Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Matemática viva

1,374 views

Published on

Guia para el Pabellón del Conocimiento (Lisboa) traducida por Manuel Corcobado.

Published in: Education
  • Be the first to comment

  • Be the first to like this

Matemática viva

  1. 1. VISITA A LISBOA:PAVILHÃO DO CONHECIMENTO E PLANETARIO.DPTO. DE MATEMÁTICAS Y FISICA-QUÍMICA. IES ENRIQUE DIEZ CANEDO. 15 DE ENERO DE 2010.
  2. 2. Pozo Modelo de Fractal. Gravedad. Pila de Atmósfera esferas. de Júpiter. MATEMÁTICA VIVA1.- Anamorfosis oblicuaUna anamorfosis o anamorfismo es una deformación reversible de una imagen producida mediante unprocedimiento óptico (como por ejemplo utilizando un espejo curvo), o a través de un procedimiento matemático.Es un efecto perspectivo utilizado en arte para forzar al observador a un determinado punto de vistapreestablecido o privilegiado, desde el que el elemento cobra una forma proporcionada y clara.Detrás de la rampa exterior de acceso al primer piso del Pavilhão y pasados losmostradores de venta de recuerdos, a la entrada de un pasillo oscuro en el ladoderecho, encontrarás una marca en el suelo. Si te colocas ahí y miras (mejor conuno de los ojos tapado) para la pared curva de la derecha, verás algo parecido aesta imagen.La posición óptima de visión se consigue a una altura de entre 1,65 m y 1,70 m;si fueses más alto o más bajo, trata de hacer la corrección correspondiente.Sin embargo, moviéndote a unos pasos por el pasillo, verás la misma imagen de lapared con un aspecto similar a la fotografía.
  3. 3. Y al fondo del pasillo, el aspecto es el siguiente:En la visión monocular, hay una multitud de formas que se ven desde una cierta posición exactamente con elmismo aspecto. Esto tiene que ver con el hecho de que el observador vea "en el mismo punto" todos los puntos deuna misma semirrecta partiendo de su pupila. Explorando este hecho, se pueden dibujar formas con dimensionesespecíficas, que vistas desde un punto adecuado, dan una ilusión de una forma completamente diferente, condimensiones muy diferentes de la real. Es un ejemplo de las llamadas anamorfosis, que pueden ser de tipos muydiferentes.2.- Atractor de Sierpinski.El triángulo de Sierpiński es un fractal que se puede construir a partir de cualquier triángulo.Vas a encontrar un gran cubo revestido de mármol, con una tapa de vidrio y, dentro,en un tronco de pirámide cuadrangular invertido, un dado con caras de tres colores.Al presionar el botón, el dado es lanzado y contribuye con un punto para el dibujoProyectado en la pared de arriba: es el llamado Atractor de Sierpinski.Esa imagen fue obtenida con los puntos construidos a partir de los lanzamientos de un dado tirado por lossucesivos visitantes desde el 24 de noviembre del 2.000.3.- Billar elíptico.El billar elíptico tiene un agujero en uno de los focos de la elipse. Una bola lanzadaEn la dirección del segundo foco debería ir al agujero. Del mismo modo, una bolacolocada en el segundo foco y lanzada en cualquier dirección debe ir al agujero4.- Billar hiperbólico.La mesa de billar hiperbólico tiene una tabla en forma de rama de hipérbola. La otrarama de la hipérbola está dibujada. En el foco correspondiente a esta rama hay unagujero y el foco correspondiente a la hipérbola de la banda, está marcada en la partesuperior. Una bola lanzada en la dirección del foco de arriba deberá ir al agujero.5.- Billar parabólico.El billar parabólico tiene en una de las bandas un arco parabólico y tiene unagujero en el foco de la parábola. Una bola lanzada paralelamente a las bandaslaterales (es decir, en el sentido del eje de la parábola) va a terminar en el hoyo.6.- Calidoscopio iluminado.
  4. 4. En el pasillo, la pared de la izquierda, podrás ver un juego de espejos y, más abajo enla misma pared, tres conmutadores, podrá, encendiéndolos o apagándolos, iluminar con diferentes colorestres filamentos y observar las imágenes formadas por sus respectivas reflexiones en los espejos.En la foto adjunta se ve la parte de la imagen creada cuando los interruptores esténencendidos, la imagen está formada por tres poliedros: un icosaedro violeta exterior, un dodecaedroclaro y otro icosaedro rojo interior más pequeño. Mirando cuidadosamentelas imágenes, observe que los vértices del dodecaedro están en los centros de carastriangulares del icosaedro exterior y los vértices del icosaedro interior rojo están en loscentros de las caras pentagonales del dodecaedro.Los matemáticos dicen que el dodecaedro es dual del icosaedro exterior y el icosaedro interior es dual del dodecaedro.7.