
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Kmeans and Kmedoids clustering algorithms are widely used for many practical applications. Original k
medoids algorithms select initial centroids and medoids randomly that affect the quality of the resulting clusters and sometimes it
generates unstable and empty clusters which are meaningless.
expensive and requires time proportional to the product of the number of data items, number of clusters and the number of iterations.
The new approach for the k mean algorithm eliminates the deficiency of exiting k mean. It first calculates the initial centro
requirements of users and then gives better, effective and stable cluster. It also takes less execution time because it eliminates
unnecessary distance computation by using previous iteration. The new approach for k
systematically based on initial centroids. It generates stable clusters to improve accuracy.
Be the first to like this
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment