SlideShare a Scribd company logo
1 of 33
Download to read offline
Data Intensive Research Workshop
                      Edinburgh, UK



Ontology-based Access to Streaming
           Data Sources


                   Jean-Paul Calbimonte

                    Ontology Engineering Group
     Facultad de Informática, Universidad Politécnica de Madrid.
                       jp.calbimonte@upm.es




                                                                   Date: 16/02/2011
Introduction & Scope

• Sensor technologies
    •    Ubiquitous data capture
    •    Data processing
    •    Cheap
    •    Noisy, Unreliable
    •    Low computational, power resources, storage


• Streaming Data
    •    Continuously appended data                                         (t9, a1, a2, ... , an)
    •    Potentially infinite                                               (t8, a1, a2, ... , an)
    •    Time-stamped tuples                                   Streaming    (t7, a1, a2, ... , an)
                                                                            ...
    •    Continuous queries                                    Data
                                                                            ...
    •    Changes of values over time                                        (t1, a1, a2, ... , an)
    •    Latest used in queries                                             ...
                                                                            ...




          • Applications in security surveillance, healthcare provision, environmental
          monitoring, you name it.

Enabling Ontology-based Access to Streaming Data Sources   2
Motivation
                                 Flood risk alert:
                                South East England
                                                                                 Wave,
                                                                     Real-time   Wind,
                                                                       data      Tide
  Emergency
   planner
                                                                      Meteorological
                                                                        forecasts

                                                                      Flood defences
                                                                           data

                                                               ...
                                                               ...      Other sources
                                                               ...
             • Detect conditions likely to cause a flood
             • Present data model in terms of the user domain: e.g. Flood risk assessment



         Example:
         • “provide me with the wind speed observations average over the last minute in
           the Solent region, if it is higher than the average of the last 2 to 3 hours”




Enabling Ontology-based Access to Streaming Data Sources   3
Motivation

• Ontologies can be used as such a common model
      •      Achieve logical transparency in access to data.
      •      Hide to the user where and how data are stored.
      •      Present to the user a conceptual view of the data.
      •      Use a semantically rich formalism for the conceptual
             view.
                                                               [Calvanese2007]

• Need to provide solution for:
      •      Establish mappings between ontological models and
             streaming data source schemas
      •      Access streaming data sources through queries over
             ontology models




Enabling Ontology-based Access to Streaming Data Sources   4
Background – Ontology-based Data Access

Generate Semantic Web content from existing relational data sources
                                    Linked Data
                                        RDF
                                                            Ontological
                                                             Models

                                                                                         R2O + ODEMapster
                               e.g. SPARQL                                               D2RQ
                                                                                         SquirrelRDF
                                                                                         RDBToOnto
Ontology-based                                                                           Relational.OWL
 Data Access                              Query/Data                                     SPASQL
                                        Transformation                         Mapping
                                                                              Document   Virtuoso
                                                                                         MASTRO



                                     e.g. SQL


                                                            Relational
                                                            Schemas




 Enabling Ontology-based Access to Streaming Data Sources                 5
Web of Data




Enabling Ontology-based Access to Streaming Data Sources   6
Background – Querying Relational Data Streams

Streaming Data
   Event Streams/Acquisitional Streams
                                                                                               STREAM
                                                                                               Aurora/Borealis
                                                                                               Cougar             Query engines

                                      e1               WINDOW [tnow TO tnow-2]   SLIDE 1       TinyDB
                                                                                               SNEE

                                      e1            e2                                         CQL
                                                                                               SNEEql             Query languages
                                                                                               TinyQL
                                      e1            e2         e3


                                                                                    Transform infinite sequence
                                      e1            e2         e3       e4
                                                                                    of tuples to bounded bag

         t                t+1        t+2            t+3       t+4       t+5




                                                                    Window-to-Stream operators:
                                     ...
                                                                    convert stream of windows to
                                                                    stream of tuples
                    ...
Enabling Ontology-based Access to Streaming Data Sources                  7
Ontology-based Streaming Data Access




                                         SPARQLStream algebra(S1 S2 Sm)

                              q                          Query
                                                      translation         SNEEql                  Sensor
                         SPARQLStream (Og)                                                        Network (S1)


                                                                                                  Relational
     Client




                                                 Stream-to-Ontology                               DB (S2)
                                                                                Query Evaluator
                                                      mappings                                    Stream
                                                                                                  Engine (S3)


                                                                                                  RDF Store
                                                                              [tuples]            (Sm)
                                                         Data
                  [triples]                           translation




                                  Ontology-based Streaming Data Access Service


Enabling Ontology-based Access to Streaming Data Sources                  8
Ontology-based Streaming Data Access

• Mappings from relational streams to ontological concepts
      •      Extend stored data schema mappings
      •      Study translation semantics


• Provide with a stream query language at ontological level
      •      Use notion of RDF stream
      •      Extend SPARQL
      •      Window operator, window-to-stream operators




Enabling Ontology-based Access to Streaming Data Sources       9
SPARQLStream

•      RDF-Stream                                 ...
                                                  ...
                                                  ( <si-1,pi-1, oi-1>, ti-1 ),
                                                  ( <si, pi, oi>, ti ),
                                                  ( <si+1,pi+1, oi+1>, ti+1 ),
                                                  ...
                                                  ...



Example:
• “provide me with the wind speed observations over the last minute in the Solent Region ”



                                                                STREAM
                           cd:Observation
                                                                <http://www.semsorgrid4env.eu/ccometeo.srdf>
                                                               ...
                                cd:observationResult           ...
                                                               ( <ssg4e:Obs1,rdf:type, cd:Observation>, ti ),
                  xsd:double                                   ( <ssg4e:Obs1,cd:observationResult,”34.5”>, ti ),
                                                               ( <ssg4e:Obs2,rdf:type, cd:Observation>, ti+1 ),
                                                               ( <ssg4e:Obs2,cd:observationResult,”20.3”>, ti+1 ),
                                                               ...
                                                               ...
    Enabling Ontology-based Access to Streaming Data Sources                     10
SPARQLStream
 Example:
 • “provide me with the wind speed observations over the last minute in the Solent Region ”



                                                               PREFIX cd:
                                                               <http://www.semsorgrid4env.eu/ontologies/CoastalDefences.owl#>
                                                               PREFIX sb: <http://www.w3.org/2009/SSN-
                       cd:Observation
                                                               XG/Ontologies/SensorBasis.owl#>
                                                               PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
cd:observationResult                                           SELECT ?windspeed ?windts
                                         cd:observedProperty   FROM STREAM <http://www.semsorgrid4env.eu/ccometeo.srdf>
                                                               [ NOW – 1 MINUTE TO NOW MINUTES ]
        xsd:double                                             WHERE
                                       cd:Property             {
                                                                ?WindObs a cd:Observation;
         cd:featureOfInterest                                     cd:observationResult ?windspeed;
                                                                  cd:observationResultTime ?windts;
                                                                  cd:observedProperty ?windProperty;
                  cd:Feature                                      cd:featureOfInterest ?windFeature.
                                                                ?windFeature a cd:Feature;
                                                                  cd:locatedInRegion cd:SolentCCO.
                                                                ?windProperty a cd:WindSpeed.
                                  cd:locatedInRegion
                                                                }


                                        cd:Region




   Enabling Ontology-based Access to Streaming Data Sources       11
Ontology-based Streaming Data Access




                                        SPARQLSream algebra(S1 S2 Sm)

                              q                          Query
                                                      translation             SNEEql             Sensor
                         SPARQLSream (Og)                                                        Network (S1)


                                                                                                 Relational
     Client




                                                 Stream-to-Ontology                              DB (S2)
                                                                               Query Evaluator
                                                      mappings                                   Stream
                                                                                                 Engine (S3)


                                                                                                 RDF Store
                                                                             [tuples]            (Sm)
                                                         Data
                  [triples]                           translation




