SlideShare una empresa de Scribd logo
1 de 45
CAPITULO 6MATRICES Sra. Ruth Cuebas Sr. Jose Moreno
Historia Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley introduce la notación matricial como una forma abreviada de escribir un sistema de m ecuaciones lineales con n incógnitas.
La utilización de matrices (arrays) constituye actualmente una parte esencial de los lenguajes de programación, ya que la mayoría de los datos se introducen en los ordenadores como tablas organizadas en filas y columnas , hojas de cálculo y bases de datos.  
Definicion Una matriz es una tabla cuadrada o rectangular de datos (llamados elementos o entradas de la matriz) ordenados en filas y columnas, donde una fila es cada una de las líneas horizontales de la matriz
  y una columna es cada una de las líneas verticales. A una matriz con m filas y n columnas se le denomina matriz m-por-n (escrito m×n), y a m y n dimensiones de la matriz.
Las dimensiones de una matriz siempre se dan con el número de filas primero y el número de columnas después. Comúnmente se dice que una matriz m-por-n tiene un orden de m × n ("orden" tiene el significado de tamaño)
Dos matrices se dice que son iguales si son del mismo orden y tienen los mismos elementos.
Al elemento de una matriz que se encuentra en la fila i-ésima y la columna j-ésima se le llama elemento i,j o elemento (i,j)-iésimo de la matriz. Se vuelve a poner primero las filas y después las columnas
La matriz   es una matriz 4x3.   El elemento A[2,3] o a2,3 es 7.
La matriz   es una matriz 1×9, o un vector fila con 9 elementos
ALGUNOS TIPOS DE MATRICES  Dada una matriz  A, se llama traspuesta de Aa la matriz que se obtiene cambiando ordenadamente las filas por las columnas.
    Matriz Cuadrada Aquella matriz que tiene igual número de filas que de columnas, m = n, se dice que la matriz es de orden n
  IDENTIDAD Es una matriz cuadrada que tiene todos sus elementos nulos excepto los de la diagonal principal que son iguales a 1. También se denomina matriz unidad.
 Matriz Nula Si todos sus elementos son cero. También se denomina matriz cero y se denota por 0m×n
La matriz opuesta de una dada es la que resulta de sustituir cada elemento por su opuesto. La opuesta de  A  es   -A.
Suma o adición  Dadas las matrices m-por-n ,A y B, su sumaA + B es la matriz m-por-n calculada sumando los elementos correspondientes       (A + B)[i, j] = A[i, j] + B[i, j]
Porejemplo: Sumar cada uno de los elementos homólogos de las matrices a sumar.
Propiedades Asociativa Dadaslas matrices m×nA, B y C                  A + (B + C) = (A + B) + C  Conmutativa Dadaslas matrices m×nA y B                     A + B = B + A
Propiedades (cont.) Existencia de matriz cero o matriznula               A + 0 = 0 + A = A  Existencia de matrizopuesta               A + (-A) = 0
Producto de matrices El producto de dos matrices se puede definir sólo si el número de columnas de la matriz izquierda es el mismo que el número de filas de la matriz derecha. Si A es una matriz m×n y B es una matriz n×p, entonces su producto matricialAB es la matriz m×p (m filas, p columnas).
Porejemplo:
Matrices, Transformaciones y Coordenadas Homogéneas: 3Dimensiones Para conseguir las transformaciones básicas       ( translación, rotación, escalado, deformación, en general las transformaciones afines) se utilizan matrices de transformación. Realizando algunos cambios a las matrices, se pueden combinar para conseguir una matriz resultante que sirva para varias transformaciones.
Coordenadas Homogéneas Las coordenadas homogéneas son un instrumento usado para describir un punto en el espacio proyectivo.   Se usan como un sistema alternativo de coordenadas para trabajar en el espacio pues este puede verse como un subconjunto del espacio.
Sistema  de Coordenadas Homogéneas Un objeto se representa por polígonos. Un polígono es una colección de vértices y aristas. Para transformar un objeto se transforman sus vértices. Si todos los puntos se expresan en coordenadas homogéneas, todas las transformaciones se pueden expresar como multiplicación. En coordenadas homogéneas a cada punto P(x,y) se le añade una tercera coordenada, W de forma que se representa mediante una tripleta, P(x,y,W).
