an Arrow-Native Storage SystemSkyhookDM - Towards an Arrow-Native Storage System
SkyhookDM - Towards an Arrow-Native Storage System
 
Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all ...
Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all ...Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all ...
Running a GPU burst for Multi-Messenger Astrophysics with IceCube across all ...
 
Grid'5000: Running a Large Instrument for Parallel and Distributed Computing ...
Grid'5000: Running a Large Instrument for Parallel and Distributed Computing ...Grid'5000: Running a Large Instrument for Parallel and Distributed Computing ...
Grid'5000: Running a Large Instrument for Parallel and Distributed Computing ...
 
NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic...
 NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic... NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic...
NRP Engagement webinar - Running a 51k GPU multi-cloud burst for MMA with Ic...
 
How HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental scienceHow HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental science
 
Data-intensive IceCube Cloud Burst
Data-intensive IceCube Cloud BurstData-intensive IceCube Cloud Burst
Data-intensive IceCube Cloud Burst
 
Human-Aware Sensor Network Ontology: Semantic Support for Empirical Data Coll...
Human-Aware Sensor Network Ontology: Semantic Support for Empirical Data Coll...Human-Aware Sensor Network Ontology: Semantic Support for Empirical Data Coll...
Human-Aware Sensor Network Ontology: Semantic Support for Empirical Data Coll...
 

Viewers also liked

Semantically-Enabling the Web of Things: The W3C Semantic Sensor Network Onto...
Semantically-Enabling the Web of Things: The W3C Semantic Sensor Network Onto...Semantically-Enabling the Web of Things: The W3C Semantic Sensor Network Onto...
Semantically-Enabling the Web of Things: The W3C Semantic Sensor Network Onto...Laurent Lefort
 
Semantic IoT Semantic Inter-Operability Practices - Part 1
Semantic IoT Semantic Inter-Operability Practices - Part 1Semantic IoT Semantic Inter-Operability Practices - Part 1
Semantic IoT Semantic Inter-Operability Practices - Part 1iotest
 
Generating Linked Data in Real-time from Sensor Data Streams
Generating Linked Data in Real-time from Sensor Data StreamsGenerating Linked Data in Real-time from Sensor Data Streams
Generating Linked Data in Real-time from Sensor Data StreamsNikolaos Konstantinou
 
IoT-Lite: A Lightweight Semantic Model for the Internet of Things
IoT-Lite:  A Lightweight Semantic Model for the Internet of ThingsIoT-Lite:  A Lightweight Semantic Model for the Internet of Things
IoT-Lite: A Lightweight Semantic Model for the Internet of ThingsPayamBarnaghi
 
Semantic Technologies for the Internet of Things: Challenges and Opportunities
Semantic Technologies for the Internet of Things: Challenges and Opportunities Semantic Technologies for the Internet of Things: Challenges and Opportunities
Semantic Technologies for the Internet of Things: Challenges and Opportunities PayamBarnaghi
 
Defining an Open IoT Stack - Presented at IoT World 2015
Defining an Open IoT Stack - Presented at IoT World 2015Defining an Open IoT Stack - Presented at IoT World 2015
Defining an Open IoT Stack - Presented at IoT World 2015Ian Skerrett
 
Semantic technologies for the Internet of Things
Semantic technologies for the Internet of Things Semantic technologies for the Internet of Things
Semantic technologies for the Internet of Things PayamBarnaghi
 
360 Company Analysis Infographic
360 Company Analysis Infographic360 Company Analysis Infographic
360 Company Analysis InfographicGeorge Sloane
 
"Pizza with the Pros" at Heartland CC 28MAR17
"Pizza with the Pros" at Heartland CC 28MAR17"Pizza with the Pros" at Heartland CC 28MAR17
"Pizza with the Pros" at Heartland CC 28MAR17CBCT Magazine
 
[英語] 小学校3年生外国語活動 年間指導計画例 [四万十市素案]
[英語] 小学校3年生外国語活動 年間指導計画例 [四万十市素案][英語] 小学校3年生外国語活動 年間指導計画例 [四万十市素案]
[英語] 小学校3年生外国語活動 年間指導計画例 [四万十市素案]William Dyer
 
Send SMS Surveys to your Clients and Candidates Pre and Post-Interview
Send SMS Surveys to your Clients and Candidates Pre and Post-InterviewSend SMS Surveys to your Clients and Candidates Pre and Post-Interview
Send SMS Surveys to your Clients and Candidates Pre and Post-InterviewMediaburst
 
Presentazione servizi SpinData
Presentazione servizi SpinDataPresentazione servizi SpinData
Presentazione servizi SpinDataNarcisio Di Ninni
 
Master mx 75a edicion
Master mx 75a edicionMaster mx 75a edicion
Master mx 75a edicionMaster Mx
 
Branding e Psicologia del Colore
Branding e Psicologia del ColoreBranding e Psicologia del Colore
Branding e Psicologia del ColoreAndrea Riezzo
 
Oportunidad de negocios en la distribución de planes de pensión internacionales
Oportunidad de negocios en la distribución de planes de pensión internacionalesOportunidad de negocios en la distribución de planes de pensión internacionales
Oportunidad de negocios en la distribución de planes de pensión internacionalesPrime Financial Advisors
 
Pricing matrix
Pricing matrixPricing matrix
Pricing matrixPhil Heft
 
Événementiel Magazine: Les Chatbots en force
Événementiel Magazine: Les Chatbots en forceÉvénementiel Magazine: Les Chatbots en force
Événementiel Magazine: Les Chatbots en forceFredGarrec
 
Tabela de infracões e penalidades
Tabela de infracões e penalidadesTabela de infracões e penalidades
Tabela de infracões e penalidadesAdriano Monteiro
 
Progressive Caucus Letter Public Option
Progressive Caucus Letter Public OptionProgressive Caucus Letter Public Option
Progressive Caucus Letter Public OptionDocJess
 

Viewers also liked (20)

Semantically-Enabling the Web of Things: The W3C Semantic Sensor Network Onto...
Semantically-Enabling the Web of Things: The W3C Semantic Sensor Network Onto...Semantically-Enabling the Web of Things: The W3C Semantic Sensor Network Onto...
Semantically-Enabling the Web of Things: The W3C Semantic Sensor Network Onto...
 
