SlideShare a Scribd company logo
1 of 12
Download to read offline
CARTILLA DE
  FISICA I
 GENERAL


         SAN SALVADOR DE JUJUY, AGOSTO DEL 2009



     1
Física I

   Esta Cartilla y guía de estudio esta desarrollada a partir de los contenidos mínimos de la planificación
anual y tiene como objetivo fundamental la recuperación y repaso de los mismos, con una gran variedad
de ejercicios y algunos conceptos teóricos fundamentales, vistos en trimestres o años anteriores, además
será la herramienta imprescindible para contrarrestar la cantidad de clases no dadas debidas a la
emergencia sanitaria y otras situaciones que devienen en este fragmentado ciclo lectivo 2009.

         Cuando los alumnos finalicen el ciclo lectivo 2009, deberán saber utilizar conocimientos Físicos
básicos como así también la articulación con los trimestres y/o los años anteriores. Estos conocimientos
serán herramientas para un correcto desarrollo y desenvolvimiento en el próximo ciclo lectivo, carreras
universitarias o su vida laboral.


    Decir que la a física estudia los fenómenos naturales es popular, prefiero indicar que la misma estudia
el estado de los cuerpos (reposo ó movimiento) y la energía de los mismos.
   La Física I vista este año la vamos a desarrollar según el siguiente mapa, con la salvedad que no
tocaremos la parte del trabajo y la energía de los cuerpos por las razones expuestas al comienzo; Esta
parte será retomada en FISICA II.
   El siguiente mapa explica claramente que este año debemos asimilar para la acreditación de la materia
MOVIMIENTO Y ESTÁTICA de los cuerpos.


                                                                    M.R.U         ENCUENTRO, ALCANCE Y TIRO
                                            MOV. HORIZO TAL                         M.U.A              OBLICUO
                                                                    M.R.U.V
                          CI EMATICA                                                   M.U.R
                                                                  TIRO VERTICAL                           MRUV
                                            MOV. VERTICAL

                                MOV.             MCU              CAIDA LIBRE
                                 CIRCULAR
                 MOVIMIE TO                     MCUV                  DE INERCIA

                                            LEYES DE EWTO             DE MASA

                              DI AMICA                                DE ACCION Y REACCION
                                                                                                         POTENCIAL
      FISICA I




                                                                    ENERGIA MECANICA
                                            TABAJO Y ENERGÍA                                             CINETICA

                                                                    ENERGIA ELECTRICA
                                                                                                 ELECTROSTATICA

                                                                                                 ELECTRODINAMICA

                                                COLINEALES      de igual y                                  ΣFX = 0
                                                               Distintos
             ESTATICA                          PARALELAS        sentidos                 CONDICIONES        ΣFY = 0
             REPOSO /         SISTEMAS DE                                                DE EQUILIBRIO
            EQUILIBRIO         FUERZA                                a 90°                                  ΣM = 0
                                                CONCURRENTES         distinto de 90°

                              MAQUINAS          POLEAS           FIJA Y MOVIL
                               SIMPLES          APAREJOS        POTENCIAL Y FACTORIAL
                                                PLANO INCLINADO
                                                TORNO
                                                PALANCA       1°; 2° Y 3° GÉNERO.




                                                          2
MOVIMIENTO

  Los cuerpos al cambiar de posición con respecto al tiempo, definen el movimiento de los mismos y la
forma de la trayectoria que describen definen los tipos de movimiento, los cuales pueden ser:
RECTILINEO, CURVILINEO, PARABÓLICO, CIRCULAR, ONDULATORIO, etc...
  Por ejemplo: X‫ؠ‬e                                               En el vuelo de la mosca existen dos
                                                       ݁         posiciones “X” y “t” finales e iniciales,
                                                                                  respectivamente. Es importante diferenciar el
                      Xi                                                          espacio que recorre la mosca en este caso
                                                                                  trayectoria curvilínea (representada en color
                                                                                  negro) y es mayor al desplazamiento ( x)
                                                        ∆ܺ                        representado por el vector en color amarillo,
                                                                                  los vectores en verde flúor se conocen con el
                                                                                  nombre de vector posición inicial y final
                                                                                  ሺ‫ݑ‬௙ ሬሬሬሬሬሬԦ. No olvides que desplazamiento se
                                                                                   ሬሬሬሬሬԦ; ‫ݑ‬ప ሻ
                     Xf                                                           define como la posición final restada con la
                                                                                  inicial.  ∆ܺ ൌ ܺி െ ܺூ

                      0                       ti                      tF                           t

   Cuando describimos el movimiento de algún objeto debemos establecer respecto de que sistema de referencia lo estamos haciendo.


  Si dividimos el desplazamiento con la variación del tiempo se define una nueva magnitud física
                                                   ௑ಷష೉೔
                              ሬሬሬሬԦ
conocida como velocidad media ܸ ൌ
                                ௠                             Si dividimos el espacio total con el tiempo empleado
                                                   ௧ಷ ି௧೔
obtenemos el concepto de Rapidez.
Lo mas interesante de esto es que si a la velocidad media la dividimos nuevamente en el tiempo
                                                                  ௏ಷషೇ೔
obtenemos el concepto de aceleración media.ሬሬሬሬሬԦ ൌ
                                           ܽ௠                              . Cabe destacar que el desplazamiento, la
                                                                  ௧ಷ ି௧೔
velocidad media y la aceleración media tienen el mismo sentido vectorial.
  Cuando el desplazamiento se hace tan pequeño, aplicamos un concepto complejo del análisis matemático
(limite) que no vamos a estudiar pero que alguna vez en su carrera como estudiante universitario lo
estudiará; el mismo hace que nuestros conceptos de Velocidad y aceleración media se transformen en
conceptos instantáneos.
                                                   ௏௙ି ೇ೔
                            ሬԦ ݁
                           ܸൌ                ܽൌ
                                             Ԧ
                                  ‫ݐ‬                    ௧
   La parte de la Física que estudia el movimiento se llama:………………………… También es
estudiado por la dinámica.

MOVIMIENTO HORIZONTAL Y VERTICAL:


El movimiento depende netamente de la variación o no de la velocidad, y como es de tu conocimiento
podemos decir:
               1) Si la velocidad es constante y la aceleración a=…….. se trata de ……………-
               2) Si la velocidad……………. Y la aceleración es.………...........se trata de M.U.A.
               3) Si la velocidad……………. Y la aceleración es.………...........se trata de M.U…..
               4) El Tiro vertical es un movimiento uniformemente ……………………………..
               5) La caída Libre es un …………………………………………………………….




                                                                 3
EJERCICIOS PROPUESTOS:

      1. Pasar de unidades las siguientes velocidades:
      a) de 36 km/h a m/s. b) de 10 m/s a km/h.                  c) de 30 km/min a cm/s.
      2. Un martillo se le escapa a un albañil desde el techo de un edificio en construcción cuya altura alcanza
          25 m ¿Con que velocidad llega al suelo y cuanto tiempo tarda en caer?
      3. Un niño arroja una piedra desde un puente hacia abajo a 25,2 Km/h la que llega al agua en un
          t=1,03 seg. Calcule la altura del puente.
      4. Una pelota es lanzada hacia arriba, por el profesor de gimnasia, tardando en volver a sus manos 5 seg.
          después ¿Cuál fue la velocidad inicial de la pelota? ¿Qué altura máxima alcanzó?
      5. Un vehículo acelera desde el reposo durante 6 segundos a 3,2 m/seg2 luego mantiene su velocidad
          constante durante 35 segundos y comienza a desacelerar a -2,5 m/seg2 hasta detenerse. ¿Qué distancia
          recorrió? Realizar un gráfico aproximado del móvil.
      6. Un avión comienza su aterrizaje con una velocidad de 360 Km/h en el momento de tocar pista; si la
          desaceleración del frenado es de -5,5 m/seg2 , determine si puede aterrizar en una pista de 800 m.
      7. Un automóvil lleva una velocidad de 90 Km/h durante los primeros 2 minutos, luego acelera los próximos
          30 segundos con 2,5 m/seg2, para finalmente frenar y detenerse 22 segundos después. Grafique el
          movimiento en los ejes y luego Determine el espacio total recorrido.


Movimientos especiales: COMBINACIÓN DE MOVIMIENTOS.

E CUE TRO M.R.U                                                          Si parten en el mismo instante “t1 = t2” . Puede suceder que el
                            V1 < v2 2                                    móvil uno salga antes o después que el dos, en ese caso hay
                                                                         que tener en cuenta el tiempo de uno en función del otro
                        eTOTAL                                            “t1 = t2 ± .. seg”
                                                                         Estos problemas de encuentro se resuelven fácilmente
                                                                         sumando miembro a miembro las ecuaciones de las espacios y
        e1 = V1 .t1              e2= V2 .t2                              despejando “t” se realiza la suma ya que es fácil notar que la
                                                                         suma de e1 + e2 = espacio total que siempre es dato.



PERSECUCIÓ . M.R.U                                                   Estos problemas se resuelven igualando los espacios
  V1                                    V2                           recorridos por cada móvil y haciendo las
                                                                     consideraciones de “t1 = t2 ± .. seg.” ADEMÁS siempre
                       eTOTAL
                                                                                             “e1 = e2”
                      e1 = e2



                                              En estos tipos de movimientos hay combinación de tiro vertical y MRU uno
         TIRO OBLICUO                         obviamente produce el alcance y el otro la altura máxima Recuerde que e = V.t
         Vi                                                  2
Voy                                                        vo                           Vo
                  Hmax                        y   hmax =         pero recuerde t =         también que
                                                           2.g                           g
        Vix     A                             V ox = V o .Cos α
                                                                                Haciendo los reemplazos correspondientes
                                              V oy = V o . Sen α
                                              obtendremos las fórmulas para este tipo de movimiento.