Sistema de Coordenadas Homogéneas Si la coordenada W es distinta de cero, se puede normalizar la tripleta, dividiéndola por W, (x/W,y/W,1), seguirá representando al mismo punto. (x/W) y (y/W) se llaman coordenadas cartesianas del punto homogéneo. Cada punto expresado en coordenadas homogéneas representa una línea en el espacio 3D. Cuando se normaliza el punto, se obtiene un punto de la forma (x,y,1). La normalización de un punto equivale a proyectar sobre el plano W = 1. Los puntos en el infinito no se proyectan sobre este plano.
Explicaremos primero las transformaciones en 2Dimenciones y luego las de 3Dimenciones Existe un numero de representaciones homogéneas equivalentes para cada coordenada (x,y) seleccionando un valor no cero para w. Por conveniencia escogeremos w=1, para cada posición bidimensional con las coordenadas homogéneas (x,y,1)
Transformaciones en 2D Traslación Escalado Rotación Deformación
Translación 2D de un punto (x,y,1) a una distancia       en x  y  una distancia      en y Obtenemos, x´		1	0	tx	    x y´		0	1	ty	    y	 1		0	0	1	    1 x´	=	x	+	tx y´	=	y	+	ty
x´		 sx 	0	0	    x y´		0	 sy 	0	    y	 1		0	0	1	    1 2 dimensiones: escalado x´	=	 sx ·x y´	=	 sy ·y
2 dimensiones: rotación x´		cos Ѳ	 -sin Ѳ0 	x y´		sin Ѳ 	 cos Ѳ0		y 1		0 	    01 		1 Representado matricialmente en coordenadas homogéneas:
2 dimensiones: deformación (shear) Deformación de la coordenada x: x´		 1 	hx	 0 		x y´		 0 	10		y 1		 0 	0	 1 		1 x´	=	x	+	hx ·y y´	=	y
Ejemplo de traslación en 2D Si queremos trasladar a  dos unidades un vector en el plano obtenemos;
Inversa de la matriz transformada En realidad la inversa de la matriz es fácil de encontrar y el efecto que produce es                        “ undo” o sea regresar a la matriz original. 2D
Ejemplo de traslación utilizando la inversa de la matriz en 2Dimensiones Utilizando el ejemplo anterior de la traslación del     vector                a la posición        la inversa seria   la siguiente: Ej.
Transformaciones en 3Dimenciones La expresión general de una transformación en 3D en coordenadas homogéneas es x´		a11	 a12 	 a13 	 a14	x y´		a21	 a22 	 a23 	 a24	y z´		a31	 a32 	 a33 	 a34	z 1		 0	0	0	1	1
Matriz de transformación M44 Describe todas las transformaciones: traslación, escalado, rotación, deformación, etc... La composición de transformaciones se realiza mediante el producto de matrices. El producto de dos matrices es una herramienta que permite conectar dos transformaciones. Aplicar dos transformaciones sucesivas a un punto es equivalente a aplicar a ese punto el producto de las matrices de las respectivas transformaciones.
Traslación en 3Dimenciones         x´	=	x	+	tx         y´	=	y	+	ty         z´	=	z	+	tz
Escalado en 3Dimensiones     x´	=	 sx ·x     y´	=	 sy ·y     z´	=	 sz ·z
x´		1	0	0	0	x y´		0	cos θ	-sin θ	0	y z´		0	sin θ	cos θ	0	z 1		0	0	0	1	1 x´		cos θ 	0	sin θ 	0	x y´		0	1	0	0	y z´		-sin θ 	0	cos θ	0	z 1		0	0	0	1	1 x´		 cos θ	-sin θ	0	0	x y´		sin θ	cos θ	0	0	y z´		0	0	1	0	z 1		0	0	0	1	1 Rotación en 3Dimensiones Rotación en x Rotación en y Rotación en z
Deformación en 3Dimenciones 10 00  1   0    0                  0 1 0 		 0	0	0	1	 100           0  1    0    0                  k 1 0 		 0	0	0	1	 10 0           1   1    0                  k0 1 0 		 0	0	0	1
Inversa de la matriz en 3Dimensiones
Composición de transformaciones Se puede aplicar sucesivas transformaciones a un punto Al resultado de la primera transformación  Se aplica una segunda transformación La composición de trans. Se realiza mediante el producto de matrices
Ejemplo de composición Supongamos una nueva escala para un objeto por un factor 2 en x al punto(1,1,1) del origen S(2,1,1)  ;   T(-1,-1,-1);    S*T                                                     =
Implementación a la computadora En una concatenación de dos matrices de 3D en orden de(4x4) serian 64 multiplicaciones usando el método estándar de mult. De matrices. Es mas eficiente utilizar un una matriz de una dimensión de 12 elementos y sustituirla por la matriz general de transformaciones 3D; Obtenemos,                                     = a11	 a12 	 a13 	 a14 		a21	 a22 	 a23 	 a24 		a31	 a32 	 a33a34 		 0	0	0	1	 a0a1a2a3 		a4	 a5 	 a6 	 a7 a8a9a10a11 		 0	0	0	1
Conclusión Este capitulo nos enseña como atreves de las matemáticas (transformación de matrices) podemos aplicarlo para el uso de gráficos en el uso de la computadora.  Así que el usuario de sistemas de gráfica realizadas en computadoras puede seguir con gran felicidad inconsciente del empleo de matrices dentro de las rutinas que permiten sus creaciones.