Semantic IoT Semantic Inter-Operability Practices - Part 1
Semantic IoT Semantic Inter-Operability Practices - Part 1Semantic IoT Semantic Inter-Operability Practices - Part 1
Semantic IoT Semantic Inter-Operability Practices - Part 1
 
Generating Linked Data in Real-time from Sensor Data Streams
Generating Linked Data in Real-time from Sensor Data StreamsGenerating Linked Data in Real-time from Sensor Data Streams
Generating Linked Data in Real-time from Sensor Data Streams
 
IoT-Lite: A Lightweight Semantic Model for the Internet of Things
IoT-Lite:  A Lightweight Semantic Model for the Internet of ThingsIoT-Lite:  A Lightweight Semantic Model for the Internet of Things
IoT-Lite: A Lightweight Semantic Model for the Internet of Things
 
Semantic Technologies for the Internet of Things: Challenges and Opportunities
Semantic Technologies for the Internet of Things: Challenges and Opportunities Semantic Technologies for the Internet of Things: Challenges and Opportunities
Semantic Technologies for the Internet of Things: Challenges and Opportunities
 
Defining an Open IoT Stack - Presented at IoT World 2015
Defining an Open IoT Stack - Presented at IoT World 2015Defining an Open IoT Stack - Presented at IoT World 2015
Defining an Open IoT Stack - Presented at IoT World 2015
 
Semantic technologies for the Internet of Things
Semantic technologies for the Internet of Things Semantic technologies for the Internet of Things
Semantic technologies for the Internet of Things
 
360 Company Analysis Infographic
360 Company Analysis Infographic360 Company Analysis Infographic
360 Company Analysis Infographic
 
"Pizza with the Pros" at Heartland CC 28MAR17
"Pizza with the Pros" at Heartland CC 28MAR17"Pizza with the Pros" at Heartland CC 28MAR17
"Pizza with the Pros" at Heartland CC 28MAR17
 
[英語] 小学校3年生外国語活動 年間指導計画例 [四万十市素案]
[英語] 小学校3年生外国語活動 年間指導計画例 [四万十市素案][英語] 小学校3年生外国語活動 年間指導計画例 [四万十市素案]
[英語] 小学校3年生外国語活動 年間指導計画例 [四万十市素案]
 
Send SMS Surveys to your Clients and Candidates Pre and Post-Interview
Send SMS Surveys to your Clients and Candidates Pre and Post-InterviewSend SMS Surveys to your Clients and Candidates Pre and Post-Interview
Send SMS Surveys to your Clients and Candidates Pre and Post-Interview
 
Presentazione servizi SpinData
Presentazione servizi SpinDataPresentazione servizi SpinData
Presentazione servizi SpinData
 
Master mx 75a edicion
Master mx 75a edicionMaster mx 75a edicion
Master mx 75a edicion
 
Branding e Psicologia del Colore
Branding e Psicologia del ColoreBranding e Psicologia del Colore
Branding e Psicologia del Colore
 
Oportunidad de negocios en la distribución de planes de pensión internacionales
Oportunidad de negocios en la distribución de planes de pensión internacionalesOportunidad de negocios en la distribución de planes de pensión internacionales
Oportunidad de negocios en la distribución de planes de pensión internacionales
 
Pricing matrix
Pricing matrixPricing matrix
Pricing matrix
 
UV LED
UV LEDUV LED
UV LED
 
Événementiel Magazine: Les Chatbots en force
Événementiel Magazine: Les Chatbots en forceÉvénementiel Magazine: Les Chatbots en force
Événementiel Magazine: Les Chatbots en force
 
Tabela de infracões e penalidades
Tabela de infracões e penalidadesTabela de infracões e penalidades
Tabela de infracões e penalidades
 
Progressive Caucus Letter Public Option
Progressive Caucus Letter Public OptionProgressive Caucus Letter Public Option
Progressive Caucus Letter Public Option
 

Similar to The Schema Editor of OpenIoT for Semantic Sensor Networks

People Counting: Internet of Things in Motion at JavaOne 2013
People Counting: Internet of Things in Motion at JavaOne 2013People Counting: Internet of Things in Motion at JavaOne 2013
People Counting: Internet of Things in Motion at JavaOne 2013Eurotech
 
Java in the Air: A Case Study for Java-based Environment Monitoring Stations
Java in the Air: A Case Study for Java-based Environment Monitoring StationsJava in the Air: A Case Study for Java-based Environment Monitoring Stations
Java in the Air: A Case Study for Java-based Environment Monitoring StationsEurotech
 
D-STREAMON - NFV-capable distributed framework for network monitoring
D-STREAMON - NFV-capable distributed framework for network monitoringD-STREAMON - NFV-capable distributed framework for network monitoring
D-STREAMON - NFV-capable distributed framework for network monitoringStefano Salsano
 
SensorWeb SOS Pilot RIVM/Geonovum - Status
SensorWeb SOS Pilot RIVM/Geonovum - StatusSensorWeb SOS Pilot RIVM/Geonovum - Status
SensorWeb SOS Pilot RIVM/Geonovum - StatusJust van den Broecke
 
Api Statistics- The Scalable Way
Api Statistics- The Scalable WayApi Statistics- The Scalable Way
Api Statistics- The Scalable WayWSO2
 
