Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Digital Enterprise Research Institute                                                                 www.deri.ie         ...
(2)   2
   What is Linked Data? Why use it? What are some          examples?         How do Linked Data applications differ from...
   Using identifiers         to enable access         to add structure         to link to other stuff(4)              ...
(5)   5
Photo credit “nepatterson”, Flickr
   A “Web” where           documents are available for download on the Internet           but there would be no hyperli...
   We need a proper infrastructure for a real Web of Data            data is available on the Web            • accessibl...
Photo credit “kxlly”, Flickr
   Mass Media            BBC            New York Times            Guardian          Scholarly Publishers            ...
(13)   13
   http://www.ted.com/talks/tim_berners_lee_the_year_o           pen_data_went_worldwide.html(14)                        ...
(15)   15
http://5stardata.info(16)                           16
(17)   17
core record                                            DBpedia                                             record         ...
core record                                            DBpedia                                             record         ...
(20)   20
http://county-rank.data-gov.ie
http://county-rank.data-gov.ie
http://school-explorer.data-gov.ie
(24)   24
http://srvgal85.deri.ie/ab-app/
user                                      Dydra                   ab-proxy.py                    (120 LOC)                ...
(27)   27
(28)   28
   Using identifiers          to enable access          to add structure          to link to other stuff(29)          ...
Remember, everything must nest properly!                                                Document                          ...
(31)   31
structural divisions within a text        title-page, chapter, scene, stanza, line, etc       typographical elements   ...
structural divisions within a text        title-page, chapter, scene, stanza, line, etc       typographical elements   ...
(34)   34
   Using identifiers          to enable access          to add structure          to link to other stuff(35)          ...
http://www.youtube.com/watch?v=TJfrNo3Z-DU(36)                                                36
(37)   37
(38)   38
dog =               Slide Credit: Karen Coyle(39)                                       39
hund (lang=de)       dog (lang=en)                                        perro (lang=sp)                          IDa87nn...
Slide Credit: Karen Coyle(41)                               41
Slide Credit: Karen Coyle(42)                               42
   A Uniform Resource Identifier (URI) is a compact           sequence of characters that identifies an abstract         ...
   http://dbpedia.org/page/Maynooth(44)                                          44
   http://dbpedia.org/page/Maynooth(45)                                          45
(46)   46
   Using identifiers          to enable access          to add structure          to link to other stuff(47)          ...
http://www.youtube.com/watch?v=TJfrNo3Z-DU#t=1m20.5s(48)                                                          48
(49)   49
(50)   50
(51)   51
   Title          Creator          Date          Subject          Contributor          Coverage          Descriptio...
Slide credit: Dan Brickley(53)                                53
Slide credit: Dan Brickley(54)                                54
Slide credit: Dan Brickley(55)                                55
Slide credit: Dan Brickley(56)                                56
Slide credit: Dan Brickley(57)                                57
Slide credit: Dan Brickley(58)                                58
Slide credit: Dan Brickley(59)                                59
   Which vocabularies might you use?          What might you need vocabularies to represent?(60)                        ...
(61)   61
   What is Linked Data? Why use it? What are some           examples?(62)                                                ...
   Using identifiers          to enable access          to add structure          to link to other stuff(63)          ...
Photo credit “nepatterson”, Flickr
Photo credit “kxlly”, Flickr
http://5stardata.info(66)                           66
   What is Linked Data? Why use it? What are some           examples?          How do Linked Data applications differ fr...
core record                                            DBpedia                                             record         ...
   What is Linked Data? Why use it? What are some           examples?          How do Linked Data applications differ fr...
(70)   70
   What is Linked Data? Why use it? What are some           examples?          How do Linked Data applications differ fr...
   What is Linked Data? Why use it? What are some           examples?          How do Linked Data applications differ fr...
(73)   73
dog =               Slide Credit: Karen Coyle(74)                                       74
   http://dbpedia.org/page/Maynooth(75)                                          75
(76)   76
   Title          Creator          Date          Subject          Contributor          Coverage          Descriptio...
(78)   78
79(79)        79
(80)   80
(81)   81
(82)   82
(83)   83
(84)   84
(85)   85
(86)   86
(87)   87
Digital Enterprise Research Institute                                                                www.deri.ie          ...
(89)   89
(90)   90
(91)   91
(94)   94
(95)   95
(96)   96
(97)   97
(98)   98
AKA “An introduction to the Semantic Web (Through an Example)” by Ivan Herman(99)                                         ...
   Map the various data onto an abstract data            representation             make the data independent of its int...
ISBN         Author     Title                   Publisher          Year        0006511409X                id_xyz     The G...
The Glass Palace                                                    http://…isbn/000651409X             2000            Lo...
   Relations form a graph             the nodes refer to the “real” data or contain some literal             how the gr...
A                     B                       C                D        1                       ID                   Titre...
http://…isbn/000651409X                    Le palais des miroirs           f:auteur                                      h...
The Glass Palace                                                        http://…isbn/000651409X             2000          ...
The Glass Palace                                                        http://…isbn/000651409X             2000          ...
The Glass Palace                                                                     http://…isbn/000651409X             2...
   User of data “F” can now ask queries like:             “give me the title of the original”              • well, … « d...
   We “feel” that a:author and f:auteur should be the            same           But an automatic merge doest not know th...
The Glass Palace                                                                         http://…isbn/000651409X          ...
   User of dataset “F” can now query:             “donnes-moi la page d‟accueil de l‟auteur de l‟original”             •...
   Using, e.g., the “Person”, the dataset can be            combined with other sources           For example, data in W...
The Glass Palace                                                                                  http://…isbn/000651409X ...
The Glass Palace                                                                                              http://…isbn...
The Glass Palace                                                                                              http://…isbn...
   It may look like it but, in fact, it should not be…           What happened via automatic means is done every        ...
   We could add extra knowledge to the merged            datasets             e.g., a full classification of various typ...
Manipulate        Applications                          Query                                              …              ...
(122)   122
Linked data in the digital humanities  skills workshop for realising the opportunities of the digital humanities 2012.10.25
Linked data in the digital humanities  skills workshop for realising the opportunities of the digital humanities 2012.10.25
Linked data in the digital humanities  skills workshop for realising the opportunities of the digital humanities 2012.10.25
Linked data in the digital humanities  skills workshop for realising the opportunities of the digital humanities 2012.10.25
Linked data in the digital humanities  skills workshop for realising the opportunities of the digital humanities 2012.10.25
Linked data in the digital humanities  skills workshop for realising the opportunities of the digital humanities 2012.10.25
Upcoming SlideShare
Loading in …5
×