Más contenido relacionado

La actualidad más candente

Presentación tipos de matrices
Presentación tipos de matricesPresentación tipos de matrices
Presentación tipos de matrices
mariat04
 
Técnicas de graficación de funciones
Técnicas de graficación de funcionesTécnicas de graficación de funciones
Técnicas de graficación de funciones
Briggitte Parrales
 
TEMA 1: MATRICES. OPERACIONES CON MATRICES
TEMA 1: MATRICES. OPERACIONES CON MATRICESTEMA 1: MATRICES. OPERACIONES CON MATRICES
TEMA 1: MATRICES. OPERACIONES CON MATRICES
elisancar
 
Método cramer(07 09-2012)
Método cramer(07 09-2012)Método cramer(07 09-2012)
Método cramer(07 09-2012)
Carlita Vaca
 
Operaciones con matrices
Operaciones con matricesOperaciones con matrices
Operaciones con matrices
Isabel Linares
 

La actualidad más candente (20)

Presentación tipos de matrices
Presentación tipos de matricesPresentación tipos de matrices
Presentación tipos de matrices
 
Técnicas de graficación de funciones
Técnicas de graficación de funcionesTécnicas de graficación de funciones
Técnicas de graficación de funciones
 
TEMA 1: MATRICES. OPERACIONES CON MATRICES
TEMA 1: MATRICES. OPERACIONES CON MATRICESTEMA 1: MATRICES. OPERACIONES CON MATRICES
TEMA 1: MATRICES. OPERACIONES CON MATRICES
 
Ecuaciones lineales: Concepto, ejercicios y problemas
Ecuaciones lineales: Concepto, ejercicios y problemasEcuaciones lineales: Concepto, ejercicios y problemas
Ecuaciones lineales: Concepto, ejercicios y problemas
 
Ecuación vectorial de la recta
Ecuación vectorial de la rectaEcuación vectorial de la recta
Ecuación vectorial de la recta
 
Matrices
MatricesMatrices
Matrices
 
Funciones y gráficas
Funciones y gráficasFunciones y gráficas
Funciones y gráficas
 
Método cramer(07 09-2012)
Método cramer(07 09-2012)Método cramer(07 09-2012)
Método cramer(07 09-2012)
 
Matrices
MatricesMatrices
Matrices
 
Clase 1
Clase 1Clase 1
Clase 1
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 
Matriz powerpoint
Matriz powerpointMatriz powerpoint
Matriz powerpoint
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 
Matrices operaciones
Matrices operacionesMatrices operaciones
Matrices operaciones
 
Operaciones con matrices
Operaciones con matricesOperaciones con matrices
Operaciones con matrices
 
Vectores clase2
Vectores clase2Vectores clase2
Vectores clase2
 
matrices y determinantes
matrices y determinantesmatrices y determinantes
matrices y determinantes
 
Determinantes
DeterminantesDeterminantes
Determinantes
 
Cap 01 1 matrices
Cap 01 1 matricesCap 01 1 matrices
Cap 01 1 matrices
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 

Similar a Presentacion Matrices

Matrices_y_determinantes REGLA DE CRAMER.pptx
Matrices_y_determinantes  REGLA DE CRAMER.pptxMatrices_y_determinantes  REGLA DE CRAMER.pptx
Matrices_y_determinantes REGLA DE CRAMER.pptx
BaquedanoMarbaro
 