Leveraging the strength of OSGi to deliver a convergent IoT Ecosystem - O Log...
Leveraging the strength of OSGi to deliver a convergent IoT Ecosystem - O Log...Leveraging the strength of OSGi to deliver a convergent IoT Ecosystem - O Log...
Leveraging the strength of OSGi to deliver a convergent IoT Ecosystem - O Log...mfrancis
 
Cotopaxi - IoT testing toolkit (Black Hat Asia 2019 Arsenal)
Cotopaxi - IoT testing toolkit (Black Hat Asia 2019 Arsenal)Cotopaxi - IoT testing toolkit (Black Hat Asia 2019 Arsenal)
Cotopaxi - IoT testing toolkit (Black Hat Asia 2019 Arsenal)Jakub Botwicz
 
Big Data for Testing - Heading for Post Process and Analytics
Big Data for Testing - Heading for Post Process and AnalyticsBig Data for Testing - Heading for Post Process and Analytics
Big Data for Testing - Heading for Post Process and AnalyticsOPNFV
 
Von der Zustandsüberwachung zur vorausschauenden Wartung
Von der Zustandsüberwachung zur vorausschauenden WartungVon der Zustandsüberwachung zur vorausschauenden Wartung
Von der Zustandsüberwachung zur vorausschauenden WartungPeter Schleinitz
 
Intelligent Monitoring
Intelligent MonitoringIntelligent Monitoring
Intelligent MonitoringIntelie
 
The Role of Models in Semiconductor Smart Manufacturing
The Role of Models in Semiconductor Smart ManufacturingThe Role of Models in Semiconductor Smart Manufacturing
The Role of Models in Semiconductor Smart ManufacturingKimberly Daich
 
IoT on the Edge
IoT on the EdgeIoT on the Edge
IoT on the EdgeFIWARE
 
TechEvent Eclipse Microprofile
TechEvent Eclipse MicroprofileTechEvent Eclipse Microprofile
TechEvent Eclipse MicroprofileTrivadis
 
Managing IBM ECM platforms efficiently - IBM ECM System Monitor
Managing IBM ECM platforms efficiently - IBM ECM System MonitorManaging IBM ECM platforms efficiently - IBM ECM System Monitor
Managing IBM ECM platforms efficiently - IBM ECM System MonitorRoland Merkt
 
IoT Analytics from Edge to Cloud - using IBM Informix
IoT Analytics from Edge to Cloud - using IBM InformixIoT Analytics from Edge to Cloud - using IBM Informix
IoT Analytics from Edge to Cloud - using IBM InformixPradeep Muthalpuredathe
 
Challenges in a Microservices Age: Monitoring, Logging and Tracing on Red Hat...
Challenges in a Microservices Age: Monitoring, Logging and Tracing on Red Hat...Challenges in a Microservices Age: Monitoring, Logging and Tracing on Red Hat...
Challenges in a Microservices Age: Monitoring, Logging and Tracing on Red Hat...Martin Etmajer
 

Similar to The Schema Editor of OpenIoT for Semantic Sensor Networks (20)

People Counting: Internet of Things in Motion at JavaOne 2013
People Counting: Internet of Things in Motion at JavaOne 2013People Counting: Internet of Things in Motion at JavaOne 2013
People Counting: Internet of Things in Motion at JavaOne 2013
 
Java in the Air: A Case Study for Java-based Environment Monitoring Stations
Java in the Air: A Case Study for Java-based Environment Monitoring StationsJava in the Air: A Case Study for Java-based Environment Monitoring Stations
Java in the Air: A Case Study for Java-based Environment Monitoring Stations
 
D-STREAMON - NFV-capable distributed framework for network monitoring
D-STREAMON - NFV-capable distributed framework for network monitoringD-STREAMON - NFV-capable distributed framework for network monitoring
D-STREAMON - NFV-capable distributed framework for network monitoring
 
SensorWeb SOS Pilot RIVM/Geonovum - Status
SensorWeb SOS Pilot RIVM/Geonovum - StatusSensorWeb SOS Pilot RIVM/Geonovum - Status
SensorWeb SOS Pilot RIVM/Geonovum - Status
 
Api Statistics- The Scalable Way
Api Statistics- The Scalable WayApi Statistics- The Scalable Way
Api Statistics- The Scalable Way
 
Leveraging the strength of OSGi to deliver a convergent IoT Ecosystem - O Log...
Leveraging the strength of OSGi to deliver a convergent IoT Ecosystem - O Log...Leveraging the strength of OSGi to deliver a convergent IoT Ecosystem - O Log...
Leveraging the strength of OSGi to deliver a convergent IoT Ecosystem - O Log...
 
AF-2599-P.docx
AF-2599-P.docxAF-2599-P.docx
AF-2599-P.docx
 
Cotopaxi - IoT testing toolkit (Black Hat Asia 2019 Arsenal)
Cotopaxi - IoT testing toolkit (Black Hat Asia 2019 Arsenal)Cotopaxi - IoT testing toolkit (Black Hat Asia 2019 Arsenal)
Cotopaxi - IoT testing toolkit (Black Hat Asia 2019 Arsenal)
 
Big Data for Testing - Heading for Post Process and Analytics
Big Data for Testing - Heading for Post Process and AnalyticsBig Data for Testing - Heading for Post Process and Analytics
Big Data for Testing - Heading for Post Process and Analytics
 
Von der Zustandsüberwachung zur vorausschauenden Wartung
Von der Zustandsüberwachung zur vorausschauenden WartungVon der Zustandsüberwachung zur vorausschauenden Wartung
Von der Zustandsüberwachung zur vorausschauenden Wartung
 
Intelligent Monitoring
Intelligent MonitoringIntelligent Monitoring
Intelligent Monitoring
 
veera (updated)
veera (updated)veera (updated)
veera (updated)
 
