Successfully reported this slideshow.

Basic Principles of Kinesiology

52,262 views

Published on

Published in: Business, Technology

Basic Principles of Kinesiology

  1. 1. Chapter 1 Basic Principles of Kinesiology
  2. 2. What is Kinesiology? <ul><li>Definition: The study of movement as related to the human body. </li></ul><ul><li>Origins from Greek word Kinesis “to move” and ology “to study” </li></ul>
  3. 3. Kinematics <ul><li>Kinematics- motion of the body without regard to forces </li></ul><ul><li>Translation- when all parts of a “body” move in the same direction </li></ul><ul><ul><li>Rectilinear motion (straight line) </li></ul></ul><ul><ul><li>Curvilinear motion (curved line) </li></ul></ul><ul><li>Rotation (movement of body about an axis) </li></ul><ul><ul><li>“ Pivot-point” - the axis of rotation that the movement occurs about </li></ul></ul><ul><li>Active movements </li></ul><ul><ul><li>e.g., flexing an arm over the head </li></ul></ul><ul><li>Passive movements </li></ul><ul><ul><li>e.g., resistance of a stretched ligament </li></ul></ul>
  4. 4. Translation vs. Rotation
  5. 5. Human Movement <ul><li>Center of Mass </li></ul><ul><li>Translation/Rotation </li></ul>
  6. 6. Kinesiology Terminology <ul><li>Anterior: toward the front of the body </li></ul><ul><li>Posterior: toward the back of the body </li></ul><ul><li>Midline: an imaginary line that courses vertically through the center of the body </li></ul><ul><li>Medial: toward the midline of the body </li></ul><ul><li>Lateral: away from the midline of the body </li></ul><ul><li>Superior: above, or toward the head </li></ul>
  7. 7. Kinesiology Terminology – cont’d <ul><li>Inferior : below, or toward the feet </li></ul><ul><li>Proximal: closer to, or toward the torso </li></ul><ul><li>Distal: away from the torso </li></ul><ul><li>Cephalad: toward the head </li></ul><ul><li>Caudal: toward the feet, or “tail” </li></ul><ul><li>Superficial: toward the surface (skin) of the body </li></ul>
  8. 8. Kinesiology Terminology – cont’d <ul><li>Deep: toward the inside (core) of the body </li></ul><ul><li>Origin: the proximal attachment of a muscle or ligament </li></ul><ul><li>Insertion: the distal attachment of a muscle or ligament </li></ul><ul><li>Prone: describes the position of an individual lying face down </li></ul><ul><li>Supine: describes the position of an individual lying face up </li></ul>
  9. 9. Osteokinematics <ul><li>Osteokinematics- describes the motion of bones relative to the three cardinal planes </li></ul><ul><li>Planes of motion </li></ul><ul><ul><li>Sagittal plane: left-right division </li></ul></ul><ul><ul><li>Frontal plane: front-back division </li></ul></ul><ul><ul><li>Horizontal (transverse) plane: top-bottom division </li></ul></ul><ul><li>Anatomic position </li></ul><ul><li>Degrees of freedom </li></ul><ul><ul><li>Number of planes of motion joint allows </li></ul></ul><ul><ul><li>A joint can have 1, 2, or 3 degrees of angular freedom </li></ul></ul>
  10. 10. Planes of Motion
  11. 11. Osteokinematics – cont’d <ul><li>Axis of rotation-”pivot-point” </li></ul><ul><ul><li>Anterior-posterior </li></ul></ul><ul><ul><ul><li>e.g., hip abduction/adduction </li></ul></ul></ul><ul><ul><li>Medial-lateral </li></ul></ul><ul><ul><ul><li>e.g., elbow flexion/extension </li></ul></ul></ul><ul><ul><li>Vertical (longitudinal) </li></ul></ul><ul><ul><ul><li>Rotational movements, e.g., trunk rotation </li></ul></ul></ul>
  12. 12. Axes of Rotation Table
  13. 13. Axes of Rotation Example
  14. 14. Osteokinematics: Body Motions <ul><li>Flexion </li></ul><ul><ul><li>Motion of one bone approaching the flexor surface of another </li></ul></ul><ul><li>Extension </li></ul><ul><ul><li>An approximation of the extensor surfaces of two bones </li></ul></ul><ul><li>Abduction </li></ul><ul><ul><li>Frontal plane movement away from the midline </li></ul></ul><ul><li>Adduction </li></ul><ul><ul><li>Frontal plane movement toward the midline </li></ul></ul>
