1c. variables estadísticas

3,741 views

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,741
On SlideShare
0
From Embeds
0
Number of Embeds
17
Actions
Shares
0
Downloads
45
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

1c. variables estadísticas

  1. 1. 1 VARIABLES ESTADÍSTICAS Una variable es una característica que al ser medida en diferentes individuos es susceptible de adoptar diferentes valores. Existen diferentes tipos de variables: Según la medición Variables cualitativas Son las variables que expresan distintas cualidades, características o modalidad. Cada modalidad que se presenta se denomina atributo o categoría y la medición consiste en una clasificación de dichos atributos. Las variables cualitativas pueden ser dicotómicas cuando sólo pueden tomar dos valores posibles como sí y no, hombre y mujer o son politómicas cuando pueden adquirir tres o más valores. Dentro de ellas podemos distinguir: Variable cualitativa ordinal o variable cuasi cuantitativa: La variable puede tomar distintos valores ordenados siguiendo una escala establecida, aunque no es necesario que el intervalo entre mediciones sea uniforme, por ejemplo: leve, moderado, grave. Variable cualitativa nominal: En esta variable los valores no pueden ser sometidos a un criterio de orden como por ejemplo los colores. Variables cuantitativas Son las variables que se expresan mediante cantidades numéricas. Las variables cuantitativas además pueden ser: Variable discreta: Es la variable que presenta separaciones o interrupciones en la escala de valores que puede tomar. Estas separaciones o interrupciones indican la ausencia de valores entre los distintos valores específicos que la variable pueda asumir. Ejemplo: El número de hijos (1, 2, 3, 4, 5). Variable continua: Es la variable que puede adquirir cualquier valor dentro de un intervalo especificado de valores. Por ejemplo la masa (2,3 kg, 2,4 kg, 2,5 kg,...) o la altura (1,64 m, 1,65 m, 1,66 m,...), o el salario. Solamente se está limitado por la precisión del aparato medidor, en teoría permiten que siempre exista un valor entre dos variables. Según la influencia Según la influencia que asignemos a unas variables sobre otras, podrán ser: Variables independientes Son las que el investigador escoge para establecer agrupaciones en el estudio, clasificando intrínsecamente a los casos del mismo. Un tipo especial son las variables de control, que
  2. 2. 2 modifican al resto de las variables independientes y que de no tenerse en cuenta adecuadamente pueden alterar los resultados por medio de un sesgo. Es aquella característica o propiedad que se supone ser la causa del fenómeno estudiado. En investigación experimental se llama así a la variable que el investigador manipula. Variables dependientes Son las variables de respuesta que se observan en el estudio y que podrían estar influenciadas por los valores de las variables independientes. Hayman (1974) la define como propiedad o característica que se trata de cambiar mediante la manipulación de la variable independiente. La variable dependiente es el factor que es observado y medido para determinar el efecto de la variable independiente. Otras Variable interviniente Son aquellas características o propiedades que de una manera u otra afectan el resultado que se espera y están vinculadas con las variables independientes y dependientes. Variable moderadora Según Tuckman: representan un tipo especial de variable independiente, que es secundaria, y se selecciona con la finalidad de determinar si afecta la relación entre la variable independiente primaria y las variables dependientes. Son las variables que expresan distintas cualidades, características o modalidad. Cada modalidad que se presenta se denomina atributo o categoría y la medición consiste en una clasificación de dichos atributos. Las variables cualitativas pueden ser dicotómicas cuando sólo pueden tomar dos valores posibles como sí y no, hombre y mujer o son politómicas cuando pueden adquirir tres o más valores. Parámetro estadístico En estadística, un parámetro es un número que resume la ingente cantidad de datos que pueden derivarse del estudio de una variable estadística. El cálculo de este número está bien definido, usualmente mediante una fórmula aritmética obtenida a partir de datos de la población. Los parámetros estadísticos son una consecuencia inevitable del propósito esencial de la estadística: crear un modelo de la realidad. Por ejemplo, suele ofrecerse como resumen de la juventud de una población la media aritmética de las edades de sus miembros, esto es, la suma de todas ellas, dividida por el total de individuos que componen tal población.
  3. 3. 3 Variable aleatoria En probabilidad y estadística, una variable aleatoria o variable estocástica es una variable estadística cuyos valores se obtienen de mediciones en algún tipo de experimento aleatorio. Formalmente, una variable aleatoria es una función, que asigna eventos, por ejemplo los posibles resultados de tirar un dado dos veces: (1, 1), (1, 2), etc, a números reales, (su suma). Los valores posibles de una variable aleatoria pueden representar los posibles resultados de un experimento aún no realizado, o los posibles valores de una cantidad cuyo valor actualmente existente es incierto (como resultado de medición incompleta o imprecisa). Intuitivamente, una variable aleatoria puede tomarse como una cantidad cuyo valor no es fijo pero puede tomar diferentes valores; una distribución de probabilidad se usa para describir la probabilidad de que se den los diferentes valores. Las variables aleatorias suelen tomar valores reales, pero se pueden considerar valores aleatorios como valores lógicos, funciones. Problemas Clasificar las siguientes variables: Ejercicio 1. 1. Preferencias políticas (izquierda, derecha o centro). 2. Marcas de cerveza. 3. Velocidad en Km/h. 4. El peso en Kg. 5. Signo del zodiaco. 6. Nivel educativo (primario secundario, superior). 7. Años de estudios completados. 8. Tipo de enseñanza (privada o pública). 9. Número de empleados de una empresa. 10. La temperatura de un enfermo en grados Celsius. 11. La clase social (baja, media o alta). 12. La presión de un neumático en 2 / cmNw Ejercicio 2. Clasifique las variables que aparecen en el siguiente cuestionario. 1. ¿Cuál es su edad? 2. Estado civil: (a) Soltero (b) Casado (c) Separado (d) Divorciado (e) Viudo 3. ¿Cuánto tiempo emplea para desplazarse a su trabajo? 4. Tamaño de su municipio de residencia: (a) Municipio pequeño (menos de 2.000 habitantes) (b) Municipio mediano (de 2.000 a 10.000 hab.) (c) Municipio grande (de 10.000 a 50.000 hab.) (d) Ciudad pequeña (de 50.000 a 100.000 hab.) (e) Ciudad grande (más de 100.000 hab.) 5. ¿Está afiliado a la seguridad social?
  4. 4. 4 Ejercicio 3. En el siguiente conjunto de datos, se proporcionan los pesos (redondeados a libras) de niños nacidos en cierto intervalo de tiempo: 4, 8, 4, 6, 8, 6, 7, 7, 7, 8, 10, 9, 7, 6, 10, 8, 5, 9, 6, 3, 7, 6, 4, 7, 6, 9, 7, 4, 7, 6, 8, 8, 9, 11, 8, 7, 10, 8, 5, 7, 7, 6, 5, 10, 8, 9, 7, 5, 6, 5. 1. Construir una distribución de frecuencia de estos pesos. 2. Encontrar las frecuencias relativas. 3. Encontrar las frecuencias acumuladas. 4. Encontrar las frecuencias relativas acumuladas. 5. Dibujar un histograma. 6. ¿Por qué se ha utilizado un histograma para representar estos datos, en lugar de una gráfica de barras?

×