                                  Ontology-based Streaming Data Access Service


Enabling Ontology-based Access to Streaming Data Sources                12
S2O Mappings
<conceptmap-def id="Observation_wind"
name="http://www.semsorgrid4env.eu/ontologies/CoastalDefences.owl#Observation"
virtualStream="http://www.semsorgrid4env/ccometeo.srdf">
 <uri-as>
  <operation oper-id="concat">
      <arg-restriction on-param="string1">
        <has-value>http://www.semsorgrid4env.eu/data#ObservationWind</has-value>
     </arg-restriction>
     <arg-restriction on-param="string2">
        <has-column>meteostream.DateTime</has-column>
     </arg-restriction>
  </operation>
 </uri-as>



<attributemap-def
name="http://www.semsorgrid4env.eu/ontologies/CoastalDefences.owl#observationResult"
dataType="xsd:double">
<selector>
<aftertransform>
                                                                       cd:Observation
 <operation oper-id="constant">
  <arg-restriction on-param="const-val">                                                          meteostream
   <has-column>meteostream.Hs</has-column>                                                        Datetime: long
  </arg-restriction>                                                       cd:observationResult   Hs : float
                                                                                                  Lon: float
 </operation>                                                                                     Lat: float
</aftertransform>
                                                                xsd:double
</selector>
</attributemap-def>




 Enabling Ontology-based Access to Streaming Data Sources   13
S2O Mappings

  •      Union of extents-streams

                                                               envdata_rhylflats

                                                               Datetime: long
                                                               Hs : float
                                                               Lon: float
                                                               Lat: float
                                                           U
                                                               envdata_milford
                                                                                   <union name="meteostream">
                                                               Datetime: long
                cd:Observation                                 Hs : float             <map value="http://www.semsorgrid4env.eu/ontologies/
                                                               Lon: float                    CoastalDefences.owl#SolentCCO">
                                                               Lat: float
                                                           U                            <extent name="envdata_hornsea"></extent>
                      cd:observationResult                     envdata_hornsea          <extent name="envdata_rhylflats"></extent>
                                                               Datetime: long           <extent name="envdata_milford"></extent>
                                                               Hs : float               <extent name="envdata_westbay"></extent>
                                                               Lon: float
       xsd:double                                              Lat: float             </map>
                                                           U                       </union>
                                                               envdata_westbay

                                                               Datetime: long
                                                               Hs : float
                                                               Lon: float
                                                               Lat: float




Enabling Ontology-based Access to Streaming Data Sources                  14
Ontology-based Streaming Data Access




                                                  SPARQLSream algebra


                              q                          Query
                                                      translation            SNEEql              Sensor
                         SPARQLSream (Og)                                                        Network (S1)


                                                                                                 Relational
     Client




                                                 Stream-to-Ontology                              DB (S2)
                                                                               Query Evaluator
                                                      mappings                                   Stream
                                                                                                 Engine (S3)


                                                                                                 RDF Store
                                                                             [tuples]            (Sm)
                                                         Data
                  [triples]                           translation




                                  Ontology-based Streaming Data Access Service


Enabling Ontology-based Access to Streaming Data Sources                15
Query Translation

•       Queries:
            SELECT ?y
            WHERE
            { ?x a cd:Observation;
               cd:observationResult ?y. }



           SELECT ?y
           FROM STREAM < STREAM <http://www.semsorgrid4env.eu/ccometeo.srdf>
           [ NOW – 1 MINUTE TO NOW MINUTES ] >
           WHERE
           { ?x a cd:Observation;
              cd:observationResult ?y. }




    Enabling Ontology-based Access to Streaming Data Sources   16
Query Translation
•      Mappings:
                                                query                                 algebra expression
                                                                                      over sources



                   cd:Observation

                                                               envdata_milford

                                                               Datetime: long
                        cd:observationResult                   Hs : float
                                                               Lon: float
                                                               Lat: float

          xsd:double



                                                                                              Datetime
                                                                                              Hs




                                                                                      envdata_milford




    Enabling Ontology-based Access to Streaming Data Sources                     17
Query Translation
                                               envdata_rhylflats

                                               Datetime: long
                                               Hs : float
                                               Lon: float
                                               Lat: float

           cd:Observation
                                         U
                                               envdata_milford

                                               Datetime: long
                                               Hs : float
      cd:observationResult                     Lon: float
                                               Lat: float
                                         U
                                               envdata_hornsea
  xsd:double                                   Datetime: long
                                               Hs : float
                                               Lon: float                                            DateTime
                                               Lat: float                                            Hs
                                         U
                                               envdata_westbay

                                               Datetime: long
                                               Hs : float
                                               Lon: float
                                               Lat: float




                                                                             DateTime         DateTime          DateTime        DateTime
                                                                             Hs               Hs                Hs              Hs




                                                                        envdata         envdata          envdata           envdata
                                                                        _rhylflats      _milford         _hornsea          _westbay


Enabling Ontology-based Access to Streaming Data Sources           18
Ontology-based Streaming Data Access




                                                  SPARQLSream algebra


                              q                          Query
                                                      translation            SNEEql              Sensor
                         SPARQLSream (Og)                                                        Network (S1)


                                                                                                 Relational
     Client




                                                 Stream-to-Ontology                              DB (S2)
                                                                               Query Evaluator
                                                      mappings                                   Stream
                                                                                                 Engine (S3)


                                                                                                 RDF Store
                                                                             [tuples]            (Sm)
                                                         Data
                  [triples]                           translation




                                  Ontology-based Streaming Data Access Service


Enabling Ontology-based Access to Streaming Data Sources                19
Query Execution

                                                                                                              envdata_westbay
    Ontologies                                                 Feature
                                                                                                             envdata_chesil
                                                                                                                                 Streams
                                    Observation
                                                                     locatedIn
                                                                      Region
                                                                                                                      v
                                                                                                            envdata_milford
                                                  hasObservation
                                                      Result
                                                                                   S2O                              v
                                                                                  Mapping                 envdata_hornsea
                              observed
                              Property                                   Region                                   v
                                                   xsd:float                                            envdata_rhylflats
                                                                                                                v
                                                                                                        Timestamp: long
                                    WaveHeight
                                                                                                        Hs : float
                                     Property
                                                                                                        Lon: float
                                                                                                        Lat: float




PREFIX cd: <http://www.semsorgrid4env.eu/ontologies/CoastalDefences.owl#>
PREFIX sb: <http://www.w3.org/2009/SSN-XG/Ontologies/SensorBasis.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?waveheight ?wavets ?lat ?lon
FROM STREAM <http://www.semsorgrid4env/ccometeo.srdf>
WHERE
{                                                                                           (SELECT Lon,timestamp,Hs,Lat FROM envdata_rhylflats) UNION
 ?WaveObs a cd:Observation;                                                                 (SELECT Lon,timestamp,Hs,Lat FROM envdata_hornsea) UNION
   cd:observationResult ?waveheight;                                                        (SELECT Lon,timestamp,Hs,Lat FROM envdata_milford) UNION
   cd:observationResultTime ?wavets;                                                        (SELECT Lon,timestamp,Hs,Lat FROM envdata_chesil) UNION
   cd:observationResultLatitude ?lat;                                                       (SELECT Lon,timestamp,Hs,Lat FROM envdata_perranporth) UNION
   cd:observationResultLongitude ?lon;                                                      (SELECT Lon,timestamp,Hs,Lat FROM envdata_westbay) UNION
   cd:observedProperty ?waveProperty;                                                       (SELECT Lon,timestamp,Hs,Lat FROM envdata_pevenseybay)
   cd:featureOfInterest ?waveFeature.
 ?waveFeature a cd:Feature;
   cd:locatedInRegion cd:SouthEastEnglandCCO.
 ?waveProperty a cd:WaveHeight.
 }

                SPARQLStream                                                                                   SNEEql

     Enabling Ontology-based Access to Streaming Data Sources                     20
Ontology-based Streaming Data Access




                                                  SPARQLSream algebra


                              q                          Query
                                                      translation            SNEEql              Sensor
                         SPARQLSream (Og)                                                        Network (S1)


                                                                                                 Relational
     Client




                                                 Stream-to-Ontology                              DB (S2)
                                                                               Query Evaluator
                                                      mappings                                   Stream
                                                                                                 Engine (S3)


                                                                                                 RDF Store
                                                                             [tuples]            (Sm)
                                                         Data
                  [triples]                           translation