- Ciudad cuadriculada.Aquí hay una típica ciudad cuadriculada.El objeto inclinado que se ve en la fotografía, es un instrumento auxiliar para laresolución de alguno de los problemas propuestos: se trata de un conjunto de circunferenciascon distintos radios (para la distancia típica de los desplazamientos en esta ciudad).En esta ciudad todas las calles son paralelas entre sí y todas las avenidas son tambiénparalelas entre sí, siendo cada avenida perpendicular a cada calle.La distancia entre dos puntos corresponde al mínimo recorrido que existe entre esos dos puntos, formado por tozosde calles y de avenidas. En el fondo, corresponde al recorrido de un taxi entre seos dos puntos, por lo que a veces,esta distancia es conocida como la medida del taxista. Les serán propuestos varios problemas, resuélvalos.8.- Serie de dados.Módulo alusivo a las probabilidades.9.- Jaula prismática.Los tres espejos verticales que revisten interiormente esta especie de “jaula” tienen entre síángulos de 60º. Si entra por debajo dentro de la jaula observará sucesivas imágenes de sucara, distribuidas en el espacio y la creación de simetrías generadas por esas reflexiones.En el recinto principal de la exposición, encontrará otro módulo donde puede explorar lamisma idea con un pequeña jaula, introduciendo pequeñas piezas entre los espejos.10.- Hipérbola de Hendidura.El primer objeto de la exposición que se encuentra en el Pavilhão do Conhecimento, todavíaen el exterior, junto a los surtidores de agua, es la hipérbola de hendidura.¿Qué ilustra éstemódulo?Imaginemos una recta o un segmento de una recta girando alrededor de otra recta (el eje derotación); si la recta móvil dejase huella, ¿cuál sería la superficie generada por esta rectamóvil?
  5. 5. Podemos encontrar tres casos:1.- La recta móvil intercepta el eje de rotación. La superficie es un cono de revolución.2.- La recta móvil es paralela al eje de rotación. La superficie es un cilindro de revolución.3.- La recta móvil ni corta al eje de rotación ni es paralela a él. Es el caso más interesante y más complicado deimaginar. La superficie obtenida se llama hiperboloide de revolución.11.- Alambre hiperboloide.En este hiperboloide de hilos o alambre puede observar de cerca como una superficiepuede tener curvatura a pesar de estar formada por líneas rectas. Los hilos o gomas están enuna posición inicial vertical, todos paralelos entre sí, unos blancos atados a un disco encimay otros negros atados a otro disco junto al primero. Un sistema de engranajes permite que,al rodar la manivela superior, uno de los discos rueda en un sentido y el otro en el otro.Los dos conjuntos de hilos van generando una misma superficie que se llamahiperboloide de revolución.12.- Inversor Peaucelier.Dispone de dos plumas. Se puede observar cuando se dibuja algo con una de ellas, quefigura es dibujada por la otra. Para colocar cada pluma en la posición de escribir, gira laparte de arriba en el sentido de las agujas del reloj, deje la caer la pluma apoyándola en elpapel. Para recoger la pluma, levántela y gírela en sentido contrario.Baje las dos plumas. Haga figuras con la pluma azul y observe las curvas trazadas por lapluma roja. Luego haga lo contrario.Coloque las dos plumas en posición recogida. Ponga el acetato sobre el papel, de modo que el eje central delinversor pase por el orificio existente en el acetato. Lleve la pluma azul por encima de una de las figuras trazadas enel acetato. Baje la pluma roja y recorra, con la pluma azul recogida, la figura. Observe la línea trazada en color rojo.Repite para otras figuras.13.- Ventana de Leonardo.En la pared opuesta, puede, utilizando la ventana que está encima de la mesa, reproducirpersonalmente los objetos colocados allí, siguiendo tres métodos distintos, que eranusados para dibujar en perspectiva.14.- Juego de los 4 dados.En este juego de 4 dados, éstos no son todos iguales. Con esta disposición, cada jugador tiene el doble de probabilidades de ganar al que está a su derecha que de perder. Así, no hay relación de transitividad: si A es mejor que B y B es mejor que C, no implica que A sea mejor que C. Si no lo cree, encuentre algún compañero y juegue unas 20 veces para Cada combinación de dados contiguos. Recuerde que no hay ningún dado mejor que los otros; para cada uno, el que está a la izquierda es dos veces mejor.