Linked data in the digital humanities skills workshop for realising the opportunities of the digital humanities 2012.10.25

9,907 views

Published on

This workshop will introduce participants to Linked Data, a key semantic web technology, and its uses in the digital humanities. Through examples of Linked Data websites and applications, we will explore how Linked Data is being used by individual digital humanities scholars, by organisations such as the BBC and the Central Statistics Office, and by cultural heritage institutions worldwide. We will make comparisons to other approaches to structuring data (including markup and metadata approaches such as TEI and XML) and discuss best practices for creating and reusing Linked Data (such as the importance of identifiers and standard vocabularies). Participants will also be introduced to tools for creating and exploring Linked Data. The workshop will also include a hands-on exercise in creating Linked Data.

Linked Data in the Digital Humanities was a Skills Workshop
http://dri.ie/skills-workshops
part of Realising the Opportunities of Digital Humanities
http://dri.ie/realising-opportunities-digital-humanities


Presenters: Jodi Schneider and Michael Hausenblas
with support from
Stefan Decker, Nuno Lopes, and Bahareh Heravi
all of the Digital Enterprise Research Institute, National University of Ireland Galway

Published in: Technology

Linked data in the digital humanities skills workshop for realising the opportunities of the digital humanities 2012.10.25

  1. 1. Digital Enterprise Research Institute www.deri.ie Linked Data in the Digital Humanities Jodi Schneider & Michael Hausenblas with Stefan Decker & Nuno Lopes Realising the Opportunities of Digital Humanities Thursday 25th October 2012 National University of Ireland, Maynooth Copyright 2011 Digital Enterprise Research Institute. All rights reserved. Enabling Networked Knowledge 1
  2. 2. (2) 2
  3. 3.  What is Linked Data? Why use it? What are some examples?  How do Linked Data applications differ from conventional ones?  How is Linked Data different from other structured data used in digital humanities? (e.g. TEI, XML)  What are the best practices for creating Linked Data?(3) 3
  4. 4.  Using identifiers  to enable access  to add structure  to link to other stuff(4) 4
  5. 5. (5) 5
  6. 6. Photo credit “nepatterson”, Flickr
  7. 7.  A “Web” where  documents are available for download on the Internet  but there would be no hyperlinks among them(7) Slide credit: Ivan Herman 7
  8. 8.  We need a proper infrastructure for a real Web of Data  data is available on the Web • accessible via standard Web technologies  data are interlinked over the Web  ie, data can be integrated over the Web  We need Linked Data(10) Slide credit: Ivan Herman 10
  9. 9. Photo credit “kxlly”, Flickr
  10. 10.  Mass Media  BBC  New York Times  Guardian  Scholarly Publishers  Nature  CrossRef  Data Publishers  USData.gov  Data.gov.uk  Central Statistics Office  Libraries(12) 12
  11. 11. (13) 13
  12. 12.  http://www.ted.com/talks/tim_berners_lee_the_year_o pen_data_went_worldwide.html(14) 14
  13. 13. (15) 15
  14. 14. http://5stardata.info(16) 16
  15. 15. (17) 17
  16. 16. core record DBpedia record Europeana recordapp records app British Library record data.gov.ie record conventional back-end Linked Data back-end
  17. 17. core record DBpedia record Europeana recordapp records app British Library record data.gov.ie record conventional back-end Linked Data back-end
  18. 18. (20) 20
  19. 19. http://county-rank.data-gov.ie
  20. 20. http://county-rank.data-gov.ie
  21. 21. http://school-explorer.data-gov.ie
  22. 22. (24) 24