                                  Ontology-based Streaming Data Access Service


Enabling Ontology-based Access to Streaming Data Sources                21
Data Translation

• Data translation:
     Tagged tuples          SPARQL bound variables

       <ns9:sparql>                                       waveheight            wavets
       <ns9:head>
         <ns9:variable name="waveheight"/>                4.850                 1272588663
         <ns9:variable name="wavets"/>
       </ns9:head>                                        2.1230                1272587400
       <ns9:results>
         <ns9:result>
          <ns9:binding name="waveheight">
            <ns9:literal datatype="http://www.w3.org/2001/XMLSchema#double">4.850</ns9:literal>
          </ns9:binding>
          <ns9:binding name="wavets">
            <ns9:literal datatype="http://www.w3.org/2001/XMLSchema#long">1272588663</ns9:literal>
          </ns9:binding>
         </ns9:result>
         <ns9:result>
          <ns9:binding name="waveheight">
           <ns9:literal datatype="http://www.w3.org/2001/XMLSchema#double">2.1230</ns9:literal>
          </ns9:binding>
          <ns9:binding name="wavets">
           <ns9:literal datatype="http://www.w3.org/2001/XMLSchema#long">1272587400</ns9:literal>
          </ns9:binding>
         </ns9:result>
       </ns9:results>
       </ns9:sparql>
R2RML Mappings

       •      W3C RDB2RDF Working Group

       •      :waveObsResult rr:predicateMap [ rr:predicate ssg:observationResult ];
       •           rr:objectMap [ rr:column "Hs" ].
       •      :waveObsTime rr:predicateMap [ rr:predicate ssg:observationResultTime ];
       •           rr:objectMap [ rr:column "timestamp" ].
       •      :waveFoISea rr:predicateMap [ rr:predicate ssg:featureOfInterest ];
       •           rr:objectMap [ rr:object ssg:Sea ].
       •      :waveObsProp rr:predicateMap [ rr:predicate ssg:observedProperty ];
       •           rr:objectMap [ rr:object ssg:WaveHeight ].
       •
       •      :MilfordWaveObservation a rr:TriplesMapClass;
       •          rr:SQLQuery "";
       •          rr:subjectMap [ rr:column "envdata_milford.DateTime"; rr:class ssg:Observation; rr:graph
              ssg:ccometeo.srdf ];
       •      rr:tableName "envdata_milford";
       •          rr:predicateObjectMap :waveObsResult;
       •          rr:predicateObjectMap :waveObsTime;
       •          rr:predicateObjectMap :waveFoISea;
       •          rr:predicateObjectMap :waveObsProp;




Enabling Ontology-based Access to Streaming Data Sources         23
SemSorGrid4Env EU Project


                                                           1.   Universidad Politécnica de Madrid, (UPM,

                                                                Spain)

         3                                                 2.   University of Manchester (UNIMAN, UK)

                                                           3.   National and Kapodistrian University of

                                                                Athens (NKUA, Greece)
     3
                                     1
                                                           4.   University of Southampton (SOTON, UK)

                                                           5.   Deimos Space SLU (DMS, Spain)

                                                           6.   EMU Ltd. (EMU, UK)

                                                           7.   TechIdeas (TI, Spain)




                                                                                              24


Enabling Ontology-based Access to Streaming Data Sources                                           24
Project Challenges

    •              Integrated information space •                                                Rapid development
               • Discovery new sensor networks                                              • flexible and user-centric decision
               • Integrate with existing ones                                                 support systems
               • Integrate possibly other data sources                                      • Use data from multiple
                 (e.g., historical databases)                                                 autonomous independently
                                                                                              deployed sensor networks and
                                                                                              other applications.
                                          100
                                             80 th in   a p p lic a tio n s ( m a s h u p s )
                                   m id d le w a re
                                             60                                                                         Este
                                             40
                                      s e m a n tic   d a ta   in te g ra tio n   a n d   q u e ry in g

                                                                                                                        Oeste
                                             20
                                                 0                                                                      Norte
                                                       1er                      3er                     le g a c y  
                                                                                                  d a ta   s o u rc e s
                                                     trim. re gtrim.
                                   s e n s o r  n e tw o rk s
                                                                               is trie s




Enabling Ontology-based Access to Streaming Data Sources                                                                        25
Implementation



           • Design, implement
             and deploy a
             Semantic Integration
             Service
           •      Extend existing ontology-
                  based data integration
                  models to take into
                  account sensor networks
                  streaming data, semantic
                  heterogeneity and quality
                  of service




Enabling Ontology-based Access to Streaming Data Sources   26
Implementation


                                              S2O      mappings
                                                       repository




                                             Translator                     IntegrationInterface

                                                            Integration
CCO-                     SNEE                                                   QueryInterface
                                                           Query Service                                          Client
 WS                       -WS
                                     SNEEql                                      PullInterface



                                                                    IntegrateAs (DataResourceAddressList, S2O document)
                                                                                    DataResourceAddress


                                                                    SPARQLQueryFactory (DataResourceName, SPARQLSTR )
                                                addQuery                            DataResourceAddress


                                                                    GetStreamNewestItem(DataResourceName )
                                                                                                                           repeat
                                             getResultSet                                           DataSet




Enabling Ontology-based Access to Streaming Data Sources                   27
Implementation

       • Flood Warning Application



                                                                - Wave Height updated every 10 min
                                                                - Live data from sensor in buoys
                                                                - Over 30 deployments




Enabling Ontology-based Access to Streaming Data Sources   28
Conclusions

       Ontology-base data access
       • Define stream extensions for R2O
       • Define SPARQLStream language syntax and semantics
       • Define S2O mappings-based translation semantics

       Implementation
       • Enable engine support for « S2O » documents,
         SPARQLStream queries
       • Enabled engine support for SNEEql translation and
         connection
       • Limited to non-distributed scenario initially


Enabling Ontology-based Access to Streaming Data Sources   29
Future Work


     •      Ontology-based data access
              • SPARQL construct expressions, aggregates, projected
                operators
              • Implement adapters for other streaming sources
              • Add query rewriting algorithms
     • Ontology-based streaming data integration
              • Horizontal & vertical integration
              • Integrate streaming + stored data
              • RDF data sources integration
     • Streaming query optimization
              • Analyze cost models
              • Streaming sources statistics and metadata
     • Quantitative evaluation




Enabling Ontology-based Access to Streaming Data Sources   30
Planet Data

              •      EU FP7 Network of
                     Excellence



              •      Working with EPFL Global
                     Sensor Network
              •      SwissExperiment Data




Enabling Ontology-based Access to Streaming Data Sources   31
Co-authors of this work

       • Oscar Corcho – Universidad Politécnica de Madrid
       • Alasdair Gray – The University of Manchester



       • Supported by the SemSorGrid4Env FP7-223913




Enabling Ontology-based Access to Streaming Data Sources   32
Thanks!



                                              Ontology-based Access to
                                               Streaming Data Sources




                                                                 Jean-Paul Calbimonte
                                                                jp.calbimonte@upm.es




Enabling Ontology-based Access to Streaming Data Sources   33

More Related Content

Viewers also liked

Target Market Research
Target Market ResearchTarget Market Research
Target Market ResearchAneesh Ghedia
 
Kiva high school preso
Kiva high school preso Kiva high school preso
Kiva high school preso kivaspeakers
 
Agency Revenue Report
Agency Revenue ReportAgency Revenue Report
Agency Revenue ReportRodney24
 
Mandeep mann_kolkata
Mandeep mann_kolkataMandeep mann_kolkata
Mandeep mann_kolkataIPPAI
 
Bt converse 425 user manual from Telephones Online www.telephonesonline.co.uk
Bt converse 425 user manual from Telephones Online  www.telephonesonline.co.ukBt converse 425 user manual from Telephones Online  www.telephonesonline.co.uk
Bt converse 425 user manual from Telephones Online www.telephonesonline.co.ukTelephones Online
 
D2.3 Inspire Requirements Analysis
D2.3 Inspire Requirements AnalysisD2.3 Inspire Requirements Analysis
D2.3 Inspire Requirements Analysisplan4all
 