The Role of Models in Semiconductor Smart Manufacturing
The Role of Models in Semiconductor Smart ManufacturingThe Role of Models in Semiconductor Smart Manufacturing
The Role of Models in Semiconductor Smart Manufacturing
 
IoT on the Edge
IoT on the EdgeIoT on the Edge
IoT on the Edge
 
TechEvent Eclipse Microprofile
TechEvent Eclipse MicroprofileTechEvent Eclipse Microprofile
TechEvent Eclipse Microprofile
 
Managing IBM ECM platforms efficiently - IBM ECM System Monitor
Managing IBM ECM platforms efficiently - IBM ECM System MonitorManaging IBM ECM platforms efficiently - IBM ECM System Monitor
Managing IBM ECM platforms efficiently - IBM ECM System Monitor
 
IoT Analytics from Edge to Cloud - using IBM Informix
IoT Analytics from Edge to Cloud - using IBM InformixIoT Analytics from Edge to Cloud - using IBM Informix
IoT Analytics from Edge to Cloud - using IBM Informix
 
CFI 2015 - Flow-centric Visibility Tools for OF@TEIN
CFI 2015 - Flow-centric Visibility Tools for OF@TEINCFI 2015 - Flow-centric Visibility Tools for OF@TEIN
CFI 2015 - Flow-centric Visibility Tools for OF@TEIN
 
LEGaTO: Use cases
LEGaTO: Use casesLEGaTO: Use cases
LEGaTO: Use cases
 
Challenges in a Microservices Age: Monitoring, Logging and Tracing on Red Hat...
Challenges in a Microservices Age: Monitoring, Logging and Tracing on Red Hat...Challenges in a Microservices Age: Monitoring, Logging and Tracing on Red Hat...
Challenges in a Microservices Age: Monitoring, Logging and Tracing on Red Hat...
 

More from Jean-Paul Calbimonte

Towards Collaborative Creativity in Persuasive Multi-agent Systems
Towards Collaborative Creativity in Persuasive Multi-agent SystemsTowards Collaborative Creativity in Persuasive Multi-agent Systems
Towards Collaborative Creativity in Persuasive Multi-agent SystemsJean-Paul Calbimonte
 
A Platform for Difficulty Assessment and Recommendation of Hiking Trails
A Platform for Difficulty Assessment andRecommendation of Hiking TrailsA Platform for Difficulty Assessment andRecommendation of Hiking Trails
A Platform for Difficulty Assessment and Recommendation of Hiking TrailsJean-Paul Calbimonte
 
Decentralized Management of Patient Profiles and Trajectories through Semanti...
Decentralized Management of Patient Profiles and Trajectories through Semanti...Decentralized Management of Patient Profiles and Trajectories through Semanti...
Decentralized Management of Patient Profiles and Trajectories through Semanti...Jean-Paul Calbimonte
 
Personal Data Privacy Semantics in Multi-Agent Systems Interactions
Personal Data Privacy Semantics in Multi-Agent Systems InteractionsPersonal Data Privacy Semantics in Multi-Agent Systems Interactions
Personal Data Privacy Semantics in Multi-Agent Systems InteractionsJean-Paul Calbimonte
 
SanTour: Personalized Recommendation of Hiking Trails to Health Pro files
SanTour: Personalized Recommendation of Hiking Trails to Health ProfilesSanTour: Personalized Recommendation of Hiking Trails to Health Profiles
SanTour: Personalized Recommendation of Hiking Trails to Health Pro filesJean-Paul Calbimonte
 
Multi-agent interactions on the Web through Linked Data Notifications
Multi-agent interactions on the Web through Linked Data NotificationsMulti-agent interactions on the Web through Linked Data Notifications
Multi-agent interactions on the Web through Linked Data NotificationsJean-Paul Calbimonte
 
The MedRed Ontology for Representing Clinical Data Acquisition Metadata
The MedRed Ontology for Representing Clinical Data Acquisition MetadataThe MedRed Ontology for Representing Clinical Data Acquisition Metadata
The MedRed Ontology for Representing Clinical Data Acquisition MetadataJean-Paul Calbimonte
 
Linked Data Notifications for RDF Streams
Linked Data Notifications for RDF StreamsLinked Data Notifications for RDF Streams
Linked Data Notifications for RDF StreamsJean-Paul Calbimonte
 
Fundamentos de Scala (Scala Basics) (español) Catecbol
Fundamentos de Scala (Scala Basics) (español) CatecbolFundamentos de Scala (Scala Basics) (español) Catecbol
Fundamentos de Scala (Scala Basics) (español) CatecbolJean-Paul Calbimonte
 
Connecting Stream Reasoners on the Web
Connecting Stream Reasoners on the WebConnecting Stream Reasoners on the Web
Connecting Stream Reasoners on the WebJean-Paul Calbimonte
 
RDF Stream Processing Tutorial: RSP implementations
RDF Stream Processing Tutorial: RSP implementationsRDF Stream Processing Tutorial: RSP implementations
RDF Stream Processing Tutorial: RSP implementationsJean-Paul Calbimonte
 
Query Rewriting in RDF Stream Processing
Query Rewriting in RDF Stream ProcessingQuery Rewriting in RDF Stream Processing
Query Rewriting in RDF Stream ProcessingJean-Paul Calbimonte
 
Detection of hypoglycemic events through wearable sensors
Detection of hypoglycemic events through wearable sensorsDetection of hypoglycemic events through wearable sensors
Detection of hypoglycemic events through wearable sensorsJean-Paul Calbimonte
 
RDF Stream Processing and the role of Semantics
RDF Stream Processing and the role of SemanticsRDF Stream Processing and the role of Semantics
RDF Stream Processing and the role of SemanticsJean-Paul Calbimonte
 
