1<br />MétodoPunto alto Puntobajo<br />Es un método de cálculo de costos que se puede utilizar para separar los costos mix...
$20,250<br />1<br />Estimación de costo variable<br />ProducciónCosto<br />	(Unidades) Total<br />Rellene la fórmula por d...
1<br />Estimación de costo variable<br />ProducciónCosto<br />	(Unidades) 	Total<br />A continuación, rellene la fórmula p...
1<br />Estimación de costo variable<br />ProducciónCosto<br />	(Unidades) 	Total<br />Costo variable porunidades $15<br />...
1<br />Estimación de costos fijos mediante punto alto-bajo<br />Es el primer paso para determinar el costo fijo insertar e...
1<br />ProducciónCosto<br />	(Unidades) 	Total<br />Using the highest level of production, we insert the total cost and un...
1<br />$61,500 = ($15 × 2,100 units) + Fixed cost<br />$61,500 = $31,500 + Fixed cost<br />$61,500 – $31,500 = Fixed cost<...
1<br />With fixed costs and variable costs estimated at $30,000 and $15 per unit, a formula is in place to estimate produc...
2<br />Compute the contribution margin, the contribution margin ratio, and the unit contribution margin.<br />4-19<br />
2<br />Cost-Volume-Profit Relationships<br />Cost-volume-profit analysis is the examination of the relationships among sel...
2<br />Contribution Margin<br />Thecontribution margin is the excess of sales revenues over variable costs. It is especial...
2<br />Contribution Margin Ratio (in dollars)<br />The contribution margin ratio is most useful when the increase or decre...
 30%<br />10%<br />Contribution Margin Ratio =<br />Sales – Variable Costs<br />Sales<br />$1,000,000 – $600,000<br />$1,0...
Change in Income from Operations<br />Changes in Sales Units      × Unit Contribution Margin<br />=<br />Change in Income ...
3<br />Determine the break-even point and sales necessary to achieve a target profit.<br />4-25<br />
Unit selling price	$25<br />Unit variable cost	  15<br />Unit contribution margin	$10<br />3<br />Baker Corporation’s fixe...
Fixed Costs<br />Unit Contribution Margin<br />Break-Even Sales (units)  =<br />$90,000<br />$10<br />Break-Even Sales (un...
Fixed Costs<br />Contribution Margin Ratio<br />Break-Even Sales (dollars)  =<br />$90,000<br />.40<br />Break-Even Sales ...
Unit selling price	$250<br />Unit variable cost	  145<br />Unit contribution margin	$105<br />3<br />Park Co. is evaluatin...
Fixed Costs<br />Unit Contribution Margin<br />Break-Even in Sales (units) =<br />8,000 units<br />8,400 units<br />=<br /...
Fixed Costs + Target Profit<br />Unit Contribution Margin<br />Sales (units) =<br />3<br />Target Profit<br />The sales vo...
Fixed Costs + Target Profit<br />Unit Contribution Margin<br />Sales (units) =<br />3<br />Units Required for Target Profi...
$30 <br />$75<br />from Slide 32<br />Contribution Margin Ratio =<br />40%<br />Contribution Margin Ratio =<br />Fixed Cos...
4<br />Using a cost-volume-profit chart and a profit-volume chart, determine the break-even point and sales necessary to a...
4<br />The cost-volume-profit chart inSlides 36to 48is based on Exhibit 5. Exhibit 5 was constructed using the following d...
Exhibit 5<br />Dollar amounts are indicated along the vertical axis.<br />4<br />Cost-Volume-Profit Chart<br />$500<br />$...
4<br />Using maximum sales of $500,000 and knowing that each unit sells for $50, we can find the values of the two axis. W...
Exhibit 5<br />4<br />Cost-Volume-Profit Chart (continued)<br />Point A<br />$500<br />$450<br />$400<br />$350<br />$300<...
Exhibit 5<br />4<br />Cost-Volume-Profit Chart (continued)<br />Point A<br />$500<br />$450<br />$400<br />$350<br />$300<...
Exhibit 5<br />4<br />Cost-Volume-Profit Chart (continued)<br />$500<br />$450<br />$400<br />$350<br />$300<br />$250<br ...
4<br />A point on the chart is needed to establish the revenue line. An arbitrary sales amount is picked of 10,000 units. ...
Exhibit 5<br />4<br />Cost-Volume-Profit Chart (continued)<br />$500<br />$450<br />$400<br />$350<br />$300<br />$250<br ...
4<br />The line would be the same if another point had been picked. For example, assume that 8,000 units had been chosen. ...
Exhibit 5<br />Break-Even Point<br />4<br />Cost-Volume-Profit Chart (continued)<br />$500<br />$450<br />$400<br />$350<b...
Exhibit 5<br />Break-Even Point<br />4<br />Cost-Volume-Profit Chart (continued)<br />$500<br />$450<br />$400<br />$350<b...
Exhibit 5<br />4<br />Cost-Volume-Profit Chart (continued)<br />$500<br />$450<br />$400<br />$350<br />$300<br />$250<br ...
Exhibit 5<br />4<br />Cost-Volume-Profit Chart (continued)<br />$500<br />$450<br />$400<br />$350<br />$300<br />$250<br ...
Exhibit 5<br />4<br />Cost-Volume-Profit Chart (concluded)<br />
Exhibit 6<br />4<br /> Revised Cost-Volume-Profit Chart<br />Break-even in sales would be reduced from $250,000 to $200,00...
Maximum Profit<br />4<br />The maximum operating loss is equal to the fixed costs of $100,000. Assuming that the maximum u...
5<br />Compute the break-even point for a company selling more than one product, the operating leverage, and the margin of...
Unit	Unit	Unit	Sales<br />		Selling	Variable	Contribution	Mix<br />	Product	Price	Cost	Margin	%<br />	A	$  90	$70	$20	80%<...
5<br />It is useful to think of the individual products as components of one overall enterprise product. For Cascade Compa...
$200,000<br />$25<br />Break-Even Sales (units)  =<br />5<br />Break-Even Point of 8,000 Units of E<br />Fixed Costs<br />...
5<br />Operating Leverage Example<br />                                              Jones Inc.         Wilson Inc.<br />S...
5<br />Operating Leverage Example<br />                                              Jones Inc.         Wilson Inc.<br />S...
5<br />Operating Leverage Example<br />                                              Jones Inc.         Wilson Inc.<br />S...
5<br />Margin of Safety<br />The margin of safety indicates the possible decrease in sales that may occur before an operat...
breakeven point
Upcoming SlideShare
Loading in …5
×