  23. 23. http://srvgal85.deri.ie/ab-app/
  24. 24. user Dydra ab-proxy.py (120 LOC) DBpedia ab-app.js Europeana (181 LOC)client-side DERI server-side other server
  25. 25. (27) 27
  26. 26. (28) 28
  27. 27.  Using identifiers  to enable access  to add structure  to link to other stuff(29) 29
  28. 28. Remember, everything must nest properly! Document Paragraph Paragraph Sentence Sentence Sentence Sentence Sentence We use family tree terms: parent, child, sibling, ancestor, and descendent. Slide credit: Susan Schreibman(30) 30
  29. 29. (31) 31
  30. 30. structural divisions within a text title-page, chapter, scene, stanza, line, etc typographical elements changes in typeface, special characters, etc other textual features grammatical structures, location of illustrations, variant forms, etc Slide credit: Susan Schreibman(32) 32
  31. 31. structural divisions within a text title-page, chapter, scene, stanza, line, etc typographical elements changes in typeface, special characters, etc other textual features grammatical structures, location of illustrations, variant forms, etc Slide credit: Susan Schreibman(33) 33
  32. 32. (34) 34
  33. 33.  Using identifiers  to enable access  to add structure  to link to other stuff(35) 35
  34. 34. http://www.youtube.com/watch?v=TJfrNo3Z-DU(36) 36
  35. 35. (37) 37
  36. 36. (38) 38
  37. 37. dog = Slide Credit: Karen Coyle(39) 39
  38. 38. hund (lang=de) dog (lang=en) perro (lang=sp) IDa87nn3 chien (lang=fr) Slide Credit: Karen Coyle(40) 40
  39. 39. Slide Credit: Karen Coyle(41) 41
  40. 40. Slide Credit: Karen Coyle(42) 42
  41. 41.  A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. [RFC3986]  Syntax URI = scheme ":" hier-part [ "?" query ] [ "#" fragment ]  Example foo://example.com:8042/over/there?name=ferret#nose _/ _________________/____/ _______________/ ____/ | | | | | scheme authority path query fragment Slide Credit: Michael Hausenblas(43) 43
  42. 42.  http://dbpedia.org/page/Maynooth(44) 44
  43. 43.  http://dbpedia.org/page/Maynooth(45) 45
  44. 44. (46) 46
  45. 45.  Using identifiers  to enable access  to add structure  to link to other stuff(47) 47
  46. 46. http://www.youtube.com/watch?v=TJfrNo3Z-DU#t=1m20.5s(48) 48
  47. 47. (49) 49
  48. 48. (50) 50
  49. 49. (51) 51
  50. 50.  Title  Creator  Date  Subject  Contributor  Coverage  Description  Format  Identifier  Publisher  Relation  Rights  Source  Type(52) 52
  51. 51. Slide credit: Dan Brickley(53) 53
  52. 52. Slide credit: Dan Brickley(54) 54
  53. 53. Slide credit: Dan Brickley(55) 55
  54. 54. Slide credit: Dan Brickley(56) 56
  55. 55. Slide credit: Dan Brickley(57) 57
  56. 56. Slide credit: Dan Brickley(58) 58
  57. 57. Slide credit: Dan Brickley(59) 59
  58. 58.  Which vocabularies might you use?  What might you need vocabularies to represent?(60) 60
  59. 59. (61) 61
  60. 60.  What is Linked Data? Why use it? What are some examples?(62) 62
  61. 61.  Using identifiers  to enable access  to add structure  to link to other stuff(63) 63
  62. 62. Photo credit “nepatterson”, Flickr
  63. 63. Photo credit “kxlly”, Flickr
  64. 64. http://5stardata.info(66) 66
  65. 65.  What is Linked Data? Why use it? What are some examples?  How do Linked Data applications differ from conventional ones?(67) 67
  66. 66. core record DBpedia record Europeana recordapp records app British Library record data.gov.ie record conventional back-end Linked Data back-end
  67. 67.  What is Linked Data? Why use it? What are some examples?  How do Linked Data applications differ from conventional ones?  How is Linked Data different from other structured data used in digital humanities? (e.g. TEI, XML)(69) 69