General powerpoint preso 1 2010121
General powerpoint preso 1 2010121General powerpoint preso 1 2010121
General powerpoint preso 1 2010121kivaspeakers
 
Target Audience Research
Target Audience ResearchTarget Audience Research
Target Audience ResearchAneesh Ghedia
 
Market Report Q3 2010 (It)
Market Report Q3 2010 (It)Market Report Q3 2010 (It)
Market Report Q3 2010 (It)martinpaullynch
 
Introtoa2course g325criticalperspectivesinmedia-questiona-100614040833-phpapp...
Introtoa2course g325criticalperspectivesinmedia-questiona-100614040833-phpapp...Introtoa2course g325criticalperspectivesinmedia-questiona-100614040833-phpapp...
Introtoa2course g325criticalperspectivesinmedia-questiona-100614040833-phpapp...Zoe Lorenz
 

Viewers also liked (15)

Target Market Research
Target Market ResearchTarget Market Research
Target Market Research
 
Kiva high school preso
Kiva high school preso Kiva high school preso
Kiva high school preso
 
Agency Revenue Report
Agency Revenue ReportAgency Revenue Report
Agency Revenue Report
 
2012 Buick Regal GS Wisconsin
2012 Buick Regal GS Wisconsin2012 Buick Regal GS Wisconsin
2012 Buick Regal GS Wisconsin
 
Mandeep mann_kolkata
Mandeep mann_kolkataMandeep mann_kolkata
Mandeep mann_kolkata
 
Bt converse 425 user manual from Telephones Online www.telephonesonline.co.uk
Bt converse 425 user manual from Telephones Online  www.telephonesonline.co.ukBt converse 425 user manual from Telephones Online  www.telephonesonline.co.uk
Bt converse 425 user manual from Telephones Online www.telephonesonline.co.uk
 
D2.3 Inspire Requirements Analysis
D2.3 Inspire Requirements AnalysisD2.3 Inspire Requirements Analysis
D2.3 Inspire Requirements Analysis
 
Software Park Thailand Brochure
Software Park Thailand Brochure Software Park Thailand Brochure
Software Park Thailand Brochure
 
General powerpoint preso 1 2010121
General powerpoint preso 1 2010121General powerpoint preso 1 2010121
General powerpoint preso 1 2010121
 
Target Audience Research
Target Audience ResearchTarget Audience Research
Target Audience Research
 
3.1 gcf and lcm
3.1 gcf and lcm3.1 gcf and lcm
3.1 gcf and lcm
 
Soft Skills
Soft SkillsSoft Skills
Soft Skills
 
Rent or buy
Rent or buyRent or buy
Rent or buy
 
Market Report Q3 2010 (It)
Market Report Q3 2010 (It)Market Report Q3 2010 (It)
Market Report Q3 2010 (It)
 
Introtoa2course g325criticalperspectivesinmedia-questiona-100614040833-phpapp...
Introtoa2course g325criticalperspectivesinmedia-questiona-100614040833-phpapp...Introtoa2course g325criticalperspectivesinmedia-questiona-100614040833-phpapp...
Introtoa2course g325criticalperspectivesinmedia-questiona-100614040833-phpapp...
 

Similar to DIR workshop ontology stream data access

Data-intensive profile for the VAMDC
Data-intensive profile for the VAMDCData-intensive profile for the VAMDC
Data-intensive profile for the VAMDCAstroAtom
 
Enabling ontology based streaming data access final
Enabling ontology based streaming data access finalEnabling ontology based streaming data access final
Enabling ontology based streaming data access finalJean-Paul Calbimonte
 
Publishing consuming Linked Sensor Data meetup Cuenca
Publishing consuming Linked Sensor Data meetup CuencaPublishing consuming Linked Sensor Data meetup Cuenca
Publishing consuming Linked Sensor Data meetup CuencaJean-Paul Calbimonte
 
InfoSphere streams_technical_overview_infospherusergroup
InfoSphere streams_technical_overview_infospherusergroupInfoSphere streams_technical_overview_infospherusergroup
InfoSphere streams_technical_overview_infospherusergroupIBMInfoSphereUGFR
 
Stream Reasoning - where we got so far 2011.1.18 Oxford Key Note
Stream Reasoning - where we got so far 2011.1.18 Oxford Key NoteStream Reasoning - where we got so far 2011.1.18 Oxford Key Note
Stream Reasoning - where we got so far 2011.1.18 Oxford Key NoteEmanuele Della Valle
 
Libby Bishop, Ethics Of Data Sharing Ncess Jun 09 Final
Libby Bishop, Ethics Of Data Sharing Ncess Jun 09 FinalLibby Bishop, Ethics Of Data Sharing Ncess Jun 09 Final
Libby Bishop, Ethics Of Data Sharing Ncess Jun 09 Finala.carusi
 
Internet data mining 2006
Internet data mining   2006Internet data mining   2006
Internet data mining 2006raj_vij
 
INF2190_W1_2016_public
INF2190_W1_2016_publicINF2190_W1_2016_public
INF2190_W1_2016_publicAttila Barta
 
On demand access to Big Data through Semantic Technologies
 On demand access to Big Data through Semantic Technologies On demand access to Big Data through Semantic Technologies
On demand access to Big Data through Semantic TechnologiesPeter Haase
 
Workshop on Real-time & Stream Analytics IEEE BigData 2016
Workshop on Real-time & Stream Analytics IEEE BigData 2016Workshop on Real-time & Stream Analytics IEEE BigData 2016
Workshop on Real-time & Stream Analytics IEEE BigData 2016Sabri Skhiri
 
Preserving the Inputs and Outputs of Scholarship
Preserving the Inputs and Outputs of ScholarshipPreserving the Inputs and Outputs of Scholarship
Preserving the Inputs and Outputs of Scholarshiptsbbbu
 
From Sensor Data to Triples: Information Flow in Semantic Sensor Networks
From Sensor Data to Triples: Information Flow in Semantic Sensor NetworksFrom Sensor Data to Triples: Information Flow in Semantic Sensor Networks
From Sensor Data to Triples: Information Flow in Semantic Sensor NetworksNikolaos Konstantinou
 
Machine Learning and Hadoop
Machine Learning and HadoopMachine Learning and Hadoop
Machine Learning and HadoopJosh Patterson
 
Big Data, Big Content, and Aligning Your Storage Strategy
Big Data, Big Content, and Aligning Your Storage StrategyBig Data, Big Content, and Aligning Your Storage Strategy
Big Data, Big Content, and Aligning Your Storage StrategyHitachi Vantara
 
Yde de Jong & Dave Roberts - ZooBank and EDIT: Towards a business model for Z...
Yde de Jong & Dave Roberts - ZooBank and EDIT: Towards a business model for Z...Yde de Jong & Dave Roberts - ZooBank and EDIT: Towards a business model for Z...
Yde de Jong & Dave Roberts - ZooBank and EDIT: Towards a business model for Z...ICZN
 
Tim Malthus_Towards standards for the exchange of field spectral datasets
Tim Malthus_Towards standards for the exchange of field spectral datasetsTim Malthus_Towards standards for the exchange of field spectral datasets
Tim Malthus_Towards standards for the exchange of field spectral datasetsTERN Australia
 

Similar to DIR workshop ontology stream data access (20)

Data-intensive profile for the VAMDC
Data-intensive profile for the VAMDCData-intensive profile for the VAMDC
Data-intensive profile for the VAMDC
 
Enabling ontology based streaming data access final
Enabling ontology based streaming data access finalEnabling ontology based streaming data access final
Enabling ontology based streaming data access final
 
Publishing consuming Linked Sensor Data meetup Cuenca
Publishing consuming Linked Sensor Data meetup CuencaPublishing consuming Linked Sensor Data meetup Cuenca
Publishing consuming Linked Sensor Data meetup Cuenca
 
iRODS
iRODSiRODS
iRODS
 
InfoSphere streams_technical_overview_infospherusergroup
InfoSphere streams_technical_overview_infospherusergroupInfoSphere streams_technical_overview_infospherusergroup
InfoSphere streams_technical_overview_infospherusergroup
 