Similar a Presentacion Matrices (20)

Matrices y Determinantes MD1 Ccesa007.pdf
Matrices y Determinantes MD1 Ccesa007.pdfMatrices y Determinantes MD1 Ccesa007.pdf
Matrices y Determinantes MD1 Ccesa007.pdf
 
Enrique rodriguez 20927971 matrices saia c
Enrique rodriguez 20927971 matrices saia cEnrique rodriguez 20927971 matrices saia c
Enrique rodriguez 20927971 matrices saia c
 
Antecedentes al álgebra lineal y matrices. Presentación diseñada por el MTRO....
Antecedentes al álgebra lineal y matrices. Presentación diseñada por el MTRO....Antecedentes al álgebra lineal y matrices. Presentación diseñada por el MTRO....
Antecedentes al álgebra lineal y matrices. Presentación diseñada por el MTRO....
 
Universidad abierta para adultos
Universidad abierta para adultosUniversidad abierta para adultos
Universidad abierta para adultos
 
Matrices
MatricesMatrices
Matrices
 
Matrices_y_determinantes REGLA DE CRAMER.pptx
Matrices_y_determinantes  REGLA DE CRAMER.pptxMatrices_y_determinantes  REGLA DE CRAMER.pptx
Matrices_y_determinantes REGLA DE CRAMER.pptx
 
Investigación #1
Investigación #1Investigación #1
Investigación #1
 
Matematica
MatematicaMatematica
Matematica
 
Matrices matemáticas
Matrices matemáticasMatrices matemáticas
Matrices matemáticas
 
ALGEBRA DE MATRICES
ALGEBRA DE MATRICESALGEBRA DE MATRICES
ALGEBRA DE MATRICES
 
Matrices
MatricesMatrices
Matrices
 
Matematica ii
Matematica iiMatematica ii
Matematica ii
 
Capitulo 4
Capitulo 4Capitulo 4
Capitulo 4
 
La matriz
La matrizLa matriz
La matriz
 
Matrices matemáticas
Matrices matemáticasMatrices matemáticas
Matrices matemáticas
 
Matrices matemáticas
Matrices matemáticasMatrices matemáticas
Matrices matemáticas
 
Matrices matemáticas
Matrices matemáticasMatrices matemáticas
Matrices matemáticas
 
Matrices ej completos
Matrices   ej completosMatrices   ej completos
Matrices ej completos
 
Matrices y Determinantes
Matrices y DeterminantesMatrices y Determinantes
Matrices y Determinantes
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 

Último

Comparativo DS 024-2016-EM vs DS 023-2017-EM - 21.08.17 (1).pdf
Comparativo DS 024-2016-EM vs DS 023-2017-EM - 21.08.17 (1).pdfComparativo DS 024-2016-EM vs DS 023-2017-EM - 21.08.17 (1).pdf
Comparativo DS 024-2016-EM vs DS 023-2017-EM - 21.08.17 (1).pdf
AJYSCORP
 
Catalogo de tazas para la tienda nube de dostorosmg
Catalogo de tazas para la tienda nube de dostorosmgCatalogo de tazas para la tienda nube de dostorosmg
Catalogo de tazas para la tienda nube de dostorosmg
dostorosmg
 
senati-powerpoint_5TOS-_ALUMNOS (1).pptx
senati-powerpoint_5TOS-_ALUMNOS (1).pptxsenati-powerpoint_5TOS-_ALUMNOS (1).pptx
senati-powerpoint_5TOS-_ALUMNOS (1).pptx
nathalypaolaacostasu
 
CARPETA PEDAGOGICA 2024 ARITA.sadasdasddocx
CARPETA PEDAGOGICA 2024 ARITA.sadasdasddocxCARPETA PEDAGOGICA 2024 ARITA.sadasdasddocx
CARPETA PEDAGOGICA 2024 ARITA.sadasdasddocx
WILIANREATEGUI
 
SENTENCIA COLOMBIA DISCRIMINACION SELECCION PERSONAL.pdf
SENTENCIA COLOMBIA DISCRIMINACION SELECCION PERSONAL.pdfSENTENCIA COLOMBIA DISCRIMINACION SELECCION PERSONAL.pdf
SENTENCIA COLOMBIA DISCRIMINACION SELECCION PERSONAL.pdf
JaredQuezada3
 