                                              Voy       Vo .Senα        2.Vo2 .Senα .Cosα
          A = Vo . cosα.2.t además t =              =            ⇒: A =                   (alcance Horizontal)
                                               g            g                    g
                                                                2
                                                              Voy        Vo2 : Sen 2α
                                                    H max =          =
                                                              2. g            2. g


                                                                     4
EJERCICIOS PROPUESTOS

1. Dos automóviles parten al mismo instante en sentido contrario por la avenida La Bandera, hoy multi-trocha de
   acceso cada uno por su carril respectivo y para determinar en que tiempo se cruzaran; Los datos recogidos son:
   el SIENA viaja a 72 Km/h (............... m/s) y el CLIO a 35 m/s también se conoce que la avenida tiene una
   longitud de 4000 m ( 4 Km desde la cancha Gimnasia hasta la estación de servicio “Y.P.F”). Determine el
   tiempo mencionado anteriormente y el espacio que cada vehículo recorre.
2. Calcule el problema anterior si el automóvil más veloz parte 2 segundos después del primero.
3. Bruno corre a 1,5 m/s y 2 segundos después sale a su alcance Diego que es mas veloz y corre con una velocidad
   de 2,2 m/s. Usted debe calcular en cuanto tiempo alcanza Diego a Bruno y a que distancia lo hace.
4. Se arroja un proyectil desde un mortero militar, el cual cabe aclarar esta inclinado 40°. La ignición de la
   pólvora produce una propulsión al proyectil que hace alcanzar os 300 m / seg. Usted deberá calcular la máxima
   altura alcanzada por el mismo y el alcance máximo horizontal.
5. Un móvil se dirige a 90 Km/h (con MRU) hacia otro que se mueve en sentido contrario a 120 Km/h y con una
   aceleración de 3 m/s2, sabiendo que están separados 2,8 Km ¿En cuántos segundos impactaran? ¿Qué espacio
   recorrió c/u?
6. En una esquina, una persona ve como un muchacho pasa en su auto a una velocidad de 20 m/s. Diez segundos
   después, una patrulla de la policía pasa por la misma esquina persiguiéndolo a 30 m/s. Considerando que ambos
   mantienen su velocidad constante, resolver gráfica y analíticamente: a) ¿A qué distancia de la esquina, la
   policía alcanzará al muchacho? b) ¿En qué instante se produce el encuentro?                   Respuesta: a) 600 m
   b) 30 s
7. Se arroja hacia arriba una pelotita de goma a 20 m/seg. Y desde la terraza de un edificio de 45 m de alto se deja
   caer otra ¿Cuál será el tiempo de encuentro? ¿A qué altura se cruzarán?
8. Se dispara un misil con una inclinación de 26°, el mismo parte con una velocidad de 560 m/seg; en ese mismo
   instante desde el punto que marca la altura máxima con la horizontal parte un tanque a 60 Km/h con una
   aceleración d e2,2 m/s: se desea saber: a) Altura Máxima alcanzada b) Alcance horizontal del proyectil
   c) Tiempo en hacer impacto. d) Tiempo de alcance del proyectil al tanque.


MOVIMIENTO CIRCULAR

El movimiento circular lógicamente llamado así por la forma de la trayectoria, pero lo mas relevante de este tipo de
movimiento es que al hacer girar un cuerpo alrededor de un punto fijo (centro) aparecen dos velocidades y tres
aceleraciones (sin contar la aceleración total); estas productos del sentido del giro, representadas a partir de la regla
de la mano derecha o el tirabuzón. Estas son las dos velocidades en distintos sentidos de giro:

                                                                                ܸ௧
    ߱             ܸ௧

                                                                  ܸ௧
  ܸ௧
                               ܸ௧                                                           ܸ௧

                                                                                                 -߱
Estas son las tres aceleraciones en distintos sentidos de giro:

           ߛ            ܽ௧
                       ܽ஼௣
                                                                       ܽ௧   ܽ஼௣

                                                                                                      -ߛ

                                                            5
La existencia de un movimiento CIRCULAR uniforme y variado da como resultado una semejanza de
fórmulas entre el movimiento RECTILÍ EO uniforme y variado con la simbología distinta (Recuerde que
habíamos comparado la caída libre y el tiro vertical con el MRUV) donde el espacio recorrido “e” lo
reemplazaba la altura “h”, la aceleración “a” correspondía a la aceleración de la gravedad “g”. En este
caso el espacio recorrido corresponderá a un ángulo, o arco recorrido, la aceleración puede ser tangencial
                           ௘           ෝ
                                       ఈ          ෢
                                                  ஺஻
                     ሬԦ
o angular. Por ej.: ܸ ൌ ; ߱ = ; ܸ =
                                 ሬԦ        ሬԦ          Estas fórmulas referidas a la velocidad y en todos
                            ௧           ௧          ௧
los casos es espacio recorrido sobre tiempo, y para el movimiento circular tenemos ángulo recorrido o
arco recorrido sobre tiempo.
                                                                                         ଵ
 Comparemos otras fórmulas del movimiento vertical, horizontal y circular: ݁ = ܸ௜ . ‫ ± ݐ‬ଶ . ܽ. ‫ ݐ‬ଶ ;
           ଵ                     ଵ
h= ܸ௜ . ‫ ± ݐ‬ଶ . ݃. ‫ ݐ‬ଶ ; ߙ = ߱௜ . ‫ ± ݐ‬ଶ . ߛ. ‫ ݐ‬ଶ Observe que tienen la misma forma matematica.
                         ො
    Lo aparentemente extraño del movimiento circular “UNIFORME” es que aparece una aceleración
centrípeta, cuando es claro para usted como alumno que si el movimiento es uniforme, la velocidad no
varía por lo tanto la aceleración es nula ¿Entonces que sucede con la velocidad en el MRU? La respuesta
es sencilla: “El vector velocidad tangencial (Graf. Anteriores) es constante en intensidad pero no en
dirección y sentido”…Esta Variación de la velocidad da origen a la aceleración”; como bien hemos
deducido en su carpeta.
  La aceleración origina el movimiento circular variado, a un próximo capitulo fundamental de la física
que es la Dinámica de la partícula.

EJERCICIOS PROPUESTOS

    1. El lavarropas de mi casa centrifuga con una velocidad angular de 5000 RPM, a cuantas vueltas o
        revoluciones por seg equivale?
    2. Un cuerpo gira atado a un piolín de 1,3 m de largo, a razón de 7 vueltas cada 4 segundos, usted
        deberá: a. Calcular las dos velocidades.
                b. Calcular la frecuencia de giro.
                c. Reducir la ߱ a RPM y la ܸ௧ en Km/h.
                d. Calcular aceleración centrípeta.
    3. Calcular Las dos velocidades de una rueda de bicicleta de 68 Cm de diámetro si gira con una
frecuencia de 2 V/S.
    4. Los coches de F1, alcanzan alcanza en una recta una aceleración de 0 a 100 Km/h en apenas 1,7
seg, los diámetros de las ruedas por reglamento no deben exceder los 660 mm de diámetro, con esta data
teórica, usted deberá calcular: a. Aceleración tangencial. c. Aceleración centrípeta. b. Aceleración angular.
5. La velocidad tangencial de un punto material situado a 0,6 m del centro de giro es de 15 m/s. Hallar:
a) ¿Cuál es su velocidad angular?.
b) ¿Cuál es su período?.
6. Si una hélice da 18000 R.P.M., decir: a) ¿Cuál es su frecuencia? b) ¿Cuál es su período?

DINAMICA SIMPLE DE LA PARTICULA

 Sabemos que este capitulo es uno de los mas importantes en el estudio del movimiento, y se diferencia
con la cinemática por estudiar y considerar la causa productora del movimiento, como quedó claro en el
aula es “LA FUERZA”.
  Básicamente este capitulo esta desarrollado a partir de las tres leyes o principios del genial Isaac
Newton; que usted deberá repasarlas y razonarlas.
 La fórmula fundamental de la dinámica esta dada por el 2° principio, que define la masa de cualquier
cuerpo, como la relación entre la fuerza aplicada y la aceleración que esta adquiere.
                        Ԧ
  Algo de fórmulas: ‫ ܽ .݉ = ܨ‬si el cuerpo se mueve en forma rectilínea, tenemos también una
comparación con la fuerza vertical producida naturalmente por los cuerpos ሬሬԦ = ࢓. ࢍ ; si el cuerpo se
                                                                              ࡼ


                                                       6
mueve con movimiento circular la fuerza que aparece será la fuerza centrípeta, que es de igual intensidad
                                               ሬሬሬሬሬሬሬሬሬሬԦ ሬሬሬሬሬሬሬሬሬሬԦ
pero sentido contrario a la Fuerza centrifuga” หࡲ ห ൌ หࡲ ห ൌ ࢓. ࢇ “
                                                                ࡯ࢌ          ࡯࢖             ࡯࢖


EJERCICIOS PROPUESTOS(http://www.fisicanet.com.ar)

1) Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s ².
                                                                                        Respuesta: 4 kg
2) ¿Qué masa tiene una persona de 65 kgf de peso en:
a) Un lugar donde la aceleración de la gravedad es de 9,8 m/s ².
b) Otro lugar donde la aceleración de la gravedad es de 9,7 m/s ². Respuesta: 66,33 kg y 67,01 kg
3) Si la gravedad de la Luna es de 1,62 m/s ², calcular el peso de una persona en ella, que en la Tierra es
de 80 kgf. Respuesta: 13,22 kgf
4) ¿Qué aceleración tiene un cuerpo que pesa 40 kgf, cuando actúa sobre él una fuerza de 50 N?.
                                                                                        Respuesta: 1,25 m/s ²
5) Las masas A, B, C, deslizan sobre una superficie horizontal debido a la fuerza aplicada F = 10 N.
Calcular la fuerza que A ejerce sobre B y la fuerza que B ejerce sobre C.
                                   m A =10 kg
                                  m B = 7 kg
                                  m C = 5 kg                  Respuesta: 4,54 N y 3,18 N

                                   ሬሬሬሬԦ
6) Una pelotita de madera de 250 ݃‫ ݎ‬gira impetuosamente con un radio de 2m a razón de 100 vueltas
                                                                  ሬሬሬሬሬԦ
cada 10 seg, ¿Qué valor tendrá la fuerza centrifuga? ( en Dyn y ‫.)݃ܭ‬
7) Una moto derrapa en una curva, ¿Qué valor tiene la fuerza centrifuga, responsable de la caída?
DATOS: Masa de la moto con el piloto ݉ = 486 ‫ܸ ݃ܭ‬௙ ൌ 33,2 ݉⁄‫ܴ ݏ‬௖௨௥௩௔ ൌ 12 ݉ ܴோ௨௘ௗ௔ ൌ 22 ‫݉ܥ‬
                                                   ሬሬሬሬሬԦ
           Calcule también la velocidad angular de las ruedas.
8) Calcular la fuerza centrifuga del lavarropas, si en la publicidad dice que la carga máxima es de
       ሬሬሬሬሬԦ
݉ = 5 ‫ ݃ܭ‬y gira a 5000 R.P.M. y el tambor tiene un diámetro de 80 Cm.

  Después de estos problemas, básicos, debemos hacer un detenimiento para luego complejizar la DINÁMICA de la partícula, ya que la misma
esta íntimamente ligada al estudio de la FUERZA, la cual tiene todo un capitulo dedicado al estudio de la misma, conocido como ESTATICA.

ESTÁTICA

 Como dijimos este capitulo de la física esta dedicada al estudio de las fuerzas, su descomposición en los
ejes, tipo de sistemas, momento de una fuerza, las tensiones y reacciones que también son fuerzas y
algunas máquinas simples.
  La palabra fuerza es muy utilizada y la repetí demasiado veces pero ¿Qué es la fuerza?: Hay infinitas
definiciones en los libros y la Web, yo prefiero definirla como una magnitud vectorial capaz de modificar
todo estado (Reposo o movimiento) y es la causante de todos los fenómenos mecánicos del universo.
  Observen que dije “MAGNITUD VECTORIAL” y vamos a definir vector simplemente como un
segmento orientado (ver figura).                          RECTA DE ACCIÓN
                                                                                                Para representar vectores de cualquier tipo
                                                                                                ya sea vector velocidad, aceleración,
 La fig. Muestra los elementos de                                           A EXTREMO
 un vector; forma con la cual se  MÓDULO O                                                      desplazamiento o como lo haremos
 representa a la FUERZA; observe INTENSIDAD                                                     mayormente FUERZAS, utilizaremos
                                                                                                escalas, haremos que el Cm de nuestra
 que es un segmento pero con una                                                 SENTIDO
                                                                                                regla sea equivalente a los Néwtons,
 orientación.
                                                                                                Dynas o Kilogramos fuerzas necesarios.

                                     ࢻ DIRECCIÓN
                                     ෝ
                         O
                          ORIGEN

                                                                      7
PROBLEMAS PROPUESTOS

     1. Graficar las siguientes fuerzas:                            a) F=1000 N              b) 300000 dyn                      ሬሬሬሬሬԦ
                                                                                                                         c) 250 ‫݃ܭ‬
                                                                                   ௠                            ௄௠                       ௠
     2.        Graficar los siguientes vectores:                    a) ܽ = 20
                                                                       Ԧ                        ሬԦ
                                                                                             b) ܸ = 108                     ሬԦ
                                                                                                                         c) ܸ = 250
                                                                                   ௌమ                           ௛                        ௌ



SISTEMA DE FUERZAS

   Con frecuencia varias fuerzas actúan al mismo tiempo sobre un mismo cuerpo a esto llamamos sistema
de fuerzas y la definiremos como el “conjunto de fuerzas que actúan simultáneamente sobre un mismo
cuerpo”. Cada una de las fuerzas actuantes recibe el nombre de componente del sistema.
    Cuando varias fuerzas actúan sobre un mismo cuerpo, siempre es posible sustituirlas por una única
fuerza capaz de producir el mismo efecto, dicha fuerza recibe el nombre de RESULTA TE y la reacción
a la fuerza resultante se la conoce como EQUILIBRA TE.
  El siguiente cuadro es un resumen de los distintos sistemas de fuerza conocidos, cabe destacar que
existen dos métodos de resolución de un sistema vectorial para obtener la resultante “GRÁFICO Y
A LÍTICO”, el método gráfico varía según el sistema aunque siempre la fórmula final para todos los
gráficos es el y resulta de multiplicar la medida hecha con la regla del dibujo, y la escala elegida a
conveniencia por cada uno.                ܴ = ‫ܦܧܯ‬ௗ௜௕ . ‫݈ܽܽܿݏܧ‬
                                          F2
         F1             F2                       R        F1                       F1= α1=30°                                                F2
                        R                                                          F2 = α2= 180° Solo como
  R = F1 + F2                                         R = F1 - F2                  F3 = α3=330° ejemplo                                       F1

                                                                                                                                             R
F2                                   F2
                             F2            R                    R                                                                   F3
     R              R                                                     F2
          F1            F1                      F1                   F1            ∑F        x   =0                 ∑F   Y   =0
                                            2         2
                                   R = F + F + 2F1 F2 Cosα
                                           1         2
                                                                                   Fx1 = F1 .Cosα 1                 FY 1 = F1 .Senα 1
     R = F12 + F22
                                                                                   Fx 2 = F2 .Cosα 2                Fy 2 = F2 .Senα 2
                                                                                   FX 3 = F1 .Cosα 3                F y 3 = F1 .Senα 3
                              F2    F1                                    R                                                        ∑F         y
                                                                                                                                               2

     F1            R                                       F2                      R=            ∑F   x
                                                                                                       2
                                                                                                           + ∑F     y
                                                                                                                     2
                                                                                                                         ˆ
                                                                                                                         ϕ = arcTg
                                                                                                                                   ∑F         x
                                                                                                                                               2


                                                                                                                F x = F .Cos α
                              R F1 F2                                                   Fy       R
R = F1 + F2                    =  =                       R = F1 - F2                                           F y = F .Sen α
                              a a1 a 2                                                                     Fx    en los planos inclinados cambia las
                                                                                                                componentes.



*La explicación y definición de cada sistema la haremos en el aula para ver sus aplicaciones y problemas.

PROBLEMAS PROPUESTOS

     1. Descomponer una fuerza de 70 N con una dirección de 60° en forma grafica y analítica en los
        ejes coordenados cartesianos ortogonales.
     2. Dos fuerzas Colineales de 350 N y 500 N, están aplicadas sobre un bloque de acero. Hallar gráfica
        y analíticamente la resultante y la equilibrante si las mismas son:
        a) Colineales de igual sentido b) Colineales de distinto sentido.
        c) Concurrentes a 90°(Mét. Gráf. Paralelogramo) d) Concurrentes a 120° e) Concurrentes a 50°
                                                                               8
3.
                                                                          Dos hombres y un muchacho quieren empu un bloque en la
                                                                                                                 empujar
                                                                          dirección x de la figura, los hombres empujan con las fuerzas
                                                                          F1 y F2.
                                                                          a) ¿qué fuerza mínima deberá emplear el muchacho para
                                                                          lograr el cometido?.


                 4. ¿Puede estar un cuerpo en equilibrio cuando sobre él actúa una fuerza?.

                 5. Un globo se mantiene en el aire sin ascender ni descender. ¿Está en equilibrio?, ¿qué fuerzas
                                                                               ¿Está
                 actúan sobre él?

              6. Los siguientes problemas corresponden a distintos tipos de sistemas; resuelve según corresponda.

 a) Calcular grafica y analíticamente la resultante entre las                             b) Con los valores obtenidos en el problema anterior quedó un sistema
                                                                                           )
        SUSTE TACIO                Fuerzas “peso y sustentación” primero;
                                                     sustentació                          de Fuerzas......................... a .....°; Calcule grafica y analíticamente la
RESISTE CIA




                                   luego entre las fuerzas “impulso y                     resultante.
                                    IMPULSO




                                   resistencia del aire”. Los datos son los
                                              siguientes:   FP = 3600                     c) ¿Qué sistema de fuerzas cree usted que forman las llaves en la
                                                                                          situación de la figura?
                      PESO
               FS = 5400           FI = 7200                FR = 2100                                                 2m
                                                d) ¿El velero retrocede por las fuerzas
                                                actuantes?
                F4
                                                 F1 = 300           ˆ
                                                                   α 1 = 30°
                              F1                 F2 = 500           ˆ
                                                                   α 2 = 0°                                       r                           r
                                                 F3 = 250           ˆ
                                                                   α 3 = 270°                            F1 = 150gr                 F2 = 300 gr
                                      F5                                                    ¿En que posición se encontrará la resultante del sistema? (gráfica y
     F2                                          F4 = 800           ˆ
                                                                   α 4 = 140°               analítica)
                         F3                      F5 = 800          ˆ
                                                                   α 5 = 210°


                                                TENSIONES Y REACCIONES
                Las estructuras de ingeniería, por ejemplo un puente, se apoya en distintos tipos de elementos, y se
              sostienen con cables y columnas que según su naturaleza producirán distintos tipos de reacciones
              según la 3° ley de Newton. Acá les dejo una imagen escaneada de las principales reacciones y
                                  ewton.
              tensiones que ocurren en apoyos y cables.
              No olvide que las reacciones, las tensiones, la compresión, la expansión, son fuerzas por lo tanto su
              representación gráfica son vectores.




                                                                                      9
Para la resolución de problemas de estática con tensiones y reacciones se parte desde las
CONDICIONES DE EQUILIBRIO, que son en realidad muy lógicas, ya que para decir que un
cuerpo esta en reposo o equilibrio, o sea, no se mueve pensemos que no debe trasladarse en el plano
horizontal ni vertical, y además no debe girar.
  Matemáticamente podemos expresar que si no se mueve en el eje horizontal “X” significa que las
                          emos
sumatoria de todas las fuerzas actuantes es ceroሺ∑ ࡲࢄ = ૙ሻ, idénticamente para el movimiento en el
                                             cero            ,
eje “Y” ሺ∑ ࡲࢅ ൌ ૙ሻ. ¿Pero como expresamos el “NO GIRO” del cuerpo? Acá vamos a introducir un
                    .
nuevo concepto físico conocido como “MOMENTO, la mejor definición de este concepto lo
encontré en Wikipedia, ….” En mecánica newtoniana, se denomina momento de fuerza torque, torca,
                                                                                  fuerza,
o par (o sencillamente momento) [respecto a un punto fijado ] a la magnitud que viene dada por el
                                )
producto vectorial de una fuerza por un vector director (también llamado radio vector
                                                                               vector).
  Si se denomina F a una fuerza, aplicada en un punto A, su momento respecto a otro punto B viene dado
                                                        ,
por:                  . El concepto dado para momento en la Wikopedia, es mejor aún
                                                                                 aún:…” El momento
de una fuerza con respecto a un punto da a conocer en qué medida existe capacidad en una fuerza o
desequilibrio de fuerzas para causar la rotación del cuerpo con respecto a éste.

                                                Nosotros a esta condición de equilibrio la vamos a llamar MOMENTO “M”
                                                                            de
                                                siempre con respecto a un punto de la estructura a calcular, y a esta condición
                                                de equilibrio la expresamos matemáticamente de la siguiente manera:
                                                ሺ∑ ࡹࡲ࢕ = ૙ሻ, debemos también saber que el momento de una fuerza
                                                               ,                                                    f
                                                tiene signo; si el giro es en el mismo sentido de las agujas del reloj es
                                                MOMENTO NEGATIVO, si es contrario será positivo . O sea en la foto
                                                la llave francesa da un momento…………………………
                                                                        momento…………………………-

     FÓRMULAS
ESTATICA, II : TE                     SIO ES Y REACCIO ES
Los ejercicios de reacciones y tensiones se resuelven como
                                                                               RBX + TX =0
sistemas de ecuaciones partiendo siempre del Diagrama                           RAY +TY - W + RBY -P = 0
cuerpo libre y de las condiciones de equilibrio
   erpo                                                                        - MRAY - MTY + M W M RBY - MP = 0
∑ F = 0 Fuerzas en “x” igual a cero)
         x                                                                   RBX + T. Cos α =0 (de acá sale el valor de “RBX”)
∑ F = 0 (Fuerzas en “y” igual a cero)
         Y
                                                                             RAY +T.Sen α - W + RBY -P = 0 (de acá sale “RBY”)
                                                                            - RAY .dAY - T.Sen α. dT + W .½ d -P . dP= 0 ( de esta
                                                                                                                 P
∑ MoF = 0 (momento de las “F” igual a cero)                                     obtenemos el valor de “RAY” antes de sacar “RBY”)

                                                                       PLA O I CLI ADO
T2                       T1        T1 X − T2 X = 0
                                   T1Y + T2Y − P = 0
             P                       O HAY MOME TO

Se reemplaza las componentes de “X” e ”Y” luego se
                    mponentes
resuelve el sistema de ecuaciones despejando “T1 y
T2”; puede aplicarse cualquier método de resolución                        h
el mas recomendable es el de “SUSTITUCIÓ ”.

RAY                  T         RBY
                                     RBX
                                               ∑F      x   =0              | P x |=       F     x   = P . Sen          α
     A                    B                    ∑F      Y       =0
                                                                           | P       |=    F        = P . Cos           α
                                                                                 y              y
                 W                   P         ∑M          B   F =0

         ½d                   ½d
                                                                           f kóS =          y   .K kó S         = P
                                                                                     r
                                                                                     P = m.g
                                                                      10
PROBLEMAS PROPUESTOS

  1. Verdadero ó falso: (a) las fuerzas de acción-reacción nunca actúan sobre un mismo cuerpo, (b) la masa
  de un cuerpo depende de su posición, (c) el peso de un cuerpo depende de su posición.
  2. Verdadero o falso: a) ΣF = 0 es suficiente para que exista el equilibrio estático,
  b) ΣF = 0 es necesario para que exista el equilibrio estático, c) en equilibrio estático, el momento
  resultante respecto a cualquier punto es nulo, d) para que un objeto esté en equilibrio estático es necesario
  que sobre él no actúe ninguna fuerza.
  3. Dar varios ejemplos de un cuerpo que no esté en equilibrio aún cuando la resultante de todas las fuerzas
  que actúan sobre él sea cero.
  4.
                         a) A partir de la figura realice las siguientes actividades:   b) Calcula la tensión en el cable de acero en la siguiente
                         a) Gráfico de cuerpo libre.                                    situación:
                         b) Calcule el valor de las tensiones que soporta las
                  T1     cuerdas.
        T2               c) Calculo grafico y analítico de la resultante.                                       40°             55°
                         d) ¿Por qué las “T” y el “P” no causan momento?
                         α1 =    30°     α2 =      0°      P = 1000 Kgf                                                        P1 = 5000 N
                                                                                                                               P2 = 3000 N
             P
   c.                                                                                   d) Calcula las Reacciones en la siguiente barra.
                                                                                                              2 m 0,5 m               0,90 m
                                                    T3 = 8000 N
                         T2 = 5000 N

                                                                                                                               T1=4500 N
                                                                                                 RAY              RBY
                                                                                                                              25°
                                                             P3 = 720 N
                                                                                                A       RAX                     B
                           28°               P2 = 15000 N
  T1=3000 N P1 = 15000 N                                                                                                            P = 650 N
                                        W = 220000 N                                                   5m                   5m
                  10 m                                  10 m                                                          W = 20000 N
             2m    4m            1m                        3m 1m 2m

  5.-   La figura muestra las fuerzas que ejercidas por el tendón de Aquiles que forma un ángulo de 40º con la
        horizontal y por el suelo sobre un hombre que pesa 800N cuando este se encuentra agachado. La fuerza de
        contacto ejercida por la tibia actúa en el punto o. Calcular:
  a) el módulo de la fuerza ejercida por el tendón de Aquiles
  b) el módulo y la dirección de la fuerza de contacto C                       O
                                                                                            C


                                                                                                       0,7,cm           6cm


                                                                                        F

  6) Una persona sostiene en la mano un peso de
  50 con el antebrazo en posición horizontal
  (OA) como indica la figura. El músculo bíceps                               d
  esta fijo a 3 Cm de la articulación O con el
  brazo, y el peso P se encuentra a 35 Cm de la           o                               L
  misma. Sobre la articulación O (el humero)
  actuá una fuerza descendente R y el bíceps
                                                              R                                                          P
  ejerce sobre el antebrazo (el cubito) una fuerza
  ascendente F El peso del antebrazo puede
  considerarse despreciable. Entonces :         7) Un subibaja de 4m de longitud pivota en su centro. Un niño de 28 kg se sienta
     A) F = 50          B) F = 593              en uno de sus extremos. ¿Dónde debe sentarse un niño de 40 kg para equilibrar el
     C) R = 50           D) R = 533             subibaja?
     Seleccione La opción correcta
8) a)Un anuncio de masa m = 20 kg cuelga del extremo de una barra horizontal de longitud 2 m y masa despreciable.
 Un cable sujeta el extremo de la barra a un punto de la pared que está 1 m por encima de la punto O. Determinar la
tensión del cable y la fuerza ejercida por la pared en punto O. b) Resuelva el mismo problema ahora suponiendo que
La barra tiene una masa de 4 kg. Determine entonces la posición del centro de gravedad del sistema.                                             O
                                                                             11
9) Las condiciones de equilibrio nos ayudan a calcular sistemas                               10) Según el caso de la figura
estáticos, antes las Resultantes de dichos sistemas, ahora, las                               determinar el peso del cuerpo
tensiones o reacciones, es así que las tensiones dependen directamente                        suspendido si la tensión de la cuerda
de la fuerza que se aplica y del ángulo que determina la cuerda, como                         diagonal es de 20 N.
por ejemplo en el ejercicio de la evaluación, donde los hermanos de
Andrea, Marcos y Damián, le juegan una broma del cual calcularon la
Resultante; pero en este caso ¿Cuál será el valor de las tensiones en
                                                                                                           45°
la Calza? Tenga en cuenta que para las tensiones solo interesa la
fuerza con que el perro la estira el pantalón de “lycra”. Dibuje el
diagrama de cuerpo libre.




                         PARTICULA
 DINAMICA COMPLEJA DE LA PARTICULA

  Después del largo impase hecho por el estudio de las fuerzas, y la estática de los cuerpos retomamos el
 estudio del movimiento, considerando la causa que lo produce “LA FUERZA”. Vamos a distinguir ahora
 fuerzas elásticas, fuerzas de roce o fricción, y fuerzas normales, en los sistemas dinámicos.
 Fuerza elástica:
 Una fuerza puede deformar un resorte, como alargarlo o acortarlo. Cuanto mayor sea la fuerza, mayor será
 la deformación del resorte (∆x), en muchos resortes, y dentro de un rango de fuerzas limitado, es
 proporcional a la fuerza:
                              Fe = -k . ∆x        k: Constante que depende del material y dimensiones del resorte.
                                                 ∆x: Variación del resorte con respecto a su longitud normal.
 Fuerza elástica:
 Fuerza normal al plano e igual pero de sentido contrario a la componente normal al plano, de la fuerza
                                        r
 peso. (Ver plano inclinado).           P = m.g                   Y   = Py = P .Cos α = m. g . cos α


 Fuerza de rozamiento:
 Fuerza aplicada y contraria al movimiento y que depende de la calidad de la superficie del cuerpo y de la

 superficie sobre la cual se desliza                f kóS =              y   .K kó S   µ: Coeficiente de rozamiento.

 Fuerza de rozamiento estática: fuerza mínima a vencer para poner en movimiento un cuerpo.
 Fuerza de rozamiento cinética: fuerza retardadora que comienza junto con el movimiento de un cuerpo.

    En el caso de deslizamiento en seco, cuando no existe lubricación, la fuerza de rozamiento es casi
 independiente de la velocidad. La fuerza de rozamiento tampoco depende del área aparente de contacto
 entre un objeto y la superficie sobre la cual se desliza. El área real de contacto (la superficie en la que las
 rugosidades microscópicas del objeto y de la superficie de deslizamiento se tocan realmente) es
 relativamente pequeña. Cuando un objeto se mueve por encima de la superficie de deslizamiento, las
 minúsculas rugosidades del objeto y la superficie chocan entre sí, y se necesita fuerza para hacer que se
 sigan moviendo. El área real de contacto depende de la fuerza perpendicular entre el objeto y la superficie
 de deslizamiento. Frecuentemente, esta fuerza no es sino el peso del objeto que se desliza. Si se empuja el
 objeto formando un ángulo con la horizontal, la componente vertical de la fuerza dirigida hacia abajo se
 sumará al peso del objeto. La fuerza de rozamiento es proporcional a la fuerza perpendicular total.




                                                                         12

More Related Content

What's hot

2f 04 a magnetismo
2f 04 a magnetismo2f 04 a magnetismo
2f 04 a magnetismoCAL28
 
2f 04 d síntesis electromagnetismo
2f 04 d síntesis electromagnetismo2f 04 d síntesis electromagnetismo
2f 04 d síntesis electromagnetismoCAL28
 
Presentacion cinematica
Presentacion cinematicaPresentacion cinematica
Presentacion cinematicagiljjx
 
DERIVACIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES PARCIALES
DERIVACIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES PARCIALESDERIVACIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES PARCIALES
DERIVACIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES PARCIALESJaime Martínez Verdú
 
Tema4.2ºbachillerato.física.ejercicios selectividad resueltos
Tema4.2ºbachillerato.física.ejercicios selectividad resueltosTema4.2ºbachillerato.física.ejercicios selectividad resueltos
Tema4.2ºbachillerato.física.ejercicios selectividad resueltosquififluna
 
2f 02 a movimientos vibratorios
2f 02 a movimientos vibratorios2f 02 a movimientos vibratorios
2f 02 a movimientos vibratoriosCAL28
 
Tipos de pendulos
Tipos de pendulosTipos de pendulos
Tipos de pendulosalbeiroo
 
Conceptos claves de fraccionamiento por zoraida carrasquero
Conceptos claves de fraccionamiento por zoraida carrasqueroConceptos claves de fraccionamiento por zoraida carrasquero
Conceptos claves de fraccionamiento por zoraida carrasqueroJosé Alexander Colina Quiñones
 
Ejercicios de campo magnético
Ejercicios de campo magnéticoEjercicios de campo magnético
Ejercicios de campo magnéticogualquer
 
Deformacion en vigas
Deformacion en vigasDeformacion en vigas
Deformacion en vigasProdise
 
2f 02 c fenomenos ondulatorios
2f 02 c fenomenos ondulatorios2f 02 c fenomenos ondulatorios
2f 02 c fenomenos ondulatoriosCAL28
 
Fuerza Magnética Física C: ESPOL
Fuerza Magnética Física C: ESPOLFuerza Magnética Física C: ESPOL
Fuerza Magnética Física C: ESPOLESPOL
 

What's hot (20)

2f 04 a magnetismo
2f 04 a magnetismo2f 04 a magnetismo
2f 04 a magnetismo
 
2f 04 d síntesis electromagnetismo
2f 04 d síntesis electromagnetismo2f 04 d síntesis electromagnetismo
2f 04 d síntesis electromagnetismo
 
Presentacion cinematica
Presentacion cinematicaPresentacion cinematica
Presentacion cinematica
 
DERIVACIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES PARCIALES
DERIVACIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES PARCIALESDERIVACIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES PARCIALES
DERIVACIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES PARCIALES
 
Tema4.2ºbachillerato.física.ejercicios selectividad resueltos
Tema4.2ºbachillerato.física.ejercicios selectividad resueltosTema4.2ºbachillerato.física.ejercicios selectividad resueltos
Tema4.2ºbachillerato.física.ejercicios selectividad resueltos
 
2f 02 a movimientos vibratorios
2f 02 a movimientos vibratorios2f 02 a movimientos vibratorios
2f 02 a movimientos vibratorios
 
Tipos de pendulos
Tipos de pendulosTipos de pendulos
Tipos de pendulos
 
Conceptos claves de fraccionamiento por zoraida carrasquero
Conceptos claves de fraccionamiento por zoraida carrasqueroConceptos claves de fraccionamiento por zoraida carrasquero
Conceptos claves de fraccionamiento por zoraida carrasquero
 
Fis y13
Fis y13Fis y13
Fis y13
 
Ejercicios de campo magnético
Ejercicios de campo magnéticoEjercicios de campo magnético
Ejercicios de campo magnético
 
Magnetismo
MagnetismoMagnetismo
Magnetismo
 
Deformacion en vigas
Deformacion en vigasDeformacion en vigas
Deformacion en vigas
 
2f 02 c fenomenos ondulatorios
2f 02 c fenomenos ondulatorios2f 02 c fenomenos ondulatorios
2f 02 c fenomenos ondulatorios
 
Semana5 magnetismo
Semana5 magnetismoSemana5 magnetismo
Semana5 magnetismo
 
Piezo rate gyro
Piezo rate gyroPiezo rate gyro
Piezo rate gyro
 
M a-s-estudiantes
M a-s-estudiantesM a-s-estudiantes
M a-s-estudiantes
 
Fuerza Magnética Física C: ESPOL
Fuerza Magnética Física C: ESPOLFuerza Magnética Física C: ESPOL
Fuerza Magnética Física C: ESPOL
 
Clase 1 maquinas cc
Clase 1 maquinas ccClase 1 maquinas cc
Clase 1 maquinas cc
 
Magnetismo
MagnetismoMagnetismo
Magnetismo
 
Lineas de influencia
Lineas de influenciaLineas de influencia
Lineas de influencia
 

Similar to Guía de Física I

Cartilla De Fisica Ii
Cartilla De Fisica IiCartilla De Fisica Ii
Cartilla De Fisica IiGUILLERMO
 
MEDIDA DE LA ENERGIA POTENCIAL
MEDIDA DE LA ENERGIA POTENCIALMEDIDA DE LA ENERGIA POTENCIAL
MEDIDA DE LA ENERGIA POTENCIALTorimat Cordova
 
Micro de fisica de ondas para la carrera de fisica.
Micro de fisica de ondas para la carrera de fisica.Micro de fisica de ondas para la carrera de fisica.
Micro de fisica de ondas para la carrera de fisica.Alberto Lopez
 
(Semana 05 cinemática iii m.c. y m. del cuerpo rigido 2009 b)
(Semana 05 cinemática iii m.c. y m. del cuerpo rigido 2009 b)(Semana 05 cinemática iii m.c. y m. del cuerpo rigido 2009 b)
(Semana 05 cinemática iii m.c. y m. del cuerpo rigido 2009 b)Walter Perez Terrel
 
Trabajo lab andres
Trabajo lab andresTrabajo lab andres
Trabajo lab andresgaararei
 
Experiencia 1 ley de coulomb v2011
Experiencia 1 ley de coulomb v2011Experiencia 1 ley de coulomb v2011
Experiencia 1 ley de coulomb v2011labfisicausm_vi
 
Irtf primera parte
Irtf  primera parteIrtf  primera parte
Irtf primera partekarlitaven
 
Analisis vectorial
Analisis vectorialAnalisis vectorial
Analisis vectorialjessleoni02
 
Movimiento periodico-sergio-gonzalez
Movimiento periodico-sergio-gonzalezMovimiento periodico-sergio-gonzalez
Movimiento periodico-sergio-gonzalezPilar Blanco Moure
 
Practica nº 6 lab. de fisica. zully fernandez
Practica nº 6 lab. de fisica.  zully fernandezPractica nº 6 lab. de fisica.  zully fernandez
Practica nº 6 lab. de fisica. zully fernandezzullyfernandezz
 
Leccion 0- Ondas Electromagnéticas variantes en el tiempo.pptx
Leccion 0- Ondas Electromagnéticas variantes en el tiempo.pptxLeccion 0- Ondas Electromagnéticas variantes en el tiempo.pptx
Leccion 0- Ondas Electromagnéticas variantes en el tiempo.pptxFabrizioArizaca
 

Similar to Guía de Física I (20)

Cartilla De Fisica Ii
Cartilla De Fisica IiCartilla De Fisica Ii
Cartilla De Fisica Ii
 
Fisica
FisicaFisica
Fisica
 
Fisica
FisicaFisica
Fisica
 
Fisica
FisicaFisica
Fisica
 
MEDIDA DE LA ENERGIA POTENCIAL
MEDIDA DE LA ENERGIA POTENCIALMEDIDA DE LA ENERGIA POTENCIAL
MEDIDA DE LA ENERGIA POTENCIAL
 
Micro de fisica de ondas para la carrera de fisica.
Micro de fisica de ondas para la carrera de fisica.Micro de fisica de ondas para la carrera de fisica.
Micro de fisica de ondas para la carrera de fisica.
 
Placas paralelas fisik
Placas paralelas fisikPlacas paralelas fisik
Placas paralelas fisik
 
Poster ibagué 01
Poster ibagué 01Poster ibagué 01
Poster ibagué 01
 
(Semana 05 cinemática iii m.c. y m. del cuerpo rigido 2009 b)
(Semana 05 cinemática iii m.c. y m. del cuerpo rigido 2009 b)(Semana 05 cinemática iii m.c. y m. del cuerpo rigido 2009 b)
(Semana 05 cinemática iii m.c. y m. del cuerpo rigido 2009 b)
 
Jhoan manuel garzon
Jhoan manuel garzonJhoan manuel garzon
Jhoan manuel garzon
 
Teoría de Vibraciones
Teoría de VibracionesTeoría de Vibraciones
Teoría de Vibraciones
 
Trabajo lab andres
Trabajo lab andresTrabajo lab andres
Trabajo lab andres
 
Experiencia 1 ley de coulomb v2011
Experiencia 1 ley de coulomb v2011Experiencia 1 ley de coulomb v2011
Experiencia 1 ley de coulomb v2011
 
Irtf primera parte
Irtf  primera parteIrtf  primera parte
Irtf primera parte
 
Analisis vectorial
Analisis vectorialAnalisis vectorial
Analisis vectorial
 
Movimiento periodico-sergio-gonzalez
Movimiento periodico-sergio-gonzalezMovimiento periodico-sergio-gonzalez
Movimiento periodico-sergio-gonzalez
 
TEMA 904. PARTE 3. CORTEZA ASOCIATIVA VESTIBULAR.pptx
TEMA 904. PARTE 3. CORTEZA ASOCIATIVA VESTIBULAR.pptxTEMA 904. PARTE 3. CORTEZA ASOCIATIVA VESTIBULAR.pptx
TEMA 904. PARTE 3. CORTEZA ASOCIATIVA VESTIBULAR.pptx
 
Pendulo de torsion
Pendulo de torsionPendulo de torsion
Pendulo de torsion
 
Practica nº 6 lab. de fisica. zully fernandez
Practica nº 6 lab. de fisica.  zully fernandezPractica nº 6 lab. de fisica.  zully fernandez
Practica nº 6 lab. de fisica. zully fernandez
 
Leccion 0- Ondas Electromagnéticas variantes en el tiempo.pptx
Leccion 0- Ondas Electromagnéticas variantes en el tiempo.pptxLeccion 0- Ondas Electromagnéticas variantes en el tiempo.pptx
Leccion 0- Ondas Electromagnéticas variantes en el tiempo.pptx
 

Recently uploaded

Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALEDUCCUniversidadCatl
 
Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Rosabel UA
 
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptxMonitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptxJUANCARLOSAPARCANARE
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaManejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaLuis Minaya
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...fcastellanos3
 
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfFichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfssuser50d1252
 
CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docxAgustinaNuez21
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024gharce
 
Los Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la SostenibilidadLos Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la SostenibilidadJonathanCovena1
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
05 Fenomenos fisicos y quimicos de la materia.pdf
05 Fenomenos fisicos y quimicos de la materia.pdf05 Fenomenos fisicos y quimicos de la materia.pdf
05 Fenomenos fisicos y quimicos de la materia.pdfRAMON EUSTAQUIO CARO BAYONA
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialpatriciaines1993
 

Recently uploaded (20)

Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
 
Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024
 
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptxMonitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
 
TL/CNL – 2.ª FASE .
TL/CNL – 2.ª FASE                       .TL/CNL – 2.ª FASE                       .
TL/CNL – 2.ª FASE .
 
Sesión La luz brilla en la oscuridad.pdf
Sesión  La luz brilla en la oscuridad.pdfSesión  La luz brilla en la oscuridad.pdf
Sesión La luz brilla en la oscuridad.pdf
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsaManejo del Dengue, generalidades, actualización marzo 2024 minsa
Manejo del Dengue, generalidades, actualización marzo 2024 minsa
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
 
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfFichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
 
CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docx
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
 
Los Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la SostenibilidadLos Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la Sostenibilidad
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
05 Fenomenos fisicos y quimicos de la materia.pdf
05 Fenomenos fisicos y quimicos de la materia.pdf05 Fenomenos fisicos y quimicos de la materia.pdf
05 Fenomenos fisicos y quimicos de la materia.pdf
 
La luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luzLa luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luz
 
Earth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversaryEarth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversary
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundial
 
recursos naturales america cuarto basico
recursos naturales america cuarto basicorecursos naturales america cuarto basico
recursos naturales america cuarto basico
 

Guía de Física I

  • 1. CARTILLA DE FISICA I GENERAL SAN SALVADOR DE JUJUY, AGOSTO DEL 2009 1
  • 2. Física I Esta Cartilla y guía de estudio esta desarrollada a partir de los contenidos mínimos de la planificación anual y tiene como objetivo fundamental la recuperación y repaso de los mismos, con una gran variedad de ejercicios y algunos conceptos teóricos fundamentales, vistos en trimestres o años anteriores, además será la herramienta imprescindible para contrarrestar la cantidad de clases no dadas debidas a la emergencia sanitaria y otras situaciones que devienen en este fragmentado ciclo lectivo 2009. Cuando los alumnos finalicen el ciclo lectivo 2009, deberán saber utilizar conocimientos Físicos básicos como así también la articulación con los trimestres y/o los años anteriores. Estos conocimientos serán herramientas para un correcto desarrollo y desenvolvimiento en el próximo ciclo lectivo, carreras universitarias o su vida laboral. Decir que la a física estudia los fenómenos naturales es popular, prefiero indicar que la misma estudia el estado de los cuerpos (reposo ó movimiento) y la energía de los mismos. La Física I vista este año la vamos a desarrollar según el siguiente mapa, con la salvedad que no tocaremos la parte del trabajo y la energía de los cuerpos por las razones expuestas al comienzo; Esta parte será retomada en FISICA II. El siguiente mapa explica claramente que este año debemos asimilar para la acreditación de la materia MOVIMIENTO Y ESTÁTICA de los cuerpos. M.R.U ENCUENTRO, ALCANCE Y TIRO MOV. HORIZO TAL M.U.A OBLICUO M.R.U.V CI EMATICA M.U.R TIRO VERTICAL MRUV MOV. VERTICAL MOV. MCU CAIDA LIBRE CIRCULAR MOVIMIE TO MCUV DE INERCIA LEYES DE EWTO DE MASA DI AMICA DE ACCION Y REACCION POTENCIAL FISICA I ENERGIA MECANICA TABAJO Y ENERGÍA CINETICA ENERGIA ELECTRICA ELECTROSTATICA ELECTRODINAMICA COLINEALES de igual y ΣFX = 0 Distintos ESTATICA PARALELAS sentidos CONDICIONES ΣFY = 0 REPOSO / SISTEMAS DE DE EQUILIBRIO EQUILIBRIO FUERZA a 90° ΣM = 0 CONCURRENTES distinto de 90° MAQUINAS POLEAS FIJA Y MOVIL SIMPLES APAREJOS POTENCIAL Y FACTORIAL PLANO INCLINADO TORNO PALANCA 1°; 2° Y 3° GÉNERO. 2
  • 3. MOVIMIENTO Los cuerpos al cambiar de posición con respecto al tiempo, definen el movimiento de los mismos y la forma de la trayectoria que describen definen los tipos de movimiento, los cuales pueden ser: RECTILINEO, CURVILINEO, PARABÓLICO, CIRCULAR, ONDULATORIO, etc... Por ejemplo: X‫ؠ‬e En el vuelo de la mosca existen dos ݁ posiciones “X” y “t” finales e iniciales, respectivamente. Es importante diferenciar el Xi espacio que recorre la mosca en este caso trayectoria curvilínea (representada en color negro) y es mayor al desplazamiento ( x) ∆ܺ representado por el vector en color amarillo, los vectores en verde flúor se conocen con el nombre de vector posición inicial y final ሺ‫ݑ‬௙ ሬሬሬሬሬሬԦ. No olvides que desplazamiento se ሬሬሬሬሬԦ; ‫ݑ‬ప ሻ Xf define como la posición final restada con la inicial. ∆ܺ ൌ ܺி െ ܺூ 0 ti tF t Cuando describimos el movimiento de algún objeto debemos establecer respecto de que sistema de referencia lo estamos haciendo. Si dividimos el desplazamiento con la variación del tiempo se define una nueva magnitud física ௑ಷష೉೔ ሬሬሬሬԦ conocida como velocidad media ܸ ൌ ௠ Si dividimos el espacio total con el tiempo empleado ௧ಷ ି௧೔ obtenemos el concepto de Rapidez. Lo mas interesante de esto es que si a la velocidad media la dividimos nuevamente en el tiempo ௏ಷషೇ೔ obtenemos el concepto de aceleración media.ሬሬሬሬሬԦ ൌ ܽ௠ . Cabe destacar que el desplazamiento, la ௧ಷ ି௧೔ velocidad media y la aceleración media tienen el mismo sentido vectorial. Cuando el desplazamiento se hace tan pequeño, aplicamos un concepto complejo del análisis matemático (limite) que no vamos a estudiar pero que alguna vez en su carrera como estudiante universitario lo estudiará; el mismo hace que nuestros conceptos de Velocidad y aceleración media se transformen en conceptos instantáneos. ௏௙ି ೇ೔ ሬԦ ݁ ܸൌ ܽൌ Ԧ ‫ݐ‬ ௧ La parte de la Física que estudia el movimiento se llama:………………………… También es estudiado por la dinámica. MOVIMIENTO HORIZONTAL Y VERTICAL: El movimiento depende netamente de la variación o no de la velocidad, y como es de tu conocimiento podemos decir: 1) Si la velocidad es constante y la aceleración a=…….. se trata de ……………- 2) Si la velocidad……………. Y la aceleración es.………...........se trata de M.U.A. 3) Si la velocidad……………. Y la aceleración es.………...........se trata de M.U….. 4) El Tiro vertical es un movimiento uniformemente …………………………….. 5) La caída Libre es un ……………………………………………………………. 3
  • 4. EJERCICIOS PROPUESTOS: 1. Pasar de unidades las siguientes velocidades: a) de 36 km/h a m/s. b) de 10 m/s a km/h. c) de 30 km/min a cm/s. 2. Un martillo se le escapa a un albañil desde el techo de un edificio en construcción cuya altura alcanza 25 m ¿Con que velocidad llega al suelo y cuanto tiempo tarda en caer? 3. Un niño arroja una piedra desde un puente hacia abajo a 25,2 Km/h la que llega al agua en un t=1,03 seg. Calcule la altura del puente. 4. Una pelota es lanzada hacia arriba, por el profesor de gimnasia, tardando en volver a sus manos 5 seg. después ¿Cuál fue la velocidad inicial de la pelota? ¿Qué altura máxima alcanzó? 5. Un vehículo acelera desde el reposo durante 6 segundos a 3,2 m/seg2 luego mantiene su velocidad constante durante 35 segundos y comienza a desacelerar a -2,5 m/seg2 hasta detenerse. ¿Qué distancia recorrió? Realizar un gráfico aproximado del móvil. 6. Un avión comienza su aterrizaje con una velocidad de 360 Km/h en el momento de tocar pista; si la desaceleración del frenado es de -5,5 m/seg2 , determine si puede aterrizar en una pista de 800 m. 7. Un automóvil lleva una velocidad de 90 Km/h durante los primeros 2 minutos, luego acelera los próximos 30 segundos con 2,5 m/seg2, para finalmente frenar y detenerse 22 segundos después. Grafique el movimiento en los ejes y luego Determine el espacio total recorrido. Movimientos especiales: COMBINACIÓN DE MOVIMIENTOS. E CUE TRO M.R.U Si parten en el mismo instante “t1 = t2” . Puede suceder que el V1 < v2 2 móvil uno salga antes o después que el dos, en ese caso hay que tener en cuenta el tiempo de uno en función del otro eTOTAL “t1 = t2 ± .. seg” Estos problemas de encuentro se resuelven fácilmente sumando miembro a miembro las ecuaciones de las espacios y e1 = V1 .t1 e2= V2 .t2 despejando “t” se realiza la suma ya que es fácil notar que la suma de e1 + e2 = espacio total que siempre es dato. PERSECUCIÓ . M.R.U Estos problemas se resuelven igualando los espacios V1 V2 recorridos por cada móvil y haciendo las consideraciones de “t1 = t2 ± .. seg.” ADEMÁS siempre eTOTAL “e1 = e2” e1 = e2 En estos tipos de movimientos hay combinación de tiro vertical y MRU uno TIRO OBLICUO obviamente produce el alcance y el otro la altura máxima Recuerde que e = V.t Vi 2 Voy vo Vo Hmax y hmax = pero recuerde t = también que 2.g g Vix A V ox = V o .Cos α Haciendo los reemplazos correspondientes V oy = V o . Sen α obtendremos las fórmulas para este tipo de movimiento. Voy Vo .Senα 2.Vo2 .Senα .Cosα A = Vo . cosα.2.t además t = = ⇒: A = (alcance Horizontal) g g g 2 Voy Vo2 : Sen 2α H max = = 2. g 2. g 4
  • 5. EJERCICIOS PROPUESTOS 1. Dos automóviles parten al mismo instante en sentido contrario por la avenida La Bandera, hoy multi-trocha de acceso cada uno por su carril respectivo y para determinar en que tiempo se cruzaran; Los datos recogidos son: el SIENA viaja a 72 Km/h (............... m/s) y el CLIO a 35 m/s también se conoce que la avenida tiene una longitud de 4000 m ( 4 Km desde la cancha Gimnasia hasta la estación de servicio “Y.P.F”). Determine el tiempo mencionado anteriormente y el espacio que cada vehículo recorre. 2. Calcule el problema anterior si el automóvil más veloz parte 2 segundos después del primero. 3. Bruno corre a 1,5 m/s y 2 segundos después sale a su alcance Diego que es mas veloz y corre con una velocidad de 2,2 m/s. Usted debe calcular en cuanto tiempo alcanza Diego a Bruno y a que distancia lo hace. 4. Se arroja un proyectil desde un mortero militar, el cual cabe aclarar esta inclinado 40°. La ignición de la pólvora produce una propulsión al proyectil que hace alcanzar os 300 m / seg. Usted deberá calcular la máxima altura alcanzada por el mismo y el alcance máximo horizontal. 5. Un móvil se dirige a 90 Km/h (con MRU) hacia otro que se mueve en sentido contrario a 120 Km/h y con una aceleración de 3 m/s2, sabiendo que están separados 2,8 Km ¿En cuántos segundos impactaran? ¿Qué espacio recorrió c/u? 6. En una esquina, una persona ve como un muchacho pasa en su auto a una velocidad de 20 m/s. Diez segundos después, una patrulla de la policía pasa por la misma esquina persiguiéndolo a 30 m/s. Considerando que ambos mantienen su velocidad constante, resolver gráfica y analíticamente: a) ¿A qué distancia de la esquina, la policía alcanzará al muchacho? b) ¿En qué instante se produce el encuentro? Respuesta: a) 600 m b) 30 s 7. Se arroja hacia arriba una pelotita de goma a 20 m/seg. Y desde la terraza de un edificio de 45 m de alto se deja caer otra ¿Cuál será el tiempo de encuentro? ¿A qué altura se cruzarán? 8. Se dispara un misil con una inclinación de 26°, el mismo parte con una velocidad de 560 m/seg; en ese mismo instante desde el punto que marca la altura máxima con la horizontal parte un tanque a 60 Km/h con una aceleración d e2,2 m/s: se desea saber: a) Altura Máxima alcanzada b) Alcance horizontal del proyectil c) Tiempo en hacer impacto. d) Tiempo de alcance del proyectil al tanque. MOVIMIENTO CIRCULAR El movimiento circular lógicamente llamado así por la forma de la trayectoria, pero lo mas relevante de este tipo de movimiento es que al hacer girar un cuerpo alrededor de un punto fijo (centro) aparecen dos velocidades y tres aceleraciones (sin contar la aceleración total); estas productos del sentido del giro, representadas a partir de la regla de la mano derecha o el tirabuzón. Estas son las dos velocidades en distintos sentidos de giro: ܸ௧ ߱ ܸ௧ ܸ௧ ܸ௧ ܸ௧ ܸ௧ -߱ Estas son las tres aceleraciones en distintos sentidos de giro: ߛ ܽ௧ ܽ஼௣ ܽ௧ ܽ஼௣ -ߛ 5