Scala Programming for Semantic Web Developers ESWC Semdev2015
Scala Programming for Semantic Web Developers ESWC Semdev2015Scala Programming for Semantic Web Developers ESWC Semdev2015
Scala Programming for Semantic Web Developers ESWC Semdev2015Jean-Paul Calbimonte
 
RDF Stream Processing: Let's React
RDF Stream Processing: Let's ReactRDF Stream Processing: Let's React
RDF Stream Processing: Let's ReactJean-Paul Calbimonte
 
SSN2013 Demo: tablet based visualization of transport data with SPARQLStream
SSN2013 Demo: tablet based visualization of transport data with SPARQLStreamSSN2013 Demo: tablet based visualization of transport data with SPARQLStream
SSN2013 Demo: tablet based visualization of transport data with SPARQLStreamJean-Paul Calbimonte
 

More from Jean-Paul Calbimonte (20)

Towards Collaborative Creativity in Persuasive Multi-agent Systems
Towards Collaborative Creativity in Persuasive Multi-agent SystemsTowards Collaborative Creativity in Persuasive Multi-agent Systems
Towards Collaborative Creativity in Persuasive Multi-agent Systems
 
A Platform for Difficulty Assessment and Recommendation of Hiking Trails
A Platform for Difficulty Assessment andRecommendation of Hiking TrailsA Platform for Difficulty Assessment andRecommendation of Hiking Trails
A Platform for Difficulty Assessment and Recommendation of Hiking Trails
 
Stream reasoning agents
Stream reasoning agentsStream reasoning agents
Stream reasoning agents
 
Decentralized Management of Patient Profiles and Trajectories through Semanti...
Decentralized Management of Patient Profiles and Trajectories through Semanti...Decentralized Management of Patient Profiles and Trajectories through Semanti...
Decentralized Management of Patient Profiles and Trajectories through Semanti...
 
Personal Data Privacy Semantics in Multi-Agent Systems Interactions
Personal Data Privacy Semantics in Multi-Agent Systems InteractionsPersonal Data Privacy Semantics in Multi-Agent Systems Interactions
Personal Data Privacy Semantics in Multi-Agent Systems Interactions
 
RDF data validation 2017 SHACL
RDF data validation 2017 SHACLRDF data validation 2017 SHACL
RDF data validation 2017 SHACL
 
SanTour: Personalized Recommendation of Hiking Trails to Health Pro files
SanTour: Personalized Recommendation of Hiking Trails to Health ProfilesSanTour: Personalized Recommendation of Hiking Trails to Health Profiles
SanTour: Personalized Recommendation of Hiking Trails to Health Pro files
 
Multi-agent interactions on the Web through Linked Data Notifications
Multi-agent interactions on the Web through Linked Data NotificationsMulti-agent interactions on the Web through Linked Data Notifications
Multi-agent interactions on the Web through Linked Data Notifications
 
The MedRed Ontology for Representing Clinical Data Acquisition Metadata
The MedRed Ontology for Representing Clinical Data Acquisition MetadataThe MedRed Ontology for Representing Clinical Data Acquisition Metadata
The MedRed Ontology for Representing Clinical Data Acquisition Metadata
 
Linked Data Notifications for RDF Streams
Linked Data Notifications for RDF StreamsLinked Data Notifications for RDF Streams
Linked Data Notifications for RDF Streams
 
Fundamentos de Scala (Scala Basics) (español) Catecbol
Fundamentos de Scala (Scala Basics) (español) CatecbolFundamentos de Scala (Scala Basics) (español) Catecbol
Fundamentos de Scala (Scala Basics) (español) Catecbol
 
Connecting Stream Reasoners on the Web
Connecting Stream Reasoners on the WebConnecting Stream Reasoners on the Web
Connecting Stream Reasoners on the Web
 
RDF Stream Processing Tutorial: RSP implementations
RDF Stream Processing Tutorial: RSP implementationsRDF Stream Processing Tutorial: RSP implementations
RDF Stream Processing Tutorial: RSP implementations
 
Query Rewriting in RDF Stream Processing
Query Rewriting in RDF Stream ProcessingQuery Rewriting in RDF Stream Processing
Query Rewriting in RDF Stream Processing
 
Detection of hypoglycemic events through wearable sensors
Detection of hypoglycemic events through wearable sensorsDetection of hypoglycemic events through wearable sensors
Detection of hypoglycemic events through wearable sensors
 
RDF Stream Processing and the role of Semantics
RDF Stream Processing and the role of SemanticsRDF Stream Processing and the role of Semantics
RDF Stream Processing and the role of Semantics
 
Scala Programming for Semantic Web Developers ESWC Semdev2015
Scala Programming for Semantic Web Developers ESWC Semdev2015Scala Programming for Semantic Web Developers ESWC Semdev2015
Scala Programming for Semantic Web Developers ESWC Semdev2015
 
Streams of RDF Events Derive2015
Streams of RDF Events Derive2015Streams of RDF Events Derive2015
Streams of RDF Events Derive2015
 
RDF Stream Processing: Let's React
RDF Stream Processing: Let's ReactRDF Stream Processing: Let's React
RDF Stream Processing: Let's React
 
SSN2013 Demo: tablet based visualization of transport data with SPARQLStream
SSN2013 Demo: tablet based visualization of transport data with SPARQLStreamSSN2013 Demo: tablet based visualization of transport data with SPARQLStream
SSN2013 Demo: tablet based visualization of transport data with SPARQLStream
 