  6. 6. 15.- Lemniscata de Bernouilli.Tres módulos formados por mecanismos que ilustran algunas propiedades geométricas.El primero permite diseñar una curva en forma de 8, conocida por el nombre deLemniscata de Bernouilli. Con una hoja nueva de papel, y con la pluma en la posición dedibujar (gire en el sentido de las agujas del reloj, y déjela caer) provoque el movimiento delas tres astas móviles para trazar una curva. Obligue a las tres astas a mantenerse en la posición de antiparalelogramo,y no las deja pasar a la posición de paralelogramo.A medida que realizamos el movimiento, irá apareciendo una curva, la Lemniscata de Bernouilli. Coloque la pluma enposición de recogida y retire el papel.16.- Máquina de catástrofes.Dos elásticos están atados, fijados en un disco que rueda libremente con poca fricción. Unode los elásticos tiene un extremo fijo y el extremo del otro elástico, está controlado por elvisitante.Desplazando lentamente el extremo controlado, puede observarse que la posición del discodepende de la posición del punto de control, pero hay ciertas situaciones en que unapequeña variación de la posición de control provoca una brusca alteración den la posiciónde equilibrio del disco. Se dice que hubo una catástrofe y de ahí el nombre del módulo.El módulo permite que el visitante pueda explorar una vasta área de control y se pueda percatar no sólo de las zonasen que surjan alteraciones de la posición de equilibrio, sino que de hecho esas alteraciones se dan cuando el puntode control se mueve en cierto sentido.17.- Operaciones lógicas.En este módulo hay 2 interruptores grandes, por debajo de las letras A y B, que el visitantepuede conectar o desconectar, encendiendo o apagando los círculos que están junto a esasletras. Hay 4 estados posibles para el conjunto de esos 2 interruptores:/ los 2 desconectados / los 2 conectados /sólo A conectado / sólo B conectado /Encima hay doce círculos que están encendidos o apagados conforme el estado de losinterruptores A y B. Por ejemplo, uno de los círculos encenderá cuando, al menos,uno de los interruptores A y B estuvieran conectados. Ensayando con los 2 interruptores lasposibilidades y verificando los efectos, intenta descubrir cual es el círculo que lecorresponde.Después verifique si la respuesta es cierta pulsando el pequeño interruptor cuadrado oscuro, que está por debajo deese círculo. Deberá iluminarse uno de los pequeños círculos, que están junto a los símbolos de las distintasoperaciones lógicas (A verdadero implica que el círculo junto a A está encendido y análogamente para B).18.- Perspectiva acelerada y retardada.Este módulo está dedicado a la perspectiva. Puedes espiar por un orificio y después, retirando la tapa superior,descubrir lo que los arquitectos designan por perspectiva acelerada y retardada.
  7. 7. 19.- Pista sinusoidal.Puede ver como serían las ruedas de los coches si se tuvieran que adaptar a una carretera que fuese una pistasinusoidal. Imagina una carretera con altos y bajos en forma de pista sinusoidal. ¿Cómo debería se la forma de lasruedas para que el coche no camine a saltos?20.- Problema de la hormiga.La superficie del bloque de madera mostrado en la foto es “el mundo” donde vive una hormiga imaginaria, quecuando se desplaza entre dos puntos cualesquiera, elige siempre, de entre todos los caminos posibles, uno más corto.Una punta del hilo está atada junto a uno de los vértices A de la base del paralelepípedo.Intenta, con la ayuda del hilo y para varios pares de puntos, encontrar los caminos máscortos uniendo los dos puntos de cada par. Descubre, un camino más corto uniendo elvértice A al vértice que le es diametralmente opuesto en la cara de arriba y vea que esecamino no atraviesa la cara superior. Intenta imaginar cual es para la hormiga, el punto Pmás alejado de A y verifique con la ayuda del hilo, si su respuesta es correcta. Para eso,comienza por apretar con los dedos el hilo estirado junto al punto P; si la respuesta fueracorrecta, debe poder llegar con ese trozo de hilo a todos puntos de la superficie porqueestán más cerca de A.21.- Habitación de Ames.En esta habitación de forma rara, podrá espiar por un orificio existente en el fondo y porel puedes observar a otras personas que hayan entrado en la habitación. Es necesario quecuando espíe haya alguien dentro preferentemente moviéndose junto a la pared que tiene2 ventanas. Observará una aparente distorsión en el tamaño relativo de las personas.Si alguna persona se desplaza, verá una aparente variación de su tamaño.22.- Rodamiento de hipérbolas.