Stream Reasoning - where we got so far 2011.1.18 Oxford Key Note
Stream Reasoning - where we got so far 2011.1.18 Oxford Key NoteStream Reasoning - where we got so far 2011.1.18 Oxford Key Note
Stream Reasoning - where we got so far 2011.1.18 Oxford Key Note
 
Libby Bishop, Ethics Of Data Sharing Ncess Jun 09 Final
Libby Bishop, Ethics Of Data Sharing Ncess Jun 09 FinalLibby Bishop, Ethics Of Data Sharing Ncess Jun 09 Final
Libby Bishop, Ethics Of Data Sharing Ncess Jun 09 Final
 
CSHALS 2013
CSHALS 2013CSHALS 2013
CSHALS 2013
 
Internet data mining 2006
Internet data mining   2006Internet data mining   2006
Internet data mining 2006
 
INF2190_W1_2016_public
INF2190_W1_2016_publicINF2190_W1_2016_public
INF2190_W1_2016_public
 
1105.1950
1105.19501105.1950
1105.1950
 
On demand access to Big Data through Semantic Technologies
 On demand access to Big Data through Semantic Technologies On demand access to Big Data through Semantic Technologies
On demand access to Big Data through Semantic Technologies
 
Workshop on Real-time & Stream Analytics IEEE BigData 2016
Workshop on Real-time & Stream Analytics IEEE BigData 2016Workshop on Real-time & Stream Analytics IEEE BigData 2016
Workshop on Real-time & Stream Analytics IEEE BigData 2016
 
SECURE: Semantics Empowered resCUe enviRonmEnt
SECURE: Semantics Empowered resCUe enviRonmEntSECURE: Semantics Empowered resCUe enviRonmEnt
SECURE: Semantics Empowered resCUe enviRonmEnt
 
Preserving the Inputs and Outputs of Scholarship
Preserving the Inputs and Outputs of ScholarshipPreserving the Inputs and Outputs of Scholarship
Preserving the Inputs and Outputs of Scholarship
 
From Sensor Data to Triples: Information Flow in Semantic Sensor Networks
From Sensor Data to Triples: Information Flow in Semantic Sensor NetworksFrom Sensor Data to Triples: Information Flow in Semantic Sensor Networks
From Sensor Data to Triples: Information Flow in Semantic Sensor Networks
 
Machine Learning and Hadoop
Machine Learning and HadoopMachine Learning and Hadoop
Machine Learning and Hadoop
 
Big Data, Big Content, and Aligning Your Storage Strategy
Big Data, Big Content, and Aligning Your Storage StrategyBig Data, Big Content, and Aligning Your Storage Strategy
Big Data, Big Content, and Aligning Your Storage Strategy
 
Yde de Jong & Dave Roberts - ZooBank and EDIT: Towards a business model for Z...
Yde de Jong & Dave Roberts - ZooBank and EDIT: Towards a business model for Z...Yde de Jong & Dave Roberts - ZooBank and EDIT: Towards a business model for Z...
Yde de Jong & Dave Roberts - ZooBank and EDIT: Towards a business model for Z...
 
Tim Malthus_Towards standards for the exchange of field spectral datasets
Tim Malthus_Towards standards for the exchange of field spectral datasetsTim Malthus_Towards standards for the exchange of field spectral datasets
Tim Malthus_Towards standards for the exchange of field spectral datasets
 

More from Jean-Paul Calbimonte

Towards Collaborative Creativity in Persuasive Multi-agent Systems
Towards Collaborative Creativity in Persuasive Multi-agent SystemsTowards Collaborative Creativity in Persuasive Multi-agent Systems
Towards Collaborative Creativity in Persuasive Multi-agent SystemsJean-Paul Calbimonte
 
A Platform for Difficulty Assessment and Recommendation of Hiking Trails
A Platform for Difficulty Assessment andRecommendation of Hiking TrailsA Platform for Difficulty Assessment andRecommendation of Hiking Trails
A Platform for Difficulty Assessment and Recommendation of Hiking TrailsJean-Paul Calbimonte
 
Decentralized Management of Patient Profiles and Trajectories through Semanti...
Decentralized Management of Patient Profiles and Trajectories through Semanti...Decentralized Management of Patient Profiles and Trajectories through Semanti...
Decentralized Management of Patient Profiles and Trajectories through Semanti...Jean-Paul Calbimonte
 
Personal Data Privacy Semantics in Multi-Agent Systems Interactions
Personal Data Privacy Semantics in Multi-Agent Systems InteractionsPersonal Data Privacy Semantics in Multi-Agent Systems Interactions
Personal Data Privacy Semantics in Multi-Agent Systems InteractionsJean-Paul Calbimonte
 
SanTour: Personalized Recommendation of Hiking Trails to Health Pro files
SanTour: Personalized Recommendation of Hiking Trails to Health ProfilesSanTour: Personalized Recommendation of Hiking Trails to Health Profiles
SanTour: Personalized Recommendation of Hiking Trails to Health Pro filesJean-Paul Calbimonte
 
Multi-agent interactions on the Web through Linked Data Notifications
Multi-agent interactions on the Web through Linked Data NotificationsMulti-agent interactions on the Web through Linked Data Notifications
Multi-agent interactions on the Web through Linked Data NotificationsJean-Paul Calbimonte
 
The MedRed Ontology for Representing Clinical Data Acquisition Metadata
The MedRed Ontology for Representing Clinical Data Acquisition MetadataThe MedRed Ontology for Representing Clinical Data Acquisition Metadata
The MedRed Ontology for Representing Clinical Data Acquisition MetadataJean-Paul Calbimonte
 
Linked Data Notifications for RDF Streams
Linked Data Notifications for RDF StreamsLinked Data Notifications for RDF Streams
Linked Data Notifications for RDF StreamsJean-Paul Calbimonte
 
Fundamentos de Scala (Scala Basics) (español) Catecbol
Fundamentos de Scala (Scala Basics) (español) CatecbolFundamentos de Scala (Scala Basics) (español) Catecbol
Fundamentos de Scala (Scala Basics) (español) CatecbolJean-Paul Calbimonte
 
Connecting Stream Reasoners on the Web
Connecting Stream Reasoners on the WebConnecting Stream Reasoners on the Web
Connecting Stream Reasoners on the WebJean-Paul Calbimonte
 
RDF Stream Processing Tutorial: RSP implementations
RDF Stream Processing Tutorial: RSP implementationsRDF Stream Processing Tutorial: RSP implementations
RDF Stream Processing Tutorial: RSP implementationsJean-Paul Calbimonte
 
Query Rewriting in RDF Stream Processing
Query Rewriting in RDF Stream ProcessingQuery Rewriting in RDF Stream Processing
Query Rewriting in RDF Stream ProcessingJean-Paul Calbimonte
 
Toward Semantic Sensor Data Archives on the Web
Toward Semantic Sensor Data Archives on the WebToward Semantic Sensor Data Archives on the Web
Toward Semantic Sensor Data Archives on the WebJean-Paul Calbimonte
 
Detection of hypoglycemic events through wearable sensors
Detection of hypoglycemic events through wearable sensorsDetection of hypoglycemic events through wearable sensors
Detection of hypoglycemic events through wearable sensorsJean-Paul Calbimonte
 
RDF Stream Processing and the role of Semantics
RDF Stream Processing and the role of SemanticsRDF Stream Processing and the role of Semantics
RDF Stream Processing and the role of SemanticsJean-Paul Calbimonte
 
The Schema Editor of OpenIoT for Semantic Sensor Networks
The Schema Editor of OpenIoT for Semantic Sensor NetworksThe Schema Editor of OpenIoT for Semantic Sensor Networks
The Schema Editor of OpenIoT for Semantic Sensor NetworksJean-Paul Calbimonte
 
Scala Programming for Semantic Web Developers ESWC Semdev2015
Scala Programming for Semantic Web Developers ESWC Semdev2015Scala Programming for Semantic Web Developers ESWC Semdev2015
Scala Programming for Semantic Web Developers ESWC Semdev2015Jean-Paul Calbimonte
 

More from Jean-Paul Calbimonte (20)

Towards Collaborative Creativity in Persuasive Multi-agent Systems
Towards Collaborative Creativity in Persuasive Multi-agent SystemsTowards Collaborative Creativity in Persuasive Multi-agent Systems
Towards Collaborative Creativity in Persuasive Multi-agent Systems
 
A Platform for Difficulty Assessment and Recommendation of Hiking Trails
A Platform for Difficulty Assessment andRecommendation of Hiking TrailsA Platform for Difficulty Assessment andRecommendation of Hiking Trails
A Platform for Difficulty Assessment and Recommendation of Hiking Trails
 
Stream reasoning agents
Stream reasoning agentsStream reasoning agents
Stream reasoning agents
 
Decentralized Management of Patient Profiles and Trajectories through Semanti...
Decentralized Management of Patient Profiles and Trajectories through Semanti...Decentralized Management of Patient Profiles and Trajectories through Semanti...
Decentralized Management of Patient Profiles and Trajectories through Semanti...
 
Personal Data Privacy Semantics in Multi-Agent Systems Interactions
Personal Data Privacy Semantics in Multi-Agent Systems InteractionsPersonal Data Privacy Semantics in Multi-Agent Systems Interactions
Personal Data Privacy Semantics in Multi-Agent Systems Interactions
 
RDF data validation 2017 SHACL
RDF data validation 2017 SHACLRDF data validation 2017 SHACL
RDF data validation 2017 SHACL
 
SanTour: Personalized Recommendation of Hiking Trails to Health Pro files
SanTour: Personalized Recommendation of Hiking Trails to Health ProfilesSanTour: Personalized Recommendation of Hiking Trails to Health Profiles
SanTour: Personalized Recommendation of Hiking Trails to Health Pro files
 
Multi-agent interactions on the Web through Linked Data Notifications
Multi-agent interactions on the Web through Linked Data NotificationsMulti-agent interactions on the Web through Linked Data Notifications
Multi-agent interactions on the Web through Linked Data Notifications
 
The MedRed Ontology for Representing Clinical Data Acquisition Metadata
The MedRed Ontology for Representing Clinical Data Acquisition MetadataThe MedRed Ontology for Representing Clinical Data Acquisition Metadata
The MedRed Ontology for Representing Clinical Data Acquisition Metadata
 
Linked Data Notifications for RDF Streams
Linked Data Notifications for RDF StreamsLinked Data Notifications for RDF Streams
Linked Data Notifications for RDF Streams
 
Fundamentos de Scala (Scala Basics) (español) Catecbol
Fundamentos de Scala (Scala Basics) (español) CatecbolFundamentos de Scala (Scala Basics) (español) Catecbol
Fundamentos de Scala (Scala Basics) (español) Catecbol
 
Connecting Stream Reasoners on the Web
Connecting Stream Reasoners on the WebConnecting Stream Reasoners on the Web
Connecting Stream Reasoners on the Web
 
RDF Stream Processing Tutorial: RSP implementations
RDF Stream Processing Tutorial: RSP implementationsRDF Stream Processing Tutorial: RSP implementations
RDF Stream Processing Tutorial: RSP implementations
 
Query Rewriting in RDF Stream Processing
Query Rewriting in RDF Stream ProcessingQuery Rewriting in RDF Stream Processing
Query Rewriting in RDF Stream Processing
 
Toward Semantic Sensor Data Archives on the Web
Toward Semantic Sensor Data Archives on the WebToward Semantic Sensor Data Archives on the Web
Toward Semantic Sensor Data Archives on the Web
 
Detection of hypoglycemic events through wearable sensors
Detection of hypoglycemic events through wearable sensorsDetection of hypoglycemic events through wearable sensors
Detection of hypoglycemic events through wearable sensors
 
RDF Stream Processing and the role of Semantics
RDF Stream Processing and the role of SemanticsRDF Stream Processing and the role of Semantics
RDF Stream Processing and the role of Semantics
 
The Schema Editor of OpenIoT for Semantic Sensor Networks
The Schema Editor of OpenIoT for Semantic Sensor NetworksThe Schema Editor of OpenIoT for Semantic Sensor Networks
The Schema Editor of OpenIoT for Semantic Sensor Networks
 
Scala Programming for Semantic Web Developers ESWC Semdev2015
Scala Programming for Semantic Web Developers ESWC Semdev2015Scala Programming for Semantic Web Developers ESWC Semdev2015
Scala Programming for Semantic Web Developers ESWC Semdev2015
 
Streams of RDF Events Derive2015
Streams of RDF Events Derive2015Streams of RDF Events Derive2015
Streams of RDF Events Derive2015
 

Recently uploaded

QCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesQCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesBernd Ruecker
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsRavi Sanghani
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI AgeCprime
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Hiroshi SHIBATA
 
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS:  6 Ways to Automate Your Data IntegrationBridging Between CAD & GIS:  6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integrationmarketing932765
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Strongerpanagenda
 
Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024TopCSSGallery
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfNeo4j
 
All These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFAll These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFMichael Gough
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#Karmanjay Verma
 
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security ObservabilityGlenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security Observabilityitnewsafrica
 
Data governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationData governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationKnoldus Inc.
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityIES VE
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...Wes McKinney
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality AssuranceInflectra
 
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...BookNet Canada
 
A Glance At The Java Performance Toolbox
A Glance At The Java Performance ToolboxA Glance At The Java Performance Toolbox
A Glance At The Java Performance ToolboxAna-Maria Mihalceanu
 
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical InfrastructureVarsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructureitnewsafrica
 
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...Karmanjay Verma
 

Recently uploaded (20)

QCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesQCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architectures
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and Insights
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI Age
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024
 
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS:  6 Ways to Automate Your Data IntegrationBridging Between CAD & GIS:  6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
 
Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdf
 
All These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFAll These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDF
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#Microservices, Docker deploy and Microservices source code in C#
Microservices, Docker deploy and Microservices source code in C#
 
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security ObservabilityGlenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
 
Data governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationData governance with Unity Catalog Presentation
Data governance with Unity Catalog Presentation
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a reality
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
 
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
Transcript: New from BookNet Canada for 2024: BNC SalesData and LibraryData -...
 
A Glance At The Java Performance Toolbox
A Glance At The Java Performance ToolboxA Glance At The Java Performance Toolbox
A Glance At The Java Performance Toolbox
 
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical InfrastructureVarsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
 