  68. 68. (70) 70
  69. 69.  What is Linked Data? Why use it? What are some examples?  How do Linked Data applications differ from conventional ones?  How is Linked Data different from other structured data used in digital humanities? (e.g. TEI, XML)  What are the best practices for creating Linked Data?(71) 71
  70. 70.  What is Linked Data? Why use it? What are some examples?  How do Linked Data applications differ from conventional ones?  How is Linked Data different from other structured data used in digital humanities? (e.g. TEI, XML)  What are the best practices for creating Linked Data?(72) 72
  71. 71. (73) 73
  72. 72. dog = Slide Credit: Karen Coyle(74) 74
  73. 73.  http://dbpedia.org/page/Maynooth(75) 75
  74. 74. (76) 76
  75. 75.  Title  Creator  Date  Subject  Contributor  Coverage  Description  Format  Identifier  Publisher  Relation  Rights  Source  Type(77) 77
  76. 76. (78) 78
  77. 77. 79(79) 79
  78. 78. (80) 80
  79. 79. (81) 81
  80. 80. (82) 82
  81. 81. (83) 83
  82. 82. (84) 84
  83. 83. (85) 85
  84. 84. (86) 86
  85. 85. (87) 87
  86. 86. Digital Enterprise Research Institute www.deri.ie Thanks to our funders! Copyright 2011 Digital Enterprise Research Institute. All rights reserved. Enabling Networked Knowledge
  87. 87. (89) 89
  88. 88. (90) 90
  89. 89. (91) 91
  90. 90. (94) 94
  91. 91. (95) 95
  92. 92. (96) 96
  93. 93. (97) 97
  94. 94. (98) 98
  95. 95. AKA “An introduction to the Semantic Web (Through an Example)” by Ivan Herman(99) 99
  96. 96.  Map the various data onto an abstract data representation  make the data independent of its internal representation…  Merge the resulting representations  Start making queries on the whole!  queries not possible on the individual data sets(100) 100
  97. 97. ISBN Author Title Publisher Year 0006511409X id_xyz The Glass Palace id_qpr 2000 ID Name Homepage id_xyz Ghosh, Amitav http://www.amitavghosh.com ID Publisher’s name City id_qpr Harper Collins London(102) 102
  98. 98. The Glass Palace http://…isbn/000651409X 2000 London a:author Harper Collins a:name a:homepage Ghosh, Amitav http://www.amitavghosh.com(103) 103
  99. 99.  Relations form a graph  the nodes refer to the “real” data or contain some literal  how the graph is represented in machine is immaterial for now(104) 104
  100. 100. A B C D 1 ID Titre Traducteur Original 2 ISBN 2020286682 Le Palais des Miroirs $A12$ ISBN 0-00-6511409-X 3 4 5 6 ID Auteur 7 ISBN 0-00-6511409-X $A11$ 8 9 10 Nom 11 Ghosh, Amitav 12 Besse, Christianne(106) 106
  101. 101. http://…isbn/000651409X Le palais des miroirs f:auteur http://…isbn/202038668 2 f:traducteur f:nom f:nom Ghosh, Amitav Besse, Christianne(107) 107
  102. 102. The Glass Palace http://…isbn/000651409X 2000 London a:author Harper Collins a:name http://…isbn/000651409X a:homepage Le palais des miroirs Ghosh, Amitav http://www.amitavghosh.com f:auteur http://…isbn/2020386682 f:traducteu r f:nom f:nom Ghosh, Amitav Besse, Christianne(108) 108
  103. 103. The Glass Palace http://…isbn/000651409X 2000 London Same URI! a:author Harper Collins a:name http://…isbn/000651409X a:homepage Le palais des miroirs Ghosh, Amitav http://www.amitavghosh.com f:auteur http://…isbn/2020386682 f:traducteu r f:nom f:nom Ghosh, Amitav Besse, Christianne(109) 109
  104. 104. The Glass Palace http://…isbn/000651409X 2000 London a:author Harper Collins f:original a:name f:auteur a:homepage Le palais des miroirs Ghosh, Amitav http://www.amitavghosh.com http://…isbn/2020386682 f:traducteu r f:no m f:nom Ghosh, Amitav Besse, Christianne(110) 110