  • 6. La existencia de un movimiento CIRCULAR uniforme y variado da como resultado una semejanza de fórmulas entre el movimiento RECTILÍ EO uniforme y variado con la simbología distinta (Recuerde que habíamos comparado la caída libre y el tiro vertical con el MRUV) donde el espacio recorrido “e” lo reemplazaba la altura “h”, la aceleración “a” correspondía a la aceleración de la gravedad “g”. En este caso el espacio recorrido corresponderá a un ángulo, o arco recorrido, la aceleración puede ser tangencial ௘ ෝ ఈ ෢ ஺஻ ሬԦ o angular. Por ej.: ܸ ൌ ; ߱ = ; ܸ = ሬԦ ሬԦ Estas fórmulas referidas a la velocidad y en todos ௧ ௧ ௧ los casos es espacio recorrido sobre tiempo, y para el movimiento circular tenemos ángulo recorrido o arco recorrido sobre tiempo. ଵ Comparemos otras fórmulas del movimiento vertical, horizontal y circular: ݁ = ܸ௜ . ‫ ± ݐ‬ଶ . ܽ. ‫ ݐ‬ଶ ; ଵ ଵ h= ܸ௜ . ‫ ± ݐ‬ଶ . ݃. ‫ ݐ‬ଶ ; ߙ = ߱௜ . ‫ ± ݐ‬ଶ . ߛ. ‫ ݐ‬ଶ Observe que tienen la misma forma matematica. ො Lo aparentemente extraño del movimiento circular “UNIFORME” es que aparece una aceleración centrípeta, cuando es claro para usted como alumno que si el movimiento es uniforme, la velocidad no varía por lo tanto la aceleración es nula ¿Entonces que sucede con la velocidad en el MRU? La respuesta es sencilla: “El vector velocidad tangencial (Graf. Anteriores) es constante en intensidad pero no en dirección y sentido”…Esta Variación de la velocidad da origen a la aceleración”; como bien hemos deducido en su carpeta. La aceleración origina el movimiento circular variado, a un próximo capitulo fundamental de la física que es la Dinámica de la partícula. EJERCICIOS PROPUESTOS 1. El lavarropas de mi casa centrifuga con una velocidad angular de 5000 RPM, a cuantas vueltas o revoluciones por seg equivale? 2. Un cuerpo gira atado a un piolín de 1,3 m de largo, a razón de 7 vueltas cada 4 segundos, usted deberá: a. Calcular las dos velocidades. b. Calcular la frecuencia de giro. c. Reducir la ߱ a RPM y la ܸ௧ en Km/h. d. Calcular aceleración centrípeta. 3. Calcular Las dos velocidades de una rueda de bicicleta de 68 Cm de diámetro si gira con una frecuencia de 2 V/S. 4. Los coches de F1, alcanzan alcanza en una recta una aceleración de 0 a 100 Km/h en apenas 1,7 seg, los diámetros de las ruedas por reglamento no deben exceder los 660 mm de diámetro, con esta data teórica, usted deberá calcular: a. Aceleración tangencial. c. Aceleración centrípeta. b. Aceleración angular. 5. La velocidad tangencial de un punto material situado a 0,6 m del centro de giro es de 15 m/s. Hallar: a) ¿Cuál es su velocidad angular?. b) ¿Cuál es su período?. 6. Si una hélice da 18000 R.P.M., decir: a) ¿Cuál es su frecuencia? b) ¿Cuál es su período? DINAMICA SIMPLE DE LA PARTICULA Sabemos que este capitulo es uno de los mas importantes en el estudio del movimiento, y se diferencia con la cinemática por estudiar y considerar la causa productora del movimiento, como quedó claro en el aula es “LA FUERZA”. Básicamente este capitulo esta desarrollado a partir de las tres leyes o principios del genial Isaac Newton; que usted deberá repasarlas y razonarlas. La fórmula fundamental de la dinámica esta dada por el 2° principio, que define la masa de cualquier cuerpo, como la relación entre la fuerza aplicada y la aceleración que esta adquiere. Ԧ Algo de fórmulas: ‫ ܽ .݉ = ܨ‬si el cuerpo se mueve en forma rectilínea, tenemos también una comparación con la fuerza vertical producida naturalmente por los cuerpos ሬሬԦ = ࢓. ࢍ ; si el cuerpo se ࡼ 6
  • 7. mueve con movimiento circular la fuerza que aparece será la fuerza centrípeta, que es de igual intensidad ሬሬሬሬሬሬሬሬሬሬԦ ሬሬሬሬሬሬሬሬሬሬԦ pero sentido contrario a la Fuerza centrifuga” หࡲ ห ൌ หࡲ ห ൌ ࢓. ࢇ “ ࡯ࢌ ࡯࢖ ࡯࢖ EJERCICIOS PROPUESTOS(http://www.fisicanet.com.ar) 1) Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s ². Respuesta: 4 kg 2) ¿Qué masa tiene una persona de 65 kgf de peso en: a) Un lugar donde la aceleración de la gravedad es de 9,8 m/s ². b) Otro lugar donde la aceleración de la gravedad es de 9,7 m/s ². Respuesta: 66,33 kg y 67,01 kg 3) Si la gravedad de la Luna es de 1,62 m/s ², calcular el peso de una persona en ella, que en la Tierra es de 80 kgf. Respuesta: 13,22 kgf 4) ¿Qué aceleración tiene un cuerpo que pesa 40 kgf, cuando actúa sobre él una fuerza de 50 N?. Respuesta: 1,25 m/s ² 5) Las masas A, B, C, deslizan sobre una superficie horizontal debido a la fuerza aplicada F = 10 N. Calcular la fuerza que A ejerce sobre B y la fuerza que B ejerce sobre C. m A =10 kg m B = 7 kg m C = 5 kg Respuesta: 4,54 N y 3,18 N ሬሬሬሬԦ 6) Una pelotita de madera de 250 ݃‫ ݎ‬gira impetuosamente con un radio de 2m a razón de 100 vueltas ሬሬሬሬሬԦ cada 10 seg, ¿Qué valor tendrá la fuerza centrifuga? ( en Dyn y ‫.)݃ܭ‬ 7) Una moto derrapa en una curva, ¿Qué valor tiene la fuerza centrifuga, responsable de la caída? DATOS: Masa de la moto con el piloto ݉ = 486 ‫ܸ ݃ܭ‬௙ ൌ 33,2 ݉⁄‫ܴ ݏ‬௖௨௥௩௔ ൌ 12 ݉ ܴோ௨௘ௗ௔ ൌ 22 ‫݉ܥ‬ ሬሬሬሬሬԦ Calcule también la velocidad angular de las ruedas. 8) Calcular la fuerza centrifuga del lavarropas, si en la publicidad dice que la carga máxima es de ሬሬሬሬሬԦ ݉ = 5 ‫ ݃ܭ‬y gira a 5000 R.P.M. y el tambor tiene un diámetro de 80 Cm. Después de estos problemas, básicos, debemos hacer un detenimiento para luego complejizar la DINÁMICA de la partícula, ya que la misma esta íntimamente ligada al estudio de la FUERZA, la cual tiene todo un capitulo dedicado al estudio de la misma, conocido como ESTATICA. ESTÁTICA Como dijimos este capitulo de la física esta dedicada al estudio de las fuerzas, su descomposición en los ejes, tipo de sistemas, momento de una fuerza, las tensiones y reacciones que también son fuerzas y algunas máquinas simples. La palabra fuerza es muy utilizada y la repetí demasiado veces pero ¿Qué es la fuerza?: Hay infinitas definiciones en los libros y la Web, yo prefiero definirla como una magnitud vectorial capaz de modificar todo estado (Reposo o movimiento) y es la causante de todos los fenómenos mecánicos del universo. Observen que dije “MAGNITUD VECTORIAL” y vamos a definir vector simplemente como un segmento orientado (ver figura). RECTA DE ACCIÓN Para representar vectores de cualquier tipo ya sea vector velocidad, aceleración, La fig. Muestra los elementos de A EXTREMO un vector; forma con la cual se MÓDULO O desplazamiento o como lo haremos representa a la FUERZA; observe INTENSIDAD mayormente FUERZAS, utilizaremos escalas, haremos que el Cm de nuestra que es un segmento pero con una SENTIDO regla sea equivalente a los Néwtons, orientación. Dynas o Kilogramos fuerzas necesarios. ࢻ DIRECCIÓN ෝ O ORIGEN 7
  • 8. PROBLEMAS PROPUESTOS 1. Graficar las siguientes fuerzas: a) F=1000 N b) 300000 dyn ሬሬሬሬሬԦ c) 250 ‫݃ܭ‬ ௠ ௄௠ ௠ 2. Graficar los siguientes vectores: a) ܽ = 20 Ԧ ሬԦ b) ܸ = 108 ሬԦ c) ܸ = 250 ௌమ ௛ ௌ SISTEMA DE FUERZAS Con frecuencia varias fuerzas actúan al mismo tiempo sobre un mismo cuerpo a esto llamamos sistema de fuerzas y la definiremos como el “conjunto de fuerzas que actúan simultáneamente sobre un mismo cuerpo”. Cada una de las fuerzas actuantes recibe el nombre de componente del sistema. Cuando varias fuerzas actúan sobre un mismo cuerpo, siempre es posible sustituirlas por una única fuerza capaz de producir el mismo efecto, dicha fuerza recibe el nombre de RESULTA TE y la reacción a la fuerza resultante se la conoce como EQUILIBRA TE. El siguiente cuadro es un resumen de los distintos sistemas de fuerza conocidos, cabe destacar que existen dos métodos de resolución de un sistema vectorial para obtener la resultante “GRÁFICO Y A LÍTICO”, el método gráfico varía según el sistema aunque siempre la fórmula final para todos los gráficos es el y resulta de multiplicar la medida hecha con la regla del dibujo, y la escala elegida a conveniencia por cada uno. ܴ = ‫ܦܧܯ‬ௗ௜௕ . ‫݈ܽܽܿݏܧ‬ F2 F1 F2 R F1 F1= α1=30° F2 R F2 = α2= 180° Solo como R = F1 + F2 R = F1 - F2 F3 = α3=330° ejemplo F1 R F2 F2 F2 R R F3 R R F2 F1 F1 F1 F1 ∑F x =0 ∑F Y =0 2 2 R = F + F + 2F1 F2 Cosα 1 2 Fx1 = F1 .Cosα 1 FY 1 = F1 .Senα 1 R = F12 + F22 Fx 2 = F2 .Cosα 2 Fy 2 = F2 .Senα 2 FX 3 = F1 .Cosα 3 F y 3 = F1 .Senα 3 F2 F1 R ∑F y 2 F1 R F2 R= ∑F x 2 + ∑F y 2 ˆ ϕ = arcTg ∑F x 2 F x = F .Cos α R F1 F2 Fy R R = F1 + F2 = = R = F1 - F2 F y = F .Sen α a a1 a 2 Fx en los planos inclinados cambia las componentes. *La explicación y definición de cada sistema la haremos en el aula para ver sus aplicaciones y problemas. PROBLEMAS PROPUESTOS 1. Descomponer una fuerza de 70 N con una dirección de 60° en forma grafica y analítica en los ejes coordenados cartesianos ortogonales. 2. Dos fuerzas Colineales de 350 N y 500 N, están aplicadas sobre un bloque de acero. Hallar gráfica y analíticamente la resultante y la equilibrante si las mismas son: a) Colineales de igual sentido b) Colineales de distinto sentido. c) Concurrentes a 90°(Mét. Gráf. Paralelogramo) d) Concurrentes a 120° e) Concurrentes a 50° 8