Recently uploaded

办理澳洲USYD文凭证书学历认证【Q微/1954292140】办理悉尼大学毕业证书真实成绩单GPA修改/办理澳洲大学文凭证书Offer录取通知书/在读证明...
办理澳洲USYD文凭证书学历认证【Q微/1954292140】办理悉尼大学毕业证书真实成绩单GPA修改/办理澳洲大学文凭证书Offer录取通知书/在读证明...办理澳洲USYD文凭证书学历认证【Q微/1954292140】办理悉尼大学毕业证书真实成绩单GPA修改/办理澳洲大学文凭证书Offer录取通知书/在读证明...
办理澳洲USYD文凭证书学历认证【Q微/1954292140】办理悉尼大学毕业证书真实成绩单GPA修改/办理澳洲大学文凭证书Offer录取通知书/在读证明...vmzoxnx5
 
Making an RFC in Today's IETF, presented by Geoff Huston at IETF 119
Making an RFC in Today's IETF, presented by Geoff Huston at IETF 119Making an RFC in Today's IETF, presented by Geoff Huston at IETF 119
Making an RFC in Today's IETF, presented by Geoff Huston at IETF 119APNIC
 
Basic Security.pptx is a awsome PPT on your mobiel
Basic Security.pptx is a awsome PPT on your mobielBasic Security.pptx is a awsome PPT on your mobiel
Basic Security.pptx is a awsome PPT on your mobielpratamakiki860
 
IP addressing and IPv6, presented by Paul Wilson at IETF 119
IP addressing and IPv6, presented by Paul Wilson at IETF 119IP addressing and IPv6, presented by Paul Wilson at IETF 119
IP addressing and IPv6, presented by Paul Wilson at IETF 119APNIC
 
draft-harrison-sidrops-manifest-number-01, presented at IETF 119
draft-harrison-sidrops-manifest-number-01, presented at IETF 119draft-harrison-sidrops-manifest-number-01, presented at IETF 119
draft-harrison-sidrops-manifest-number-01, presented at IETF 119APNIC
 
Tari Eason Warriors Come Out To Play T Shirts
Tari Eason Warriors Come Out To Play T ShirtsTari Eason Warriors Come Out To Play T Shirts
Tari Eason Warriors Come Out To Play T Shirtsrahman018755
 
IPv6 Operational Issues (with DNS), presented by Geoff Huston at IETF 119
IPv6 Operational Issues (with DNS), presented by Geoff Huston at IETF 119IPv6 Operational Issues (with DNS), presented by Geoff Huston at IETF 119
IPv6 Operational Issues (with DNS), presented by Geoff Huston at IETF 119APNIC
 
Summary ID-IGF 2016 National Dialogue - English (tata kelola internet / int...
Summary  ID-IGF 2016 National Dialogue  - English (tata kelola internet / int...Summary  ID-IGF 2016 National Dialogue  - English (tata kelola internet / int...
Summary ID-IGF 2016 National Dialogue - English (tata kelola internet / int...ICT Watch - Indonesia
 
Power of Social Media for E-commerce.pdf
Power of Social Media for E-commerce.pdfPower of Social Media for E-commerce.pdf
Power of Social Media for E-commerce.pdfrajats19920
 
Summary IGF 2013 Bali - English (tata kelola internet / internet governance)
Summary  IGF 2013 Bali - English (tata kelola internet / internet governance)Summary  IGF 2013 Bali - English (tata kelola internet / internet governance)
Summary IGF 2013 Bali - English (tata kelola internet / internet governance)ICT Watch - Indonesia
 
Cyber Shield Up - They Shall Not Pass - Andreas Sfakianakis - Lecture at CSD ...
Cyber Shield Up - They Shall Not Pass - Andreas Sfakianakis - Lecture at CSD ...Cyber Shield Up - They Shall Not Pass - Andreas Sfakianakis - Lecture at CSD ...
Cyber Shield Up - They Shall Not Pass - Andreas Sfakianakis - Lecture at CSD ...Andreas Sfakianakis
 
Is DNS ready for IPv6, presented by Geoff Huston at IETF 119
Is DNS ready for IPv6, presented by Geoff Huston at IETF 119Is DNS ready for IPv6, presented by Geoff Huston at IETF 119
Is DNS ready for IPv6, presented by Geoff Huston at IETF 119APNIC
 
2024_hackersuli_mobil_ios_android ______
2024_hackersuli_mobil_ios_android ______2024_hackersuli_mobil_ios_android ______
2024_hackersuli_mobil_ios_android ______hackersuli
 

Recently uploaded (13)

办理澳洲USYD文凭证书学历认证【Q微/1954292140】办理悉尼大学毕业证书真实成绩单GPA修改/办理澳洲大学文凭证书Offer录取通知书/在读证明...
办理澳洲USYD文凭证书学历认证【Q微/1954292140】办理悉尼大学毕业证书真实成绩单GPA修改/办理澳洲大学文凭证书Offer录取通知书/在读证明...办理澳洲USYD文凭证书学历认证【Q微/1954292140】办理悉尼大学毕业证书真实成绩单GPA修改/办理澳洲大学文凭证书Offer录取通知书/在读证明...
办理澳洲USYD文凭证书学历认证【Q微/1954292140】办理悉尼大学毕业证书真实成绩单GPA修改/办理澳洲大学文凭证书Offer录取通知书/在读证明...
 
