Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Basic Principles of Kinesiology

67,678 views

Published on

Published in: Business, Technology
  • Login to see the comments

Basic Principles of Kinesiology

  1. 1. Chapter 1 Basic Principles of Kinesiology
  2. 2. What is Kinesiology? <ul><li>Definition: The study of movement as related to the human body. </li></ul><ul><li>Origins from Greek word Kinesis “to move” and ology “to study” </li></ul>
  3. 3. Kinematics <ul><li>Kinematics- motion of the body without regard to forces </li></ul><ul><li>Translation- when all parts of a “body” move in the same direction </li></ul><ul><ul><li>Rectilinear motion (straight line) </li></ul></ul><ul><ul><li>Curvilinear motion (curved line) </li></ul></ul><ul><li>Rotation (movement of body about an axis) </li></ul><ul><ul><li>“ Pivot-point” - the axis of rotation that the movement occurs about </li></ul></ul><ul><li>Active movements </li></ul><ul><ul><li>e.g., flexing an arm over the head </li></ul></ul><ul><li>Passive movements </li></ul><ul><ul><li>e.g., resistance of a stretched ligament </li></ul></ul>
  4. 4. Translation vs. Rotation
  5. 5. Human Movement <ul><li>Center of Mass </li></ul><ul><li>Translation/Rotation </li></ul>
  6. 6. Kinesiology Terminology <ul><li>Anterior: toward the front of the body </li></ul><ul><li>Posterior: toward the back of the body </li></ul><ul><li>Midline: an imaginary line that courses vertically through the center of the body </li></ul><ul><li>Medial: toward the midline of the body </li></ul><ul><li>Lateral: away from the midline of the body </li></ul><ul><li>Superior: above, or toward the head </li></ul>
  7. 7. Kinesiology Terminology – cont’d <ul><li>Inferior : below, or toward the feet </li></ul><ul><li>Proximal: closer to, or toward the torso </li></ul><ul><li>Distal: away from the torso </li></ul><ul><li>Cephalad: toward the head </li></ul><ul><li>Caudal: toward the feet, or “tail” </li></ul><ul><li>Superficial: toward the surface (skin) of the body </li></ul>
  8. 8. Kinesiology Terminology – cont’d <ul><li>Deep: toward the inside (core) of the body </li></ul><ul><li>Origin: the proximal attachment of a muscle or ligament </li></ul><ul><li>Insertion: the distal attachment of a muscle or ligament </li></ul><ul><li>Prone: describes the position of an individual lying face down </li></ul><ul><li>Supine: describes the position of an individual lying face up </li></ul>
  9. 9. Osteokinematics <ul><li>Osteokinematics- describes the motion of bones relative to the three cardinal planes </li></ul><ul><li>Planes of motion </li></ul><ul><ul><li>Sagittal plane: left-right division </li></ul></ul><ul><ul><li>Frontal plane: front-back division </li></ul></ul><ul><ul><li>Horizontal (transverse) plane: top-bottom division </li></ul></ul><ul><li>Anatomic position </li></ul><ul><li>Degrees of freedom </li></ul><ul><ul><li>Number of planes of motion joint allows </li></ul></ul><ul><ul><li>A joint can have 1, 2, or 3 degrees of angular freedom </li></ul></ul>
  10. 10. Planes of Motion
  11. 11. Osteokinematics – cont’d <ul><li>Axis of rotation-”pivot-point” </li></ul><ul><ul><li>Anterior-posterior </li></ul></ul><ul><ul><ul><li>e.g., hip abduction/adduction </li></ul></ul></ul><ul><ul><li>Medial-lateral </li></ul></ul><ul><ul><ul><li>e.g., elbow flexion/extension </li></ul></ul></ul><ul><ul><li>Vertical (longitudinal) </li></ul></ul><ul><ul><ul><li>Rotational movements, e.g., trunk rotation </li></ul></ul></ul>
  12. 12. Axes of Rotation Table
  13. 13. Axes of Rotation Example
  14. 14. Osteokinematics: Body Motions <ul><li>Flexion </li></ul><ul><ul><li>Motion of one bone approaching the flexor surface of another </li></ul></ul><ul><li>Extension </li></ul><ul><ul><li>An approximation of the extensor surfaces of two bones </li></ul></ul><ul><li>Abduction </li></ul><ul><ul><li>Frontal plane movement away from the midline </li></ul></ul><ul><li>Adduction </li></ul><ul><ul><li>Frontal plane movement toward the midline </li></ul></ul>