breakeven point

5,418 views

Published on

describes the breakeven point

  • Be the first to comment

  • Be the first to like this

breakeven point

  1. 1. 1<br />MétodoPunto alto Puntobajo<br />Es un método de cálculo de costos que se puede utilizar para separar los costos mixtos en sus componentes fijos y variables.<br />
  2. 2. $20,250<br />1<br />Estimación de costo variable<br />ProducciónCosto<br /> (Unidades) Total<br />Rellene la fórmula por diferencia de costos.<br />Junio 1,000 $45,550<br />Julio 1,500 52,000<br />Agosto 2,100 61,500<br />Septiembre 1,800 57,500<br />Octubre 750 41,250<br />$61,500<br /> 41,250<br />Difference in Total cost<br />$20,250<br />Costo Variable porUnidad=<br />Diferencia en Producción<br />
  3. 3. 1<br />Estimación de costo variable<br />ProducciónCosto<br /> (Unidades) Total<br />A continuación, rellene la fórmula para la diferencia en la producción.<br />Junio 1,000 $45,550<br />Julio 1,500 52,000<br />Agosto 2,100 61,500<br />Septiembre 1,800 57,500<br />Octubre 750 41,250<br />2,100<br /> 750<br /> 1,350<br />Difference in total cost<br />$20,250<br />Costo Variable porUnidad=<br />Difference in Production<br />1,350<br />
  4. 4. 1<br />Estimación de costo variable<br />ProducciónCosto<br /> (Unidades) Total<br />Costo variable porunidades $15<br />Junio 1,000 $45,550<br />Julio 1,500 52,000<br />Agosto 2,100 61,500<br />Septiembre 1,800 57,500<br />Octubre 750 41,250<br />$20,250<br />= $15<br />Costo Variable porUnidad =<br />1,350<br />
  5. 5. 1<br />Estimación de costos fijos mediante punto alto-bajo<br />Es el primer paso para determinar el costo fijo insertar el costo variable de $ 15 en la siguiente fórmula:<br />Costo total = (costo de variable por unidad × unidades de producción) + costosfijos<br />Coste total = ($ 15 × unidades de producción) + costofijo<br />
  6. 6. 1<br />ProducciónCosto<br /> (Unidades) Total<br />Using the highest level of production, we insert the total cost and units produced in the formula.<br />June 1,000 $45,550<br />July 1,500 52,000<br />August 2,100 61,500<br />September 1,800 57,500<br />October 750 41,250<br />Total Cost = (Variable Cost per Unit × Units of Production) + Fixed Cost<br />$61,500<br />Total cost = ($15 × Units of Production) + Fixed Cost<br />2,100 units)<br />
  7. 7. 1<br />$61,500 = ($15 × 2,100 units) + Fixed cost<br />$61,500 = $31,500 + Fixed cost<br />$61,500 – $31,500 = Fixed cost<br />$30,000 = Fixed cost<br />If the lowest level had been chosen, the results of the formula would provide the same fixed cost of $30,000.<br />
  8. 8. 1<br />With fixed costs and variable costs estimated at $30,000 and $15 per unit, a formula is in place to estimate production at any level. If the company is expected to produce 950 units in November, the estimated total overhead would be calculated as follows: <br />Total Cost = (Variable Cost per Unit × Units of Production) + Fixed cost<br />Total Cost = $15 (950) + $30,000<br />Total Cost = $44,250<br />
  9. 9. 2<br />Compute the contribution margin, the contribution margin ratio, and the unit contribution margin.<br />4-19<br />
  10. 10. 2<br />Cost-Volume-Profit Relationships<br />Cost-volume-profit analysis is the examination of the relationships among selling prices, sales and production volume, costs, expenses, and profits.<br />
  11. 11. 2<br />Contribution Margin<br />Thecontribution margin is the excess of sales revenues over variable costs. It is especially useful because it provides insight into the profit potential of a company.<br />