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
 

DIR workshop ontology stream data access

  • 1. Data Intensive Research Workshop Edinburgh, UK Ontology-based Access to Streaming Data Sources Jean-Paul Calbimonte Ontology Engineering Group Facultad de Informática, Universidad Politécnica de Madrid. jp.calbimonte@upm.es Date: 16/02/2011
  • 2. Introduction & Scope • Sensor technologies • Ubiquitous data capture • Data processing • Cheap • Noisy, Unreliable • Low computational, power resources, storage • Streaming Data • Continuously appended data (t9, a1, a2, ... , an) • Potentially infinite (t8, a1, a2, ... , an) • Time-stamped tuples Streaming (t7, a1, a2, ... , an) ... • Continuous queries Data ... • Changes of values over time (t1, a1, a2, ... , an) • Latest used in queries ... ... • Applications in security surveillance, healthcare provision, environmental monitoring, you name it. Enabling Ontology-based Access to Streaming Data Sources 2
  • 3. Motivation Flood risk alert: South East England Wave, Real-time Wind, data Tide Emergency planner Meteorological forecasts Flood defences data ... ... Other sources ... • Detect conditions likely to cause a flood • Present data model in terms of the user domain: e.g. Flood risk assessment Example: • “provide me with the wind speed observations average over the last minute in the Solent region, if it is higher than the average of the last 2 to 3 hours” Enabling Ontology-based Access to Streaming Data Sources 3
  • 4. Motivation • Ontologies can be used as such a common model • Achieve logical transparency in access to data. • Hide to the user where and how data are stored. • Present to the user a conceptual view of the data. • Use a semantically rich formalism for the conceptual view. [Calvanese2007] • Need to provide solution for: • Establish mappings between ontological models and streaming data source schemas • Access streaming data sources through queries over ontology models Enabling Ontology-based Access to Streaming Data Sources 4
  • 5. Background – Ontology-based Data Access Generate Semantic Web content from existing relational data sources Linked Data RDF Ontological Models R2O + ODEMapster e.g. SPARQL D2RQ SquirrelRDF RDBToOnto Ontology-based Relational.OWL Data Access Query/Data SPASQL Transformation Mapping Document Virtuoso MASTRO e.g. SQL Relational Schemas Enabling Ontology-based Access to Streaming Data Sources 5
  • 6. Web of Data Enabling Ontology-based Access to Streaming Data Sources 6
  • 7. Background – Querying Relational Data Streams Streaming Data Event Streams/Acquisitional Streams STREAM Aurora/Borealis Cougar Query engines e1 WINDOW [tnow TO tnow-2] SLIDE 1 TinyDB SNEE e1 e2 CQL SNEEql Query languages TinyQL e1 e2 e3 Transform infinite sequence e1 e2 e3 e4 of tuples to bounded bag t t+1 t+2 t+3 t+4 t+5 Window-to-Stream operators: ... convert stream of windows to stream of tuples ... Enabling Ontology-based Access to Streaming Data Sources 7
  • 8. Ontology-based Streaming Data Access SPARQLStream algebra(S1 S2 Sm) q Query translation SNEEql Sensor SPARQLStream (Og) Network (S1) Relational Client Stream-to-Ontology DB (S2) Query Evaluator mappings Stream Engine (S3) RDF Store [tuples] (Sm) Data [triples] translation Ontology-based Streaming Data Access Service Enabling Ontology-based Access to Streaming Data Sources 8
  • 9. Ontology-based Streaming Data Access • Mappings from relational streams to ontological concepts • Extend stored data schema mappings • Study translation semantics • Provide with a stream query language at ontological level • Use notion of RDF stream • Extend SPARQL • Window operator, window-to-stream operators Enabling Ontology-based Access to Streaming Data Sources 9
  • 10. SPARQLStream • RDF-Stream ... ... ( <si-1,pi-1, oi-1>, ti-1 ), ( <si, pi, oi>, ti ), ( <si+1,pi+1, oi+1>, ti+1 ), ... ... Example: • “provide me with the wind speed observations over the last minute in the Solent Region ” STREAM cd:Observation <http://www.semsorgrid4env.eu/ccometeo.srdf> ... cd:observationResult ... ( <ssg4e:Obs1,rdf:type, cd:Observation>, ti ), xsd:double ( <ssg4e:Obs1,cd:observationResult,”34.5”>, ti ), ( <ssg4e:Obs2,rdf:type, cd:Observation>, ti+1 ), ( <ssg4e:Obs2,cd:observationResult,”20.3”>, ti+1 ), ... ... Enabling Ontology-based Access to Streaming Data Sources 10
  • 11. SPARQLStream Example: • “provide me with the wind speed observations over the last minute in the Solent Region ” PREFIX cd: <http://www.semsorgrid4env.eu/ontologies/CoastalDefences.owl#> PREFIX sb: <http://www.w3.org/2009/SSN- cd:Observation XG/Ontologies/SensorBasis.owl#> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> cd:observationResult SELECT ?windspeed ?windts cd:observedProperty FROM STREAM <http://www.semsorgrid4env.eu/ccometeo.srdf> [ NOW – 1 MINUTE TO NOW MINUTES ] xsd:double WHERE cd:Property { ?WindObs a cd:Observation; cd:featureOfInterest cd:observationResult ?windspeed; cd:observationResultTime ?windts; cd:observedProperty ?windProperty; cd:Feature cd:featureOfInterest ?windFeature. ?windFeature a cd:Feature; cd:locatedInRegion cd:SolentCCO. ?windProperty a cd:WindSpeed. cd:locatedInRegion } cd:Region Enabling Ontology-based Access to Streaming Data Sources 11
  • 12. Ontology-based Streaming Data Access SPARQLSream algebra(S1 S2 Sm) q Query translation SNEEql Sensor SPARQLSream (Og) Network (S1) Relational Client Stream-to-Ontology DB (S2) Query Evaluator mappings Stream Engine (S3) RDF Store [tuples] (Sm) Data [triples] translation Ontology-based Streaming Data Access Service Enabling Ontology-based Access to Streaming Data Sources 12
  • 13. S2O Mappings <conceptmap-def id="Observation_wind" name="http://www.semsorgrid4env.eu/ontologies/CoastalDefences.owl#Observation" virtualStream="http://www.semsorgrid4env/ccometeo.srdf"> <uri-as> <operation oper-id="concat"> <arg-restriction on-param="string1"> <has-value>http://www.semsorgrid4env.eu/data#ObservationWind</has-value> </arg-restriction> <arg-restriction on-param="string2"> <has-column>meteostream.DateTime</has-column> </arg-restriction> </operation> </uri-as> <attributemap-def name="http://www.semsorgrid4env.eu/ontologies/CoastalDefences.owl#observationResult" dataType="xsd:double"> <selector> <aftertransform> cd:Observation <operation oper-id="constant"> <arg-restriction on-param="const-val"> meteostream <has-column>meteostream.Hs</has-column> Datetime: long </arg-restriction> cd:observationResult Hs : float Lon: float </operation> Lat: float </aftertransform> xsd:double </selector> </attributemap-def> Enabling Ontology-based Access to Streaming Data Sources 13
  • 14. S2O Mappings • Union of extents-streams envdata_rhylflats Datetime: long Hs : float Lon: float Lat: float U envdata_milford <union name="meteostream"> Datetime: long cd:Observation Hs : float <map value="http://www.semsorgrid4env.eu/ontologies/ Lon: float CoastalDefences.owl#SolentCCO"> Lat: float U <extent name="envdata_hornsea"></extent> cd:observationResult envdata_hornsea <extent name="envdata_rhylflats"></extent> Datetime: long <extent name="envdata_milford"></extent> Hs : float <extent name="envdata_westbay"></extent> Lon: float xsd:double Lat: float </map> U </union> envdata_westbay Datetime: long Hs : float Lon: float Lat: float Enabling Ontology-based Access to Streaming Data Sources 14
  • 15. Ontology-based Streaming Data Access SPARQLSream algebra q Query translation SNEEql Sensor SPARQLSream (Og) Network (S1) Relational Client Stream-to-Ontology DB (S2) Query Evaluator mappings Stream Engine (S3) RDF Store [tuples] (Sm) Data [triples] translation Ontology-based Streaming Data Access Service Enabling Ontology-based Access to Streaming Data Sources 15
  • 16. Query Translation • Queries: SELECT ?y WHERE { ?x a cd:Observation; cd:observationResult ?y. } SELECT ?y FROM STREAM < STREAM <http://www.semsorgrid4env.eu/ccometeo.srdf> [ NOW – 1 MINUTE TO NOW MINUTES ] > WHERE { ?x a cd:Observation; cd:observationResult ?y. } Enabling Ontology-based Access to Streaming Data Sources 16