GUIA UNIDAD 3 costeo variable fce unc.docx
GUIA UNIDAD 3 costeo variable fce unc.docxGUIA UNIDAD 3 costeo variable fce unc.docx
GUIA UNIDAD 3 costeo variable fce unc.docx
AmyKleisinger
 
Tesis_liderazgo_desempeño_laboral_colaboradores_cooperativa_agraria_rutas_Inc...
Tesis_liderazgo_desempeño_laboral_colaboradores_cooperativa_agraria_rutas_Inc...Tesis_liderazgo_desempeño_laboral_colaboradores_cooperativa_agraria_rutas_Inc...
Tesis_liderazgo_desempeño_laboral_colaboradores_cooperativa_agraria_rutas_Inc...
MIGUELANGELLEGUIAGUZ
 
3ro - Semana 1 (EDA 2) 2023 (3).ppt. edx
3ro - Semana 1 (EDA 2) 2023 (3).ppt. edx3ro - Semana 1 (EDA 2) 2023 (3).ppt. edx
3ro - Semana 1 (EDA 2) 2023 (3).ppt. edx
Evafabi
 
260813887-diagrama-de-flujo-de-proceso-de-esparrago-fresco-verde.pptx
260813887-diagrama-de-flujo-de-proceso-de-esparrago-fresco-verde.pptx260813887-diagrama-de-flujo-de-proceso-de-esparrago-fresco-verde.pptx
260813887-diagrama-de-flujo-de-proceso-de-esparrago-fresco-verde.pptx
i7ingenieria
 

Último (20)

CORRIENTES DEL PENSAMIENTO ECONÓMICO.pptx
CORRIENTES DEL PENSAMIENTO ECONÓMICO.pptxCORRIENTES DEL PENSAMIENTO ECONÓMICO.pptx
CORRIENTES DEL PENSAMIENTO ECONÓMICO.pptx
 
Comparativo DS 024-2016-EM vs DS 023-2017-EM - 21.08.17 (1).pdf
Comparativo DS 024-2016-EM vs DS 023-2017-EM - 21.08.17 (1).pdfComparativo DS 024-2016-EM vs DS 023-2017-EM - 21.08.17 (1).pdf
Comparativo DS 024-2016-EM vs DS 023-2017-EM - 21.08.17 (1).pdf
 
Catalogo de tazas para la tienda nube de dostorosmg
Catalogo de tazas para la tienda nube de dostorosmgCatalogo de tazas para la tienda nube de dostorosmg
Catalogo de tazas para la tienda nube de dostorosmg
 
Las sociedades anónimas en el Perú , de acuerdo a la Ley general de sociedades
Las sociedades anónimas en el Perú , de acuerdo a la Ley general de sociedadesLas sociedades anónimas en el Perú , de acuerdo a la Ley general de sociedades
Las sociedades anónimas en el Perú , de acuerdo a la Ley general de sociedades
 
senati-powerpoint_5TOS-_ALUMNOS (1).pptx
senati-powerpoint_5TOS-_ALUMNOS (1).pptxsenati-powerpoint_5TOS-_ALUMNOS (1).pptx
senati-powerpoint_5TOS-_ALUMNOS (1).pptx
 
Contabilidad Gubernamental guia contable
Contabilidad Gubernamental guia contableContabilidad Gubernamental guia contable
Contabilidad Gubernamental guia contable
 
CARPETA PEDAGOGICA 2024 ARITA.sadasdasddocx
CARPETA PEDAGOGICA 2024 ARITA.sadasdasddocxCARPETA PEDAGOGICA 2024 ARITA.sadasdasddocx
CARPETA PEDAGOGICA 2024 ARITA.sadasdasddocx
 
Sostenibilidad y continuidad huamcoli robin-cristian.pptx
Sostenibilidad y continuidad huamcoli robin-cristian.pptxSostenibilidad y continuidad huamcoli robin-cristian.pptx
Sostenibilidad y continuidad huamcoli robin-cristian.pptx
 
Empresa Sazonadores Lopesa estudio de mercado
Empresa Sazonadores Lopesa estudio de mercadoEmpresa Sazonadores Lopesa estudio de mercado
Empresa Sazonadores Lopesa estudio de mercado
 
____ABC de las constelaciones con enfoque centrado en soluciones - Gabriel de...
____ABC de las constelaciones con enfoque centrado en soluciones - Gabriel de...____ABC de las constelaciones con enfoque centrado en soluciones - Gabriel de...
____ABC de las constelaciones con enfoque centrado en soluciones - Gabriel de...
 