Making an RFC in Today's IETF, presented by Geoff Huston at IETF 119
Making an RFC in Today's IETF, presented by Geoff Huston at IETF 119Making an RFC in Today's IETF, presented by Geoff Huston at IETF 119
Making an RFC in Today's IETF, presented by Geoff Huston at IETF 119
 
Basic Security.pptx is a awsome PPT on your mobiel
Basic Security.pptx is a awsome PPT on your mobielBasic Security.pptx is a awsome PPT on your mobiel
Basic Security.pptx is a awsome PPT on your mobiel
 
IP addressing and IPv6, presented by Paul Wilson at IETF 119
IP addressing and IPv6, presented by Paul Wilson at IETF 119IP addressing and IPv6, presented by Paul Wilson at IETF 119
IP addressing and IPv6, presented by Paul Wilson at IETF 119
 
draft-harrison-sidrops-manifest-number-01, presented at IETF 119
draft-harrison-sidrops-manifest-number-01, presented at IETF 119draft-harrison-sidrops-manifest-number-01, presented at IETF 119
draft-harrison-sidrops-manifest-number-01, presented at IETF 119
 
Tari Eason Warriors Come Out To Play T Shirts
Tari Eason Warriors Come Out To Play T ShirtsTari Eason Warriors Come Out To Play T Shirts
Tari Eason Warriors Come Out To Play T Shirts
 
IPv6 Operational Issues (with DNS), presented by Geoff Huston at IETF 119
IPv6 Operational Issues (with DNS), presented by Geoff Huston at IETF 119IPv6 Operational Issues (with DNS), presented by Geoff Huston at IETF 119
IPv6 Operational Issues (with DNS), presented by Geoff Huston at IETF 119
 
Summary ID-IGF 2016 National Dialogue - English (tata kelola internet / int...
Summary  ID-IGF 2016 National Dialogue  - English (tata kelola internet / int...Summary  ID-IGF 2016 National Dialogue  - English (tata kelola internet / int...
Summary ID-IGF 2016 National Dialogue - English (tata kelola internet / int...
 
Power of Social Media for E-commerce.pdf
Power of Social Media for E-commerce.pdfPower of Social Media for E-commerce.pdf
Power of Social Media for E-commerce.pdf
 
Summary IGF 2013 Bali - English (tata kelola internet / internet governance)
Summary  IGF 2013 Bali - English (tata kelola internet / internet governance)Summary  IGF 2013 Bali - English (tata kelola internet / internet governance)
Summary IGF 2013 Bali - English (tata kelola internet / internet governance)
 
Cyber Shield Up - They Shall Not Pass - Andreas Sfakianakis - Lecture at CSD ...
Cyber Shield Up - They Shall Not Pass - Andreas Sfakianakis - Lecture at CSD ...Cyber Shield Up - They Shall Not Pass - Andreas Sfakianakis - Lecture at CSD ...
Cyber Shield Up - They Shall Not Pass - Andreas Sfakianakis - Lecture at CSD ...
 
Is DNS ready for IPv6, presented by Geoff Huston at IETF 119
Is DNS ready for IPv6, presented by Geoff Huston at IETF 119Is DNS ready for IPv6, presented by Geoff Huston at IETF 119
Is DNS ready for IPv6, presented by Geoff Huston at IETF 119
 
2024_hackersuli_mobil_ios_android ______
2024_hackersuli_mobil_ios_android ______2024_hackersuli_mobil_ios_android ______
2024_hackersuli_mobil_ios_android ______
 

The Schema Editor of OpenIoT for Semantic Sensor Networks

  • 1. The Schema Editor of OpenIoT for Semantic Sensor Networks Prem P. Jayaraman, Jean-Paul Calbimonte and Hoan Nguyen Mau Quoc RMIT University, LSIR EPFL, Insight – NUI Galway SSN-TC 2015. International Semantic Web Conference ISWC 2015 Bethlehem, PA, October 2015 @jpcik 1
  • 2. OpenIoT FP7 Open Source Cloud solution for the Internet of Things http://openiot.eu Established Open-source platform for IoT • Integrate sensors & things with cloud computing • Configure, deploy and use IoT services • Auditing/assessing privacy of IoT apps in the cloud • Semantic annotations of internet-connected objects • Energy-efficient data harvesting • Publish/subscribe for continuous processing and sensor data filtering • Mobility of sensors and QoS aspects in IoT https://github.com/OpenIotOrg/openiot Use cases and validation scenarios Smart Manufacturing Campus Guide Air Monitoring Agriculture Sensing 2
  • 3. The OpenIoT Architecture Sensor data management Semantic data management Applications 3
  • 4. Security (CAS) Physical Technology Plane Xively (Cosm - Pachube) CoAP (Sensors) MQTT Request Definition (IDE) ServiceDelivery &UtilityManager Request Presentation (IDE) Scheduler Configuration/ Monitor Console(IDE) Utility Application Plane Cloud DataBase (LSM-Light) Discovery Services X-GSN X-GSN Virtualized Plane User User 2 4 5 7 12 6 8 9 10 11 3 2 3 4 5 6 7 9 1 8 10 End User Request Discovery Services Query Content Collect Content / Mobile Sensor Configuration Content Adaptation Utility Service Feedback Service Delivery Service Visualisation Get Visualisation 11 Data Presentation 12 InfoSphere Streams 1 OthersUtility Metrics /Service Report X-GSN… Cloud Pub/Sub 5’ Pub/Sub Enabled Mobile Broker (Sensors) 0 0 Setup and Management 0’’ 0’’ 12 5’’ 0’ 0’ X-GSN 0’ OpenIoT Services and Components Application Plane 4
  • 5. Request Definition & Presentation 5 Everything nice if your data is also nice Query Operators Data sources Output Widgets Find data streams
  • 6. Request Definition & Presentation Data at this level is already RDF-ized Generated SPARQL queries 6
  • 7. OpenIoT and the SSN Ontology 7 ssn:Sensor ssn:Platform ssn:FeatureOfInterest ssn:Deployment ssn:Property cf-prop:air_temperature ssn:observes ssn:onPlatform dul:Place dul:hasLocation ssn:SensingDevicessn:inDeployment ssn:MeasurementCapability ssn:MeasurementProperty geo:lat, geo:lng xsd:double ssn:hasMeasurementProperty ssn:Accuracy ssn:ofFeature aws:TemperatureSensor aws:Thermistor ssn:Latency dim:Temperature qu:QuantityKind cf-prop:soil_temperature cf-feat:Wind cf-feat:Surface cf-feat:Medium cf-feat:air cf-feat:soil dim:VelocityOrSpeed cf-prop:wind_speed cf-prop:rainfall_rate aws:CapacitiveBead … … … Where to look for vocabs? When do we set up the onto? Who sets it up? http://lsm.deri.ie/resource/4039002668863045 http://lsm.deri.ie/ont/lsm.owl#unit "Percent" Generated URIs? Vocabulary? Literals? http://purl.oclc.org/NET/ssnx/cf/cf-property http://www.w3.org/2005/Incubator/ssn/XGR-ssn/
  • 8. Register metadata 8 If ontologies change… If we add new types of sensors? Do I have control over my sensor metadata?
  • 9. Virtual Sensor configuration 9 <virtual-sensor name="room-monitor" > <addressing> <predicate key="geographical">BC143</predicate> <predicate key="usage"> room monitoring</predicate> </addressing> <life-cycle pool-size="10" /> <output-structure> <field name="image" type="binary:image/jpeg" /> <field name="temp" type="int" /> </output-structure> <storage permanent="true" history-size="10h" /> <input-streams> <input-stream name="cam"> <stream-source alias="cam" storage-size="1“ sampling-rate=“1”> <address wrapper=“tinyos2.x"> <predicate key=“host">tinybox.epfl.ch </predicate> <predicate key=“port">9001</predicate> </address> select * from WRAPPER </stream-source> <stream-source alias="temperature1“ storage-size="1m“ sampling-rate=“1”> <address wrapper="remote"> <predicate key="type">temperature</predicate> <predicate key="geographical">BC143-N </predicate> </address> select AVG(temp1) as T1 from WRAPPER </stream-source> <stream-source alias="temperature2“ storage-size="1m“> <address wrapper="remote"> <predicate key="type“>temperature</predicate> <predicate key="geographical“>BC143-S </predicate> </address> select AVG(temp2) as T2 from WRAPPER </stream-source> <query> select cam.picture as image, temperature.T1 as temp from cam, temperature1 where temperature1.T1 > 30 AND temperature1.T1 = temperature2.T2 </query> </input-stream> </input-streams> </virtual-sensor> Some metadata is here Sensor metadata configuration
  • 10. Metadata properties 10 sensorID="http://lsm.deri.ie/resource/1099207032411018" sensorName=closedsense source=“Some source" sourceType=lausanne sensorType=lausanne information=Air Quality Sensors from Lausanne station 1 author=opensense feature="http://lsm.deri.ie/OpenIoT/opensensefeature" fields="humidity,temperature" field.temperature.propertyName="http://lsm.deri.ie/OpenIoT/ Temperature" field.temperature.unit=C field.humidity.propertyName="http://lsm.deri.ie/OpenIoT/Hu midity" field.humidity.unit=Percent field.co.propertyName="http://lsm.deri.ie/OpenIoT/CO" field.co.unit=PPM latitude=46.529838 longitude=6.596818
  • 11. Turtle RDF registration 11 <sensor/5010> rdf:type aws:CapacitiveBead,ssn:Sensor; rdfs:label "Sensor 5010"; ssn:observes aws:air_temperature ; phenonet:hasSerialNumber <sensor/5010/serial/serial2> ; ssn:onPlatform <site/narrabri/Pweather> ; ssn:ofFeature <site/narrabri/sf/sf_narrabri> ; ssn:hasMeasurementProperty <sensor/5010/accuracy/acc_1> ; prov:wasGeneratedBy "AuthorName"; DUL:hasLocation <place/location1>; lsm:hasSensorType <sensorType1>; lsm:hasSourceType "SourceType". <sensorType1> rdfs:label "TypeName". <sensor/5010/serial/serial2> rdf:type phenonet:SerialNumber; phenonet:hasId "5010" . <sensor/5010> rdf:type aws:CapacitiveBead,ssn:Sensor; rdfs:label "Sensor 5010"; ssn:observes aws:air_temperature ; phenonet:hasSerialNumber <sensor/5010/serial/serial2> ; ssn:onPlatform <site/narrabri/Pweather> ; ssn:ofFeature <site/narrabri/sf/sf_narrabri> ; ssn:hasMeasurementProperty <sensor/5010/accuracy/acc_1> ; prov:wasGeneratedBy "AuthorName"; DUL:hasLocation <place/location1>; lsm:hasSensorType <sensorType1>; lsm:hasSourceType "SourceType". <sensorType1> rdfs:label "TypeName". <sensor/5010/serial/serial2> rdf:type phenonet:SerialNumber; phenonet:hasId "5010" . A bit more of semantics Need tools for this
  • 12. Editing Ontologies? 12 Standard Tools Better Suited for ontologists Complex for small tasks No integration with IoT platofrms Generate RDF instances?
  • 13. OpenIoT Schema Editor 13 Existing Sensor Types Observed properties Users exposed to URIs as identifiers
  • 15. Schema Editor: Sensor Types 15 Observed properties New Type Measurement Capabilities Generated RDF
  • 17. Schema Editor: New Instances 17
  • 18. OpenIoT Schema Editor 18 Based on Standards Schema Editor based on SSN Ontology Facilitates Extensions Integrated with OpenIoT Sensor Types and Instances Extensible Editor? URI generation? Link to Vocab Libraries? Validation of content? Beyond OpenIoT-only?Web User Interface
  • 19. OpenIoT resources 19 OpenIoT Github https://github.com/OpenIotOrg/openiot OpenIoT VDK virtual Machine https://github.com/OpenIotOrg/openiot/wiki/VDKv2---OpenIoT-Rele Viedo Demos: http://www.youtube.com/user/OpenIoT