  • 9. 3. Dos hombres y un muchacho quieren empu un bloque en la empujar dirección x de la figura, los hombres empujan con las fuerzas F1 y F2. a) ¿qué fuerza mínima deberá emplear el muchacho para lograr el cometido?. 4. ¿Puede estar un cuerpo en equilibrio cuando sobre él actúa una fuerza?. 5. Un globo se mantiene en el aire sin ascender ni descender. ¿Está en equilibrio?, ¿qué fuerzas ¿Está actúan sobre él? 6. Los siguientes problemas corresponden a distintos tipos de sistemas; resuelve según corresponda. a) Calcular grafica y analíticamente la resultante entre las b) Con los valores obtenidos en el problema anterior quedó un sistema ) SUSTE TACIO Fuerzas “peso y sustentación” primero; sustentació de Fuerzas......................... a .....°; Calcule grafica y analíticamente la RESISTE CIA luego entre las fuerzas “impulso y resultante. IMPULSO resistencia del aire”. Los datos son los siguientes: FP = 3600 c) ¿Qué sistema de fuerzas cree usted que forman las llaves en la situación de la figura? PESO FS = 5400 FI = 7200 FR = 2100 2m d) ¿El velero retrocede por las fuerzas actuantes? F4 F1 = 300 ˆ α 1 = 30° F1 F2 = 500 ˆ α 2 = 0° r r F3 = 250 ˆ α 3 = 270° F1 = 150gr F2 = 300 gr F5 ¿En que posición se encontrará la resultante del sistema? (gráfica y F2 F4 = 800 ˆ α 4 = 140° analítica) F3 F5 = 800 ˆ α 5 = 210° TENSIONES Y REACCIONES Las estructuras de ingeniería, por ejemplo un puente, se apoya en distintos tipos de elementos, y se sostienen con cables y columnas que según su naturaleza producirán distintos tipos de reacciones según la 3° ley de Newton. Acá les dejo una imagen escaneada de las principales reacciones y ewton. tensiones que ocurren en apoyos y cables. No olvide que las reacciones, las tensiones, la compresión, la expansión, son fuerzas por lo tanto su representación gráfica son vectores. 9
  • 10. Para la resolución de problemas de estática con tensiones y reacciones se parte desde las CONDICIONES DE EQUILIBRIO, que son en realidad muy lógicas, ya que para decir que un cuerpo esta en reposo o equilibrio, o sea, no se mueve pensemos que no debe trasladarse en el plano horizontal ni vertical, y además no debe girar. Matemáticamente podemos expresar que si no se mueve en el eje horizontal “X” significa que las emos sumatoria de todas las fuerzas actuantes es ceroሺ∑ ࡲࢄ = ૙ሻ, idénticamente para el movimiento en el cero , eje “Y” ሺ∑ ࡲࢅ ൌ ૙ሻ. ¿Pero como expresamos el “NO GIRO” del cuerpo? Acá vamos a introducir un . nuevo concepto físico conocido como “MOMENTO, la mejor definición de este concepto lo encontré en Wikipedia, ….” En mecánica newtoniana, se denomina momento de fuerza torque, torca, fuerza, o par (o sencillamente momento) [respecto a un punto fijado ] a la magnitud que viene dada por el ) producto vectorial de una fuerza por un vector director (también llamado radio vector vector). Si se denomina F a una fuerza, aplicada en un punto A, su momento respecto a otro punto B viene dado , por: . El concepto dado para momento en la Wikopedia, es mejor aún aún:…” El momento de una fuerza con respecto a un punto da a conocer en qué medida existe capacidad en una fuerza o desequilibrio de fuerzas para causar la rotación del cuerpo con respecto a éste. Nosotros a esta condición de equilibrio la vamos a llamar MOMENTO “M” de siempre con respecto a un punto de la estructura a calcular, y a esta condición de equilibrio la expresamos matemáticamente de la siguiente manera: ሺ∑ ࡹࡲ࢕ = ૙ሻ, debemos también saber que el momento de una fuerza , f tiene signo; si el giro es en el mismo sentido de las agujas del reloj es MOMENTO NEGATIVO, si es contrario será positivo . O sea en la foto la llave francesa da un momento………………………… momento…………………………- FÓRMULAS ESTATICA, II : TE SIO ES Y REACCIO ES Los ejercicios de reacciones y tensiones se resuelven como RBX + TX =0 sistemas de ecuaciones partiendo siempre del Diagrama RAY +TY - W + RBY -P = 0 cuerpo libre y de las condiciones de equilibrio erpo - MRAY - MTY + M W M RBY - MP = 0 ∑ F = 0 Fuerzas en “x” igual a cero) x RBX + T. Cos α =0 (de acá sale el valor de “RBX”) ∑ F = 0 (Fuerzas en “y” igual a cero) Y RAY +T.Sen α - W + RBY -P = 0 (de acá sale “RBY”) - RAY .dAY - T.Sen α. dT + W .½ d -P . dP= 0 ( de esta P ∑ MoF = 0 (momento de las “F” igual a cero) obtenemos el valor de “RAY” antes de sacar “RBY”) PLA O I CLI ADO T2 T1 T1 X − T2 X = 0 T1Y + T2Y − P = 0 P O HAY MOME TO Se reemplaza las componentes de “X” e ”Y” luego se mponentes resuelve el sistema de ecuaciones despejando “T1 y T2”; puede aplicarse cualquier método de resolución h el mas recomendable es el de “SUSTITUCIÓ ”. RAY T RBY RBX ∑F x =0 | P x |= F x = P . Sen α A B ∑F Y =0 | P |= F = P . Cos α y y W P ∑M B F =0 ½d ½d f kóS = y .K kó S = P r P = m.g 10
  • 11. PROBLEMAS PROPUESTOS 1. Verdadero ó falso: (a) las fuerzas de acción-reacción nunca actúan sobre un mismo cuerpo, (b) la masa de un cuerpo depende de su posición, (c) el peso de un cuerpo depende de su posición. 2. Verdadero o falso: a) ΣF = 0 es suficiente para que exista el equilibrio estático, b) ΣF = 0 es necesario para que exista el equilibrio estático, c) en equilibrio estático, el momento resultante respecto a cualquier punto es nulo, d) para que un objeto esté en equilibrio estático es necesario que sobre él no actúe ninguna fuerza. 3. Dar varios ejemplos de un cuerpo que no esté en equilibrio aún cuando la resultante de todas las fuerzas que actúan sobre él sea cero. 4. a) A partir de la figura realice las siguientes actividades: b) Calcula la tensión en el cable de acero en la siguiente a) Gráfico de cuerpo libre. situación: b) Calcule el valor de las tensiones que soporta las T1 cuerdas. T2 c) Calculo grafico y analítico de la resultante. 40° 55° d) ¿Por qué las “T” y el “P” no causan momento? α1 = 30° α2 = 0° P = 1000 Kgf P1 = 5000 N P2 = 3000 N P c. d) Calcula las Reacciones en la siguiente barra. 2 m 0,5 m 0,90 m T3 = 8000 N T2 = 5000 N T1=4500 N RAY RBY 25° P3 = 720 N A RAX B 28° P2 = 15000 N T1=3000 N P1 = 15000 N P = 650 N W = 220000 N 5m 5m 10 m 10 m W = 20000 N 2m 4m 1m 3m 1m 2m 5.- La figura muestra las fuerzas que ejercidas por el tendón de Aquiles que forma un ángulo de 40º con la horizontal y por el suelo sobre un hombre que pesa 800N cuando este se encuentra agachado. La fuerza de contacto ejercida por la tibia actúa en el punto o. Calcular: a) el módulo de la fuerza ejercida por el tendón de Aquiles b) el módulo y la dirección de la fuerza de contacto C O C 0,7,cm 6cm F 6) Una persona sostiene en la mano un peso de 50 con el antebrazo en posición horizontal (OA) como indica la figura. El músculo bíceps d esta fijo a 3 Cm de la articulación O con el brazo, y el peso P se encuentra a 35 Cm de la o L misma. Sobre la articulación O (el humero) actuá una fuerza descendente R y el bíceps R P ejerce sobre el antebrazo (el cubito) una fuerza ascendente F El peso del antebrazo puede considerarse despreciable. Entonces : 7) Un subibaja de 4m de longitud pivota en su centro. Un niño de 28 kg se sienta A) F = 50 B) F = 593 en uno de sus extremos. ¿Dónde debe sentarse un niño de 40 kg para equilibrar el C) R = 50 D) R = 533 subibaja? Seleccione La opción correcta 8) a)Un anuncio de masa m = 20 kg cuelga del extremo de una barra horizontal de longitud 2 m y masa despreciable. Un cable sujeta el extremo de la barra a un punto de la pared que está 1 m por encima de la punto O. Determinar la tensión del cable y la fuerza ejercida por la pared en punto O. b) Resuelva el mismo problema ahora suponiendo que La barra tiene una masa de 4 kg. Determine entonces la posición del centro de gravedad del sistema. O 11
  • 12. 9) Las condiciones de equilibrio nos ayudan a calcular sistemas 10) Según el caso de la figura estáticos, antes las Resultantes de dichos sistemas, ahora, las determinar el peso del cuerpo tensiones o reacciones, es así que las tensiones dependen directamente suspendido si la tensión de la cuerda de la fuerza que se aplica y del ángulo que determina la cuerda, como diagonal es de 20 N. por ejemplo en el ejercicio de la evaluación, donde los hermanos de Andrea, Marcos y Damián, le juegan una broma del cual calcularon la Resultante; pero en este caso ¿Cuál será el valor de las tensiones en 45° la Calza? Tenga en cuenta que para las tensiones solo interesa la fuerza con que el perro la estira el pantalón de “lycra”. Dibuje el diagrama de cuerpo libre. PARTICULA DINAMICA COMPLEJA DE LA PARTICULA Después del largo impase hecho por el estudio de las fuerzas, y la estática de los cuerpos retomamos el estudio del movimiento, considerando la causa que lo produce “LA FUERZA”. Vamos a distinguir ahora fuerzas elásticas, fuerzas de roce o fricción, y fuerzas normales, en los sistemas dinámicos. Fuerza elástica: Una fuerza puede deformar un resorte, como alargarlo o acortarlo. Cuanto mayor sea la fuerza, mayor será la deformación del resorte (∆x), en muchos resortes, y dentro de un rango de fuerzas limitado, es proporcional a la fuerza: Fe = -k . ∆x k: Constante que depende del material y dimensiones del resorte. ∆x: Variación del resorte con respecto a su longitud normal. Fuerza elástica: Fuerza normal al plano e igual pero de sentido contrario a la componente normal al plano, de la fuerza r peso. (Ver plano inclinado). P = m.g Y = Py = P .Cos α = m. g . cos α Fuerza de rozamiento: Fuerza aplicada y contraria al movimiento y que depende de la calidad de la superficie del cuerpo y de la superficie sobre la cual se desliza f kóS = y .K kó S µ: Coeficiente de rozamiento. Fuerza de rozamiento estática: fuerza mínima a vencer para poner en movimiento un cuerpo. Fuerza de rozamiento cinética: fuerza retardadora que comienza junto con el movimiento de un cuerpo. En el caso de deslizamiento en seco, cuando no existe lubricación, la fuerza de rozamiento es casi independiente de la velocidad. La fuerza de rozamiento tampoco depende del área aparente de contacto entre un objeto y la superficie sobre la cual se desliza. El área real de contacto (la superficie en la que las rugosidades microscópicas del objeto y de la superficie de deslizamiento se tocan realmente) es relativamente pequeña. Cuando un objeto se mueve por encima de la superficie de deslizamiento, las minúsculas rugosidades del objeto y la superficie chocan entre sí, y se necesita fuerza para hacer que se sigan moviendo. El área real de contacto depende de la fuerza perpendicular entre el objeto y la superficie de deslizamiento. Frecuentemente, esta fuerza no es sino el peso del objeto que se desliza. Si se empuja el objeto formando un ángulo con la horizontal, la componente vertical de la fuerza dirigida hacia abajo se sumará al peso del objeto. La fuerza de rozamiento es proporcional a la fuerza perpendicular total. 12