  8. 8. Relaciona los movimientos de dos hipérbolas de forma que ellas parecen rodar unasobre la otra. Con la ayuda de dos puntos, mueve la placa de acrílico de modo quelas astas de latón formen siempre un antiparalelogramo.23.- El juego de los dados de Mozart.Mozart produjo una lista de compases acompañada de una tabla, construyendo así un método de composición quesólo exige al compositor que disponga de 2 dados. El juego le permite obtener una composición musical inédita.Imaginemos una composición musical constituida por 16 pequeños fragmentosmusicales (compases). Ahora, imaginemos que queremos componer 11 variacionespara el segundo compás, de modo que todas ellas suenen bien se tocaran tras elprimer compás. Y así para cada uno de los compases.El número de variaciones para cada compás, 11, es el número de resultados diferen-tes que se pueden obtener sumando los puntos de dos dados. Así, este juego tepropone lanzar dos dados para escoger uno de los 11 fragmentos musicales para elprimer compás; después lanzamos de nuevo los dos dados para elegir el segundocompás, y así sucesivamente hasta terminar la melodía completa con 16 compases.Con este método es posible componer varios cientos de millones de melodías.24.- Sumador binario.Permite percibir como un ordenador hace las cuentas de sumar. Use los botones adecuados y siga el circuito de lasdiferentes operaciones lógicas, representadas por las distintas luces que se van encendiendo.25.- Torres de Hanoi.El objetivo de este desafío es desplazar todos los discos de un asta hacia una de lasotras. Este juego tiene reglas bastantes simples y, por eso, es muy apreciado porniños y jóvenes. Mover cada vez un disco. Cada disco nunca podrá ser colocadosobre otro de diámetro más pequeño.Encontrará más fácilmente una estrategia para alcanzar el objetivo (en el númeromenor de jugadas posibles) si eliges el tablero cuyas piezas son de dos colores.26.- Modelo fractal.El modelo fractal es utilizado para efectuar los movimientos en un juego de Torres deHanoi. Permite encontrar la solución óptima del juego. En este caso, use el modelo de4 colores para hacer los movimientos de un juego de las Torres de Hanoi con 4 discos.Basta fijar un sentido para mover siempre el disco más pequeño y seguir los peldañosdel modelo fractal, moviendo los discos de colores que sucesivamente encuentra.Como desafío, intenta construir un modelo, para 5 discos y pruébalo con el juego.26.- Movimiento y gráfico.
  9. 9. Este módulo posee una línea azul trazada en el suelo. Moviéndose sobre esta línea podrá observar el gráfico que seobtiene cuando cambia su distancia a un sensor. El objetivo es intentar imitar el gráfico, aleatoriamente definido porel ordenador, para ello tendrá en cuenta, tanto los sentidos de aproximación y el alejamiento del sensor, como lavelocidad con que nos movemos. En los ejes de coordenadas están representados el tiempo (abscisas) y la distancia(ordenadas) en metros.27.- Trayectorias curvas.¿Cuántos caminos existen entre A y B? Podrá fijarse que existen 6 caminos queconectan estos dos puntos. Intenta descubrir cual es el camino más corto entre ellos.Puede medir las distancias de los diferentes caminos encontrados utilizando comounidad de medida su pié.Compare los diámetros de las tres circunferencias dibujadas en el suelo y vea larelación existente entre ellas. ¿Será el camino exterior mas largo que el interior?28.- Estoy en pi.Embárcate en un viaje al interior del número irracional Pi. Escoge una secuencia dedígitos, un número que le sea familiar, por ejemplo, una fecha de nacimiento o unnúmero de teléfono. Consiguió encontrar la secuencia de Pi?Introduzca esa secuencia en el ordenador y, en el caso de existir en el primermillón esa misma secuencia, el ordenador le dará las respectivas coordenadas.Una cosa es segura, la secuencia elegida se encuentra en el número Pi.29.- Una relación de las longitudes.Comience este reto contando el número de bolas necesarias para completar todo elperímetro de la circunferencia. Hacer un nuevo recuento, pero esta vez del número de bolasque se encuentran en el diámetro.Haciendo la razón entre el número de bolas del perímetro y el número debolas del diámetro encuentras una aproximación del numero irracional Pi.30.- La imagen de los sonidos.El sonido se propaga en forma de onda, onda mecánica. Cuando el sonido es puroesta onda es una sinoidal perfecta. En este módulo, mientras toca una melodía, podráobservar la curva que representa el tono fundamental de las notas que escucha.En esa onda sinoidal perfecta, podrá explorar los conceptos de periodo, frecuencia ylongitud de onda. Al pulsar una tecla en cada uno de los teclados disponiblestendrá la posibilidad de construir una curva de Lissajous.La curva de Lissajous corresponde a la superposición de dos movimientos armónicossimples en direcciones perpendiculares.31.- Pila de esferas.
  10. 10. Observe la pila de esferas que se encuentra sobre la bancada. Intenta averiguar elnúmero de bolas utilizadas en su construcción. Podrás usar una pila más pequeñapara calcular este número. Existen varias formas de contar, pero todas conducen almismo número.Podrá encontrar una relación del aumento del número de bolas de un nivel al siguientepartiendo de la parte superior de la pila. ¿Conseguiríamos hacer lo mismo de dos endos niveles?

×