SENTENCIA COLOMBIA DISCRIMINACION SELECCION PERSONAL.pdf
SENTENCIA COLOMBIA DISCRIMINACION SELECCION PERSONAL.pdfSENTENCIA COLOMBIA DISCRIMINACION SELECCION PERSONAL.pdf
SENTENCIA COLOMBIA DISCRIMINACION SELECCION PERSONAL.pdf
 
EL REFERENDO para una exposición de sociales
EL REFERENDO para una exposición de socialesEL REFERENDO para una exposición de sociales
EL REFERENDO para una exposición de sociales
 
GUIA UNIDAD 3 costeo variable fce unc.docx
GUIA UNIDAD 3 costeo variable fce unc.docxGUIA UNIDAD 3 costeo variable fce unc.docx
GUIA UNIDAD 3 costeo variable fce unc.docx
 
Presentacion encuentra tu creatividad papel azul.pdf
Presentacion encuentra tu creatividad papel azul.pdfPresentacion encuentra tu creatividad papel azul.pdf
Presentacion encuentra tu creatividad papel azul.pdf
 
Ficha de datos de seguridad MSDS Ethanol (Alcohol etílico)
Ficha de datos de seguridad MSDS Ethanol (Alcohol etílico)Ficha de datos de seguridad MSDS Ethanol (Alcohol etílico)
Ficha de datos de seguridad MSDS Ethanol (Alcohol etílico)
 
Tesis_liderazgo_desempeño_laboral_colaboradores_cooperativa_agraria_rutas_Inc...
Tesis_liderazgo_desempeño_laboral_colaboradores_cooperativa_agraria_rutas_Inc...Tesis_liderazgo_desempeño_laboral_colaboradores_cooperativa_agraria_rutas_Inc...
Tesis_liderazgo_desempeño_laboral_colaboradores_cooperativa_agraria_rutas_Inc...
 
3ro - Semana 1 (EDA 2) 2023 (3).ppt. edx
3ro - Semana 1 (EDA 2) 2023 (3).ppt. edx3ro - Semana 1 (EDA 2) 2023 (3).ppt. edx
3ro - Semana 1 (EDA 2) 2023 (3).ppt. edx
 
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBREDISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE
DISEÑO DE ESTRATEGIAS EN MOMENTOS DE INCERTIDUMBRE
 
liderazgo guia.pdf.............................
liderazgo guia.pdf.............................liderazgo guia.pdf.............................
liderazgo guia.pdf.............................
 
260813887-diagrama-de-flujo-de-proceso-de-esparrago-fresco-verde.pptx
260813887-diagrama-de-flujo-de-proceso-de-esparrago-fresco-verde.pptx260813887-diagrama-de-flujo-de-proceso-de-esparrago-fresco-verde.pptx
260813887-diagrama-de-flujo-de-proceso-de-esparrago-fresco-verde.pptx
 