  • 17. Query Translation • Mappings: query algebra expression over sources cd:Observation envdata_milford Datetime: long cd:observationResult Hs : float Lon: float Lat: float xsd:double Datetime Hs envdata_milford Enabling Ontology-based Access to Streaming Data Sources 17
  • 18. Query Translation envdata_rhylflats Datetime: long Hs : float Lon: float Lat: float cd:Observation U envdata_milford Datetime: long Hs : float cd:observationResult Lon: float Lat: float U envdata_hornsea xsd:double Datetime: long Hs : float Lon: float DateTime Lat: float Hs U envdata_westbay Datetime: long Hs : float Lon: float Lat: float DateTime DateTime DateTime DateTime Hs Hs Hs Hs envdata envdata envdata envdata _rhylflats _milford _hornsea _westbay Enabling Ontology-based Access to Streaming Data Sources 18
  • 19. Ontology-based Streaming Data Access SPARQLSream algebra q Query translation SNEEql Sensor SPARQLSream (Og) Network (S1) Relational Client Stream-to-Ontology DB (S2) Query Evaluator mappings Stream Engine (S3) RDF Store [tuples] (Sm) Data [triples] translation Ontology-based Streaming Data Access Service Enabling Ontology-based Access to Streaming Data Sources 19
  • 20. Query Execution envdata_westbay Ontologies Feature envdata_chesil Streams Observation locatedIn Region v envdata_milford hasObservation Result S2O v Mapping envdata_hornsea observed Property Region v xsd:float envdata_rhylflats v Timestamp: long WaveHeight Hs : float Property Lon: float Lat: float PREFIX cd: <http://www.semsorgrid4env.eu/ontologies/CoastalDefences.owl#> PREFIX sb: <http://www.w3.org/2009/SSN-XG/Ontologies/SensorBasis.owl#> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> SELECT ?waveheight ?wavets ?lat ?lon FROM STREAM <http://www.semsorgrid4env/ccometeo.srdf> WHERE { (SELECT Lon,timestamp,Hs,Lat FROM envdata_rhylflats) UNION ?WaveObs a cd:Observation; (SELECT Lon,timestamp,Hs,Lat FROM envdata_hornsea) UNION cd:observationResult ?waveheight; (SELECT Lon,timestamp,Hs,Lat FROM envdata_milford) UNION cd:observationResultTime ?wavets; (SELECT Lon,timestamp,Hs,Lat FROM envdata_chesil) UNION cd:observationResultLatitude ?lat; (SELECT Lon,timestamp,Hs,Lat FROM envdata_perranporth) UNION cd:observationResultLongitude ?lon; (SELECT Lon,timestamp,Hs,Lat FROM envdata_westbay) UNION cd:observedProperty ?waveProperty; (SELECT Lon,timestamp,Hs,Lat FROM envdata_pevenseybay) cd:featureOfInterest ?waveFeature. ?waveFeature a cd:Feature; cd:locatedInRegion cd:SouthEastEnglandCCO. ?waveProperty a cd:WaveHeight. } SPARQLStream SNEEql Enabling Ontology-based Access to Streaming Data Sources 20
  • 21. Ontology-based Streaming Data Access SPARQLSream algebra q Query translation SNEEql Sensor SPARQLSream (Og) Network (S1) Relational Client Stream-to-Ontology DB (S2) Query Evaluator mappings Stream Engine (S3) RDF Store [tuples] (Sm) Data [triples] translation Ontology-based Streaming Data Access Service Enabling Ontology-based Access to Streaming Data Sources 21
  • 22. Data Translation • Data translation: Tagged tuples SPARQL bound variables <ns9:sparql> waveheight wavets <ns9:head> <ns9:variable name="waveheight"/> 4.850 1272588663 <ns9:variable name="wavets"/> </ns9:head> 2.1230 1272587400 <ns9:results> <ns9:result> <ns9:binding name="waveheight"> <ns9:literal datatype="http://www.w3.org/2001/XMLSchema#double">4.850</ns9:literal> </ns9:binding> <ns9:binding name="wavets"> <ns9:literal datatype="http://www.w3.org/2001/XMLSchema#long">1272588663</ns9:literal> </ns9:binding> </ns9:result> <ns9:result> <ns9:binding name="waveheight"> <ns9:literal datatype="http://www.w3.org/2001/XMLSchema#double">2.1230</ns9:literal> </ns9:binding> <ns9:binding name="wavets"> <ns9:literal datatype="http://www.w3.org/2001/XMLSchema#long">1272587400</ns9:literal> </ns9:binding> </ns9:result> </ns9:results> </ns9:sparql>
  • 23. R2RML Mappings • W3C RDB2RDF Working Group • :waveObsResult rr:predicateMap [ rr:predicate ssg:observationResult ]; • rr:objectMap [ rr:column "Hs" ]. • :waveObsTime rr:predicateMap [ rr:predicate ssg:observationResultTime ]; • rr:objectMap [ rr:column "timestamp" ]. • :waveFoISea rr:predicateMap [ rr:predicate ssg:featureOfInterest ]; • rr:objectMap [ rr:object ssg:Sea ]. • :waveObsProp rr:predicateMap [ rr:predicate ssg:observedProperty ]; • rr:objectMap [ rr:object ssg:WaveHeight ]. • • :MilfordWaveObservation a rr:TriplesMapClass; • rr:SQLQuery ""; • rr:subjectMap [ rr:column "envdata_milford.DateTime"; rr:class ssg:Observation; rr:graph ssg:ccometeo.srdf ]; • rr:tableName "envdata_milford"; • rr:predicateObjectMap :waveObsResult; • rr:predicateObjectMap :waveObsTime; • rr:predicateObjectMap :waveFoISea; • rr:predicateObjectMap :waveObsProp; Enabling Ontology-based Access to Streaming Data Sources 23
  • 24. SemSorGrid4Env EU Project 1. Universidad Politécnica de Madrid, (UPM, Spain) 3 2. University of Manchester (UNIMAN, UK) 3. National and Kapodistrian University of Athens (NKUA, Greece) 3 1 4. University of Southampton (SOTON, UK) 5. Deimos Space SLU (DMS, Spain) 6. EMU Ltd. (EMU, UK) 7. TechIdeas (TI, Spain) 24 Enabling Ontology-based Access to Streaming Data Sources 24
  • 25. Project Challenges • Integrated information space • Rapid development • Discovery new sensor networks • flexible and user-centric decision • Integrate with existing ones support systems • Integrate possibly other data sources • Use data from multiple (e.g., historical databases) autonomous independently deployed sensor networks and other applications. 100 80 th in   a p p lic a tio n s ( m a s h u p s ) m id d le w a re 60 Este 40 s e m a n tic   d a ta   in te g ra tio n   a n d   q u e ry in g Oeste 20 0 Norte 1er 3er le g a c y   d a ta   s o u rc e s trim. re gtrim. s e n s o r  n e tw o rk s is trie s Enabling Ontology-based Access to Streaming Data Sources 25
  • 26. Implementation • Design, implement and deploy a Semantic Integration Service • Extend existing ontology- based data integration models to take into account sensor networks streaming data, semantic heterogeneity and quality of service Enabling Ontology-based Access to Streaming Data Sources 26
  • 27. Implementation S2O mappings repository Translator IntegrationInterface Integration CCO- SNEE QueryInterface Query Service Client WS -WS SNEEql PullInterface IntegrateAs (DataResourceAddressList, S2O document) DataResourceAddress SPARQLQueryFactory (DataResourceName, SPARQLSTR ) addQuery DataResourceAddress GetStreamNewestItem(DataResourceName ) repeat getResultSet DataSet Enabling Ontology-based Access to Streaming Data Sources 27
  • 28. Implementation • Flood Warning Application - Wave Height updated every 10 min - Live data from sensor in buoys - Over 30 deployments Enabling Ontology-based Access to Streaming Data Sources 28
  • 29. Conclusions Ontology-base data access • Define stream extensions for R2O • Define SPARQLStream language syntax and semantics • Define S2O mappings-based translation semantics Implementation • Enable engine support for « S2O » documents, SPARQLStream queries • Enabled engine support for SNEEql translation and connection • Limited to non-distributed scenario initially Enabling Ontology-based Access to Streaming Data Sources 29
  • 30. Future Work • Ontology-based data access • SPARQL construct expressions, aggregates, projected operators • Implement adapters for other streaming sources • Add query rewriting algorithms • Ontology-based streaming data integration • Horizontal & vertical integration • Integrate streaming + stored data • RDF data sources integration • Streaming query optimization • Analyze cost models • Streaming sources statistics and metadata • Quantitative evaluation Enabling Ontology-based Access to Streaming Data Sources 30
  • 31. Planet Data • EU FP7 Network of Excellence • Working with EPFL Global Sensor Network • SwissExperiment Data Enabling Ontology-based Access to Streaming Data Sources 31
  • 32. Co-authors of this work • Oscar Corcho – Universidad Politécnica de Madrid • Alasdair Gray – The University of Manchester • Supported by the SemSorGrid4Env FP7-223913 Enabling Ontology-based Access to Streaming Data Sources 32
  • 33. Thanks! Ontology-based Access to Streaming Data Sources Jean-Paul Calbimonte jp.calbimonte@upm.es Enabling Ontology-based Access to Streaming Data Sources 33