  15. 15. Osteokinematics: Body Motions – cont’d <ul><li>Rotation </li></ul><ul><ul><li>Bony segment spinning about its longitudinal axis of rotation </li></ul></ul><ul><ul><li>Internal rotation </li></ul></ul><ul><ul><ul><li>Anterior bone surface rotates toward the midline </li></ul></ul></ul><ul><ul><li>External rotation </li></ul></ul><ul><ul><ul><li>Anterior bone surface rotates away from the midline  </li></ul></ul></ul><ul><li>Circumduction </li></ul><ul><ul><li>A circular motion through two planes </li></ul></ul><ul><ul><li>Requires 2 degrees of freedom </li></ul></ul>
  16. 16. Osteokinematics: Body Motions – cont’d <ul><li>Protraction </li></ul><ul><ul><li>Translation of bone away from midline in a plane parallel to the ground </li></ul></ul><ul><li>Retraction </li></ul><ul><ul><li>Movement of a bony segment toward the midline in a plane parallel to the ground </li></ul></ul>
  17. 17. Osteokinematics: Body Motions – cont’d <ul><li>Horizontal adduction and abduction </li></ul><ul><ul><li>Shoulder motions in the transverse plane </li></ul></ul><ul><ul><li>Horizontal adduction: hands come together </li></ul></ul><ul><ul><li>Horizontal abduction: extremities move away from midline </li></ul></ul><ul><li>Pronation </li></ul><ul><ul><li>Forearm movement that turns the palm posteriorly </li></ul></ul><ul><li>Supination </li></ul><ul><ul><li>Forearm movement that turns the palm anteriorly </li></ul></ul>
  18. 18. Osteokinematics: Body Motions – cont’d <ul><li>Radial deviation </li></ul><ul><ul><li>Lateral hand movement toward the radius </li></ul></ul><ul><li>Ulnar deviation </li></ul><ul><ul><li>Medial hand movement toward the ulna </li></ul></ul><ul><li>Dorsiflexion </li></ul><ul><ul><li>Sagittal plane ankle motion bringing the foot upward </li></ul></ul><ul><li>Plantar flexion </li></ul><ul><ul><li>Sagittal plane ankle motion pushing the foot downward </li></ul></ul>
  19. 19. Osteokinematics: Body Motions – cont’d <ul><li>Inversion and eversion </li></ul><ul><ul><li>Frontal plane motions of the ankle/foot complex </li></ul></ul><ul><ul><li>Inversion results in a medial-facing foot sole </li></ul></ul><ul><ul><li>Eversion results in a lateral-facing foot sole </li></ul></ul>
  20. 20. Osteokinematics: It’s All Relative <ul><li>Two perspectives of movement at a joint </li></ul><ul><li>Open-chain motion </li></ul><ul><ul><li>Movement of distal segment of bone about a relatively fixed proximal segment </li></ul></ul><ul><ul><li>Example: bicep curl with weights </li></ul></ul><ul><li>Closed-chain motion </li></ul><ul><ul><li>Movement of proximal segment of bone about a relatively fixed distal segment </li></ul></ul><ul><ul><li>Example: pushups </li></ul></ul>
  21. 21. Open vs. Closed Chain
  22. 22. Arthrokinematics <ul><li>Arthrokinematics </li></ul><ul><ul><li>Motion occurring between joint articular surfaces </li></ul></ul><ul><li>Convex-concave joint relationship </li></ul><ul><ul><li>Improves fit and stability </li></ul></ul><ul><ul><li>Properly guides motion </li></ul></ul><ul><li>Fundamental movements of arthrokinematics vary </li></ul><ul><ul><li>Depend on whether concave articular surface is moving on a fixed convex surface or vice versa </li></ul></ul>
  23. 23. Arthrokinematics: Fundamental Movements between Joint Surfaces <ul><li>Roll </li></ul><ul><ul><li>Multiple points along one rotating articular surface contact multiple points on another articular surface </li></ul></ul><ul><ul><ul><li>e.g., a tire rotating across a stretch of pavement </li></ul></ul></ul><ul><li>Slide </li></ul><ul><ul><li>Single point on one articular surface contacts multiple points on another articular surface </li></ul></ul><ul><ul><ul><li>e.g., a stationary tire skidding across a stretch of icy pavement </li></ul></ul></ul>
  24. 24. Roll vs. Slide <ul><li>Roll </li></ul><ul><li>Slide </li></ul>
  25. 25. Arthrokinematics: Fundamental Movements between Joint Surfaces – cont’d <ul><li>Spin </li></ul><ul><ul><li>Single point on one articular surface rotates on a single point on another articular surface </li></ul></ul><ul><ul><ul><li>e.g., rotating toy top spinning on one spot on the floor </li></ul></ul></ul>
  26. 26. Convex-on-Concave <ul><li>When a convex joint surface moves on a concave joint surface, the roll and slide occur in OPPOSITE directions! </li></ul>
  27. 27. Convex-on-Concave