Presentacion Matrices

  • 1. CAPITULO 6MATRICES Sra. Ruth Cuebas Sr. Jose Moreno
  • 2. Historia Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley introduce la notación matricial como una forma abreviada de escribir un sistema de m ecuaciones lineales con n incógnitas.
  • 3. La utilización de matrices (arrays) constituye actualmente una parte esencial de los lenguajes de programación, ya que la mayoría de los datos se introducen en los ordenadores como tablas organizadas en filas y columnas , hojas de cálculo y bases de datos.  
  • 4. Definicion Una matriz es una tabla cuadrada o rectangular de datos (llamados elementos o entradas de la matriz) ordenados en filas y columnas, donde una fila es cada una de las líneas horizontales de la matriz
  • 5. y una columna es cada una de las líneas verticales. A una matriz con m filas y n columnas se le denomina matriz m-por-n (escrito m×n), y a m y n dimensiones de la matriz.
  • 6. Las dimensiones de una matriz siempre se dan con el número de filas primero y el número de columnas después. Comúnmente se dice que una matriz m-por-n tiene un orden de m × n ("orden" tiene el significado de tamaño)
  • 7. Dos matrices se dice que son iguales si son del mismo orden y tienen los mismos elementos.
  • 8. Al elemento de una matriz que se encuentra en la fila i-ésima y la columna j-ésima se le llama elemento i,j o elemento (i,j)-iésimo de la matriz. Se vuelve a poner primero las filas y después las columnas
  • 9. La matriz es una matriz 4x3. El elemento A[2,3] o a2,3 es 7.
  • 10. La matriz es una matriz 1×9, o un vector fila con 9 elementos
  • 11. ALGUNOS TIPOS DE MATRICES Dada una matriz  A, se llama traspuesta de Aa la matriz que se obtiene cambiando ordenadamente las filas por las columnas.
  • 12. Matriz Cuadrada Aquella matriz que tiene igual número de filas que de columnas, m = n, se dice que la matriz es de orden n
  • 13. IDENTIDAD Es una matriz cuadrada que tiene todos sus elementos nulos excepto los de la diagonal principal que son iguales a 1. También se denomina matriz unidad.
  • 14. Matriz Nula Si todos sus elementos son cero. También se denomina matriz cero y se denota por 0m×n
  • 15. La matriz opuesta de una dada es la que resulta de sustituir cada elemento por su opuesto. La opuesta de  A  es   -A.
  • 16. Suma o adición Dadas las matrices m-por-n ,A y B, su sumaA + B es la matriz m-por-n calculada sumando los elementos correspondientes (A + B)[i, j] = A[i, j] + B[i, j]
  • 17. Porejemplo: Sumar cada uno de los elementos homólogos de las matrices a sumar.
  • 18. Propiedades Asociativa Dadaslas matrices m×nA, B y C A + (B + C) = (A + B) + C Conmutativa Dadaslas matrices m×nA y B A + B = B + A
  • 19. Propiedades (cont.) Existencia de matriz cero o matriznula A + 0 = 0 + A = A Existencia de matrizopuesta A + (-A) = 0
  • 20. Producto de matrices El producto de dos matrices se puede definir sólo si el número de columnas de la matriz izquierda es el mismo que el número de filas de la matriz derecha. Si A es una matriz m×n y B es una matriz n×p, entonces su producto matricialAB es la matriz m×p (m filas, p columnas).
  • 22. Matrices, Transformaciones y Coordenadas Homogéneas: 3Dimensiones Para conseguir las transformaciones básicas ( translación, rotación, escalado, deformación, en general las transformaciones afines) se utilizan matrices de transformación. Realizando algunos cambios a las matrices, se pueden combinar para conseguir una matriz resultante que sirva para varias transformaciones.
  • 23. Coordenadas Homogéneas Las coordenadas homogéneas son un instrumento usado para describir un punto en el espacio proyectivo. Se usan como un sistema alternativo de coordenadas para trabajar en el espacio pues este puede verse como un subconjunto del espacio.
  • 24. Sistema de Coordenadas Homogéneas Un objeto se representa por polígonos. Un polígono es una colección de vértices y aristas. Para transformar un objeto se transforman sus vértices. Si todos los puntos se expresan en coordenadas homogéneas, todas las transformaciones se pueden expresar como multiplicación. En coordenadas homogéneas a cada punto P(x,y) se le añade una tercera coordenada, W de forma que se representa mediante una tripleta, P(x,y,W).