  15. 15. Osteokinematics: Body Motions – cont’d <ul><li>Rotation </li></ul><ul><ul><li>Bony segment spinning about its longitudinal axis of rotation </li></ul></ul><ul><ul><li>Internal rotation </li></ul></ul><ul><ul><ul><li>Anterior bone surface rotates toward the midline </li></ul></ul></ul><ul><ul><li>External rotation </li></ul></ul><ul><ul><ul><li>Anterior bone surface rotates away from the midline  </li></ul></ul></ul><ul><li>Circumduction </li></ul><ul><ul><li>A circular motion through two planes </li></ul></ul><ul><ul><li>Requires 2 degrees of freedom </li></ul></ul>
  16. 16. Osteokinematics: Body Motions – cont’d <ul><li>Protraction </li></ul><ul><ul><li>Translation of bone away from midline in a plane parallel to the ground </li></ul></ul><ul><li>Retraction </li></ul><ul><ul><li>Movement of a bony segment toward the midline in a plane parallel to the ground </li></ul></ul>
  17. 17. Osteokinematics: Body Motions – cont’d <ul><li>Horizontal adduction and abduction </li></ul><ul><ul><li>Shoulder motions in the transverse plane </li></ul></ul><ul><ul><li>Horizontal adduction: hands come together </li></ul></ul><ul><ul><li>Horizontal abduction: extremities move away from midline </li></ul></ul><ul><li>Pronation </li></ul><ul><ul><li>Forearm movement that turns the palm posteriorly </li></ul></ul><ul><li>Supination </li></ul><ul><ul><li>Forearm movement that turns the palm anteriorly </li></ul></ul>
  18. 18. Osteokinematics: Body Motions – cont’d <ul><li>Radial deviation </li></ul><ul><ul><li>Lateral hand movement toward the radius </li></ul></ul><ul><li>Ulnar deviation </li></ul><ul><ul><li>Medial hand movement toward the ulna </li></ul></ul><ul><li>Dorsiflexion </li></ul><ul><ul><li>Sagittal plane ankle motion bringing the foot upward </li></ul></ul><ul><li>Plantar flexion </li></ul><ul><ul><li>Sagittal plane ankle motion pushing the foot downward </li></ul></ul>
  19. 19. Osteokinematics: Body Motions – cont’d <ul><li>Inversion and eversion </li></ul><ul><ul><li>Frontal plane motions of the ankle/foot complex </li></ul></ul><ul><ul><li>Inversion results in a medial-facing foot sole </li></ul></ul><ul><ul><li>Eversion results in a lateral-facing foot sole </li></ul></ul>
  20. 20. Osteokinematics: It’s All Relative <ul><li>Two perspectives of movement at a joint </li></ul><ul><li>Open-chain motion </li></ul><ul><ul><li>Movement of distal segment of bone about a relatively fixed proximal segment </li></ul></ul><ul><ul><li>Example: bicep curl with weights </li></ul></ul><ul><li>Closed-chain motion </li></ul><ul><ul><li>Movement of proximal segment of bone about a relatively fixed distal segment </li></ul></ul><ul><ul><li>Example: pushups </li></ul></ul>
  21. 21. Open vs. Closed Chain
  22. 22. Arthrokinematics <ul><li>Arthrokinematics </li></ul><ul><ul><li>Motion occurring between joint articular surfaces </li></ul></ul><ul><li>Convex-concave joint relationship </li></ul><ul><ul><li>Improves fit and stability </li></ul></ul><ul><ul><li>Properly guides motion </li></ul></ul><ul><li>Fundamental movements of arthrokinematics vary </li></ul><ul><ul><li>Depend on whether concave articular surface is moving on a fixed convex surface or vice versa </li></ul></ul>
  23. 23. Arthrokinematics: Fundamental Movements between Joint Surfaces <ul><li>Roll </li></ul><ul><ul><li>Multiple points along one rotating articular surface contact multiple points on another articular surface </li></ul></ul><ul><ul><ul><li>e.g., a tire rotating across a stretch of pavement </li></ul></ul></ul><ul><li>Slide </li></ul><ul><ul><li>Single point on one articular surface contacts multiple points on another articular surface </li></ul></ul><ul><ul><ul><li>e.g., a stationary tire skidding across a stretch of icy pavement </li></ul></ul></ul>
  24. 24. Roll vs. Slide <ul><li>Roll </li></ul><ul><li>Slide </li></ul>
  25. 25. Arthrokinematics: Fundamental Movements between Joint Surfaces – cont’d <ul><li>Spin </li></ul><ul><ul><li>Single point on one articular surface rotates on a single point on another articular surface </li></ul></ul><ul><ul><ul><li>e.g., rotating toy top spinning on one spot on the floor </li></ul></ul></ul>
  26. 26. Convex-on-Concave <ul><li>When a convex joint surface moves on a concave joint surface, the roll and slide occur in OPPOSITE directions! </li></ul>
  27. 27. Convex-on-Concave