  28. 28. Concave-on-Convex <ul><li>When a concave joint surface moves about a stationary convex joint surface, the roll and slide occur in the SAME direction! </li></ul>
  29. 29. Concave-on-Convex
  30. 30. Arthrokinematics: Mechanics and Functional Considerations <ul><li>Roll-and-slide mechanics </li></ul><ul><ul><li>Roll–and–opposite-direction slide maintains articular stability </li></ul></ul><ul><ul><li>To maintain firm surface contact, motion must be accompanied by slide in same direction </li></ul></ul><ul><li>Spin mechanics </li></ul><ul><ul><li>Spin always occurs about a central longitudinal axis of rotation </li></ul></ul><ul><li>Functional considerations </li></ul><ul><ul><li>Motion may be hindered by issues like impingement syndrome </li></ul></ul>
  31. 31. Functional Considerations
  32. 32. Kinetics <ul><li>Branch of mechanics that describes the effect of forces on the body </li></ul><ul><li>Force </li></ul><ul><ul><li>“ Push or pull” that can produce, modify, or halt a movement </li></ul></ul><ul><ul><ul><li>Internal force is generated within the body </li></ul></ul></ul><ul><ul><ul><li>External force is generated outside the body </li></ul></ul></ul>
  33. 33. Kinetics: Torque <ul><li>Torque is the rotational equivalent of force </li></ul><ul><li>Amount generated across a joint depends on: </li></ul><ul><ul><li>Amount of force exerted </li></ul></ul><ul><ul><li>Distance between force and axis of rotation (moment arm) </li></ul></ul><ul><li>Internal torques are generated internally (e.g., muscle) </li></ul><ul><li>External torques are generated externally (e.g., gravity) </li></ul>
  34. 34. Kinetics: Torque (Cont’d) <ul><li>Force x Movement Arm = Torque </li></ul><ul><li>Muscular Force x Internal Movement Arm = Internal Torque </li></ul><ul><li>External Force x External Movement Arm = External Torque </li></ul>
  35. 35. Biceps vs. Brachioradialis
  36. 36. Kinetics: Biomechanical Levers <ul><li>First-class lever </li></ul><ul><ul><li>Similar to a see-saw; fulcrum located between internal and external force </li></ul></ul><ul><li>Second-class levers </li></ul><ul><ul><li>Axis of rotation located at one end of the bony lever; internal moment arm always longer than the external moment arm </li></ul></ul><ul><ul><li>Allows motion with little amount of muscle force </li></ul></ul><ul><li>Third-class levers </li></ul><ul><ul><li>Axis of rotation located at one end of the bony lever; internal moment arm always smaller than the external moment arm </li></ul></ul><ul><ul><li>Most biomechanical lever systems in the body are third-class </li></ul></ul><ul><ul><li>Designed for speed and distance </li></ul></ul>
  37. 37.
  38. 38.
  39. 39.
  40. 40. Biomechanical Levers (cont’d)
  41. 41. Kinetics: Line of Pull <ul><li>Line of pull describes the direction of muscular force </li></ul><ul><ul><li>Medial-lateral axis of rotation </li></ul></ul><ul><ul><ul><li>Bony motion anterior of the sagittal plane </li></ul></ul></ul><ul><ul><li>Anterior-posterior axis of rotation </li></ul></ul><ul><ul><ul><li>Lateral motion pulls bone laterally </li></ul></ul></ul><ul><ul><ul><li>Medial motion pulls bone medially </li></ul></ul></ul><ul><ul><li>Vertical axis of rotation </li></ul></ul><ul><ul><ul><li>Anterior or medial pull produces inward rotation </li></ul></ul></ul><ul><ul><ul><li>Posterior or lateral pull produces rotation away from the midline </li></ul></ul></ul>
  42. 42. Kinetics: Vectors <ul><li>Vectors represent the magnitude and direction of a force </li></ul><ul><ul><li>Magnitude of force indicated by relative length of vector line </li></ul></ul><ul><ul><li>Direction is indicated by orientation of arrowhead </li></ul></ul><ul><ul><li>Resultant is resulting combination of vector forces </li></ul></ul>
  43. 43. Two Equal Force Vectors
  44. 44. Two Unequal Force Vectors
  45. 45. Summary <ul><li>In kinesiology, the body may be viewed as a biologic machine that rotates bony levers, powered by muscular “pulleys” </li></ul><ul><li>Some musculoskeletal levers are designed to produce large torques </li></ul><ul><li>Other levers are designed for producing high speeds or covering large distances </li></ul>
  46. 46. Chapter 1 REVIEW

×