  105. 105.  User of data “F” can now ask queries like:  “give me the title of the original” • well, … « donnes-moi le titre de l‟original »  This information is not in the dataset “F”…  …but can be retrieved by merging with dataset “A”!(111) 111
  106. 106.  We “feel” that a:author and f:auteur should be the same  But an automatic merge doest not know that!  Let us add some extra information to the merged data:  a:author same as f:auteur  both identify a “Person”  a term that a community may have already defined: • a “Person” is uniquely identified by his/her name and, say, homepage • it can be used as a “category” for certain type of resources(112) 112
  107. 107. The Glass Palace http://…isbn/000651409X 2000 Le palais des miroirs f:original London a:author http://…isbn/2020386682 Harper Collins f:auteur r:type f:traducteu r:type r a:name a:homepage http://…foaf/Person f:nom f:nom Besse, Christianne Ghosh, Amitav http://www.amitavghosh.com(113) 113
  108. 108.  User of dataset “F” can now query:  “donnes-moi la page d‟accueil de l‟auteur de l‟original” • well… “give me the home page of the original‟s „auteur‟”  The information is not in datasets “F” or “A”…  …but was made available by:  merging datasets “A” and datasets “F”  adding three simple extra statements as an extra “glue”(114) 114
  109. 109.  Using, e.g., the “Person”, the dataset can be combined with other sources  For example, data in Wikipedia can be extracted using dedicated tools  e.g., the “dbpedia” project can extract the “infobox” information from Wikipedia already…(115) 115
  110. 110. The Glass Palace http://…isbn/000651409X 2000 Le palais des miroirs f:original London a:author http://…isbn/2020386682 Harper Collins f:auteur r:type f:traducteu r a:name r:type a:homepage http://…foaf/Person f:no m f:nom r:type Besse, Christianne Ghosh, Amitav http://www.amitavghosh.com foaf:name w:reference http://dbpedia.org/../Amitav_Ghos h(116) 116
  111. 111. The Glass Palace http://…isbn/000651409X 2000 Le palais des miroirs f:original London a:author http://…isbn/2020386682 Harper Collins f:auteur r:type f:traducteu r a:name r:type a:homepage http://…foaf/Person f:nom f:nom r:type w:isbn Besse, Christianne Ghosh, Amitav http://www.amitavghosh.com foaf:name w:reference http://dbpedia.org/../The_Glass_Palace w:author_of http://dbpedia.org/../Amitav_Ghos h w:author_of http://dbpedia.org/../The_Hungry_Tide w:author_of http://dbpedia.org/../The_Calcutta_Chromosome(117) 117
  112. 112. The Glass Palace http://…isbn/000651409X 2000 Le palais des miroirs f:original London a:author http://…isbn/2020386682 Harper Collins f:auteur r:type f:traducteu r a:name r:type a:homepage http://…foaf/Person f:nom f:no r:type m w:isbn Besse, Christianne Ghosh, Amitav http://www.amitavghosh.com foaf:name w:reference http://dbpedia.org/../The_Glass_Palace w:author_of http://dbpedia.org/../Amitav_Ghos h w:born_in w:author_of http://dbpedia.org/../Kolkata http://dbpedia.org/../The_Hungry_Tide w:long w:lat w:author_o f http://dbpedia.org/../The_Calcutta_Chromosome(118) 118
  113. 113.  It may look like it but, in fact, it should not be…  What happened via automatic means is done every day by Web users!  The difference: a bit of extra rigour so that machines could do this, too(119) 119
  114. 114.  We could add extra knowledge to the merged datasets  e.g., a full classification of various types of library data  geographical information  etc.  This is where ontologies, extra rules, etc, come in  ontologies/rule sets can be relatively simple and small, or huge, or anything in between…  Even more powerful queries can be asked as a result(120) 120
  115. 115. Manipulate Applications Query … Map, Data represented in abstract format Expose, … Data in various formats(121) 121
  116. 116. (122) 122

×