  28. 28. Concave-on-Convex <ul><li>When a concave joint surface moves about a stationary convex joint surface, the roll and slide occur in the SAME direction! </li></ul>
  29. 29. Concave-on-Convex
  30. 30. Arthrokinematics: Mechanics and Functional Considerations <ul><li>Roll-and-slide mechanics </li></ul><ul><ul><li>Roll–and–opposite-direction slide maintains articular stability </li></ul></ul><ul><ul><li>To maintain firm surface contact, motion must be accompanied by slide in same direction </li></ul></ul><ul><li>Spin mechanics </li></ul><ul><ul><li>Spin always occurs about a central longitudinal axis of rotation </li></ul></ul><ul><li>Functional considerations </li></ul><ul><ul><li>Motion may be hindered by issues like impingement syndrome </li></ul></ul>
  31. 31. Functional Considerations
  32. 32. Kinetics <ul><li>Branch of mechanics that describes the effect of forces on the body </li></ul><ul><li>Force </li></ul><ul><ul><li>“ Push or pull” that can produce, modify, or halt a movement </li></ul></ul><ul><ul><ul><li>Internal force is generated within the body </li></ul></ul></ul><ul><ul><ul><li>External force is generated outside the body </li></ul></ul></ul>
  33. 33. Kinetics: Torque <ul><li>Torque is the rotational equivalent of force </li></ul><ul><li>Amount generated across a joint depends on: </li></ul><ul><ul><li>Amount of force exerted </li></ul></ul><ul><ul><li>Distance between force and axis of rotation (moment arm) </li></ul></ul><ul><li>Internal torques are generated internally (e.g., muscle) </li></ul><ul><li>External torques are generated externally (e.g., gravity) </li></ul>
  34. 34. Kinetics: Torque (Cont’d) <ul><li>Force x Movement Arm = Torque </li></ul><ul><li>Muscular Force x Internal Movement Arm = Internal Torque </li></ul><ul><li>External Force x External Movement Arm = External Torque </li></ul>
  35. 35. Biceps vs. Brachioradialis
  36. 36. Kinetics: Biomechanical Levers <ul><li>First-class lever </li></ul><ul><ul><li>Similar to a see-saw; fulcrum located between internal and external force </li></ul></ul><ul><li>Second-class levers </li></ul><ul><ul><li>Axis of rotation located at one end of the bony lever; internal moment arm always longer than the external moment arm </li></ul></ul><ul><ul><li>Allows motion with little amount of muscle force </li></ul></ul><ul><li>Third-class levers </li></ul><ul><ul><li>Axis of rotation located at one end of the bony lever; internal moment arm always smaller than the external moment arm </li></ul></ul><ul><ul><li>Most biomechanical lever systems in the body are third-class </li></ul></ul><ul><ul><li>Designed for speed and distance </li></ul></ul>
  37. 37.
  38. 38.
  39. 39.
  40. 40. Biomechanical Levers (cont’d)
  41. 41. Kinetics: Line of Pull <ul><li>Line of pull describes the direction of muscular force </li></ul><ul><ul><li>Medial-lateral axis of rotation </li></ul></ul><ul><ul><ul><li>Bony motion anterior of the sagittal plane </li></ul></ul></ul><ul><ul><li>Anterior-posterior axis of rotation </li></ul></ul><ul><ul><ul><li>Lateral motion pulls bone laterally </li></ul></ul></ul><ul><ul><ul><li>Medial motion pulls bone medially </li></ul></ul></ul><ul><ul><li>Vertical axis of rotation </li></ul></ul><ul><ul><ul><li>Anterior or medial pull produces inward rotation </li></ul></ul></ul><ul><ul><ul><li>Posterior or lateral pull produces rotation away from the midline </li></ul></ul></ul>
  42. 42. Kinetics: Vectors <ul><li>Vectors represent the magnitude and direction of a force </li></ul><ul><ul><li>Magnitude of force indicated by relative length of vector line </li></ul></ul><ul><ul><li>Direction is indicated by orientation of arrowhead </li></ul></ul><ul><ul><li>Resultant is resulting combination of vector forces </li></ul></ul>
  43. 43. Two Equal Force Vectors
  44. 44. Two Unequal Force Vectors
  45. 45. Summary <ul><li>In kinesiology, the body may be viewed as a biologic machine that rotates bony levers, powered by muscular “pulleys” </li></ul><ul><li>Some musculoskeletal levers are designed to produce large torques </li></ul><ul><li>Other levers are designed for producing high speeds or covering large distances </li></ul>
  46. 46. Chapter 1 REVIEW

×