  • 25. Sistema de Coordenadas Homogéneas Si la coordenada W es distinta de cero, se puede normalizar la tripleta, dividiéndola por W, (x/W,y/W,1), seguirá representando al mismo punto. (x/W) y (y/W) se llaman coordenadas cartesianas del punto homogéneo. Cada punto expresado en coordenadas homogéneas representa una línea en el espacio 3D. Cuando se normaliza el punto, se obtiene un punto de la forma (x,y,1). La normalización de un punto equivale a proyectar sobre el plano W = 1. Los puntos en el infinito no se proyectan sobre este plano.
  • 26. Explicaremos primero las transformaciones en 2Dimenciones y luego las de 3Dimenciones Existe un numero de representaciones homogéneas equivalentes para cada coordenada (x,y) seleccionando un valor no cero para w. Por conveniencia escogeremos w=1, para cada posición bidimensional con las coordenadas homogéneas (x,y,1)
  • 27. Transformaciones en 2D Traslación Escalado Rotación Deformación
  • 28. Translación 2D de un punto (x,y,1) a una distancia en x y una distancia en y Obtenemos, x´ 1 0 tx x y´ 0 1 ty y 1 0 0 1 1 x´ = x + tx y´ = y + ty
  • 29. x´ sx 0 0 x y´ 0 sy 0 y 1 0 0 1 1 2 dimensiones: escalado x´ = sx ·x y´ = sy ·y
  • 30. 2 dimensiones: rotación x´ cos Ѳ -sin Ѳ0 x y´ sin Ѳ cos Ѳ0 y 1 0 01 1 Representado matricialmente en coordenadas homogéneas:
  • 31. 2 dimensiones: deformación (shear) Deformación de la coordenada x: x´ 1 hx 0 x y´ 0 10 y 1 0 0 1 1 x´ = x + hx ·y y´ = y
  • 32. Ejemplo de traslación en 2D Si queremos trasladar a dos unidades un vector en el plano obtenemos;
  • 33. Inversa de la matriz transformada En realidad la inversa de la matriz es fácil de encontrar y el efecto que produce es “ undo” o sea regresar a la matriz original. 2D
  • 34. Ejemplo de traslación utilizando la inversa de la matriz en 2Dimensiones Utilizando el ejemplo anterior de la traslación del vector a la posición la inversa seria la siguiente: Ej.
  • 35. Transformaciones en 3Dimenciones La expresión general de una transformación en 3D en coordenadas homogéneas es x´ a11 a12 a13 a14 x y´ a21 a22 a23 a24 y z´ a31 a32 a33 a34 z 1 0 0 0 1 1
  • 36. Matriz de transformación M44 Describe todas las transformaciones: traslación, escalado, rotación, deformación, etc... La composición de transformaciones se realiza mediante el producto de matrices. El producto de dos matrices es una herramienta que permite conectar dos transformaciones. Aplicar dos transformaciones sucesivas a un punto es equivalente a aplicar a ese punto el producto de las matrices de las respectivas transformaciones.
  • 37. Traslación en 3Dimenciones x´ = x + tx y´ = y + ty z´ = z + tz
  • 38. Escalado en 3Dimensiones x´ = sx ·x y´ = sy ·y z´ = sz ·z
  • 39. x´ 1 0 0 0 x y´ 0 cos θ -sin θ 0 y z´ 0 sin θ cos θ 0 z 1 0 0 0 1 1 x´ cos θ 0 sin θ 0 x y´ 0 1 0 0 y z´ -sin θ 0 cos θ 0 z 1 0 0 0 1 1 x´ cos θ -sin θ 0 0 x y´ sin θ cos θ 0 0 y z´ 0 0 1 0 z 1 0 0 0 1 1 Rotación en 3Dimensiones Rotación en x Rotación en y Rotación en z
  • 40. Deformación en 3Dimenciones 10 00 1 0 0 0 1 0 0 0 0 1 100 0 1 0 0 k 1 0 0 0 0 1 10 0 1 1 0 k0 1 0 0 0 0 1
  • 41. Inversa de la matriz en 3Dimensiones
  • 42. Composición de transformaciones Se puede aplicar sucesivas transformaciones a un punto Al resultado de la primera transformación Se aplica una segunda transformación La composición de trans. Se realiza mediante el producto de matrices
  • 43. Ejemplo de composición Supongamos una nueva escala para un objeto por un factor 2 en x al punto(1,1,1) del origen S(2,1,1) ; T(-1,-1,-1); S*T =
  • 44. Implementación a la computadora En una concatenación de dos matrices de 3D en orden de(4x4) serian 64 multiplicaciones usando el método estándar de mult. De matrices. Es mas eficiente utilizar un una matriz de una dimensión de 12 elementos y sustituirla por la matriz general de transformaciones 3D; Obtenemos, = a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33a34 0 0 0 1 a0a1a2a3 a4 a5 a6 a7 a8a9a10a11 0 0 0 1
  • 45. Conclusión Este capitulo nos enseña como atreves de las matemáticas (transformación de matrices) podemos aplicarlo para el uso de gráficos en el uso de la computadora. Así que el usuario de sistemas de gráfica realizadas en computadoras puede seguir con gran felicidad inconsciente del empleo de matrices dentro de las rutinas que permiten sus creaciones.