  12. 12. 2<br />Contribution Margin Ratio (in dollars)<br />The contribution margin ratio is most useful when the increase or decrease in sales volume is measured in sales dollars. In this case, the following formula is used to determine change in income from operations.<br />Change in Sales Dollars × Contribution Margin Ratio<br />Change in Income from Operations<br />=<br />
  13. 13. 30%<br />10%<br />Contribution Margin Ratio =<br />Sales – Variable Costs<br />Sales<br />$1,000,000 – $600,000<br />$1,000,000<br />Contribution Margin Ratio =<br />40%<br />Contribution Margin Ratio =<br />2<br />Contribution Margin Ratio<br />100%<br /> 60%<br />40%<br />
  14. 14. Change in Income from Operations<br />Changes in Sales Units × Unit Contribution Margin<br />=<br />Change in Income from Operations<br />15,000 × $8<br />=<br />Change in Income from Operations<br />$120,000<br />=<br />2<br />Using Contribution Margin per Unit as a Shortcut<br />Lambert Inc.’s sales could be increased by 15,000 units from 50,000 to 65,000 units. Lambert’s income from operations would increase by $120,000 (15,000 × $8) as shown below.<br />
  15. 15. 3<br />Determine the break-even point and sales necessary to achieve a target profit.<br />4-25<br />
  16. 16. Unit selling price $25<br />Unit variable cost 15<br />Unit contribution margin $10<br />3<br />Baker Corporation’s fixed costs are estimated to be $90,000. The unit contribution margin is calculated as follows:<br />
  17. 17. Fixed Costs<br />Unit Contribution Margin<br />Break-Even Sales (units) =<br />$90,000<br />$10<br />Break-Even Sales (units) =<br />3<br />The break-even point (in units) is calculated using the following equation:<br />Break-Even Sales (units) = 9,000 units<br />
  18. 18. Fixed Costs<br />Contribution Margin Ratio<br />Break-Even Sales (dollars) =<br />$90,000<br />.40<br />Break-Even Sales (dollars) =<br />Unit Contribution Margin <br />Unit Selling Price<br />$10<br />$25<br />3<br />The break-even point (in dollars) is calculated using the following equation:<br />Break-Even Sales (dollars) = $225,000<br />
  19. 19. Unit selling price $250<br />Unit variable cost 145<br />Unit contribution margin $105<br />3<br />Park Co. is evaluating a proposal to pay an additional 2% commission on sales to its salespeople (a variable cost) as an incentive to increase sales. Fixed costs are estimated at $840,000. The unit contribution margin before the additional 2% commission is determined below.<br />
  20. 20. Fixed Costs<br />Unit Contribution Margin<br />Break-Even in Sales (units) =<br />8,000 units<br />8,400 units<br />=<br />=<br />$840,000<br />$105<br />Break-Even in Sales (units) =<br />$840,000<br />$100<br />Break-Even in Sales (units) =<br />$250 – [$145 + ($250 × 2%)] = $100<br />3<br />Without additional 2% commission:<br />With additional 2% commission:<br />
  21. 21. Fixed Costs + Target Profit<br />Unit Contribution Margin<br />Sales (units) =<br />3<br />Target Profit<br />The sales volume required to earn a target profit is determined by modifying the break-even equation.<br />
  22. 22. Fixed Costs + Target Profit<br />Unit Contribution Margin<br />Sales (units) =<br />3<br />Units Required for Target Profit<br />Fixed costs are estimated at $200,000, and the desired profit is $100,000. Unit contribution margin is $30.<br />Unit selling price $75<br />Unit variable cost 45<br />Unit contribution margin $30<br />$200,000<br />$100,000<br />$30<br />Sales (units) =10,000 units<br />
  23. 23. $30 <br />$75<br />from Slide 32<br />Contribution Margin Ratio =<br />40%<br />Contribution Margin Ratio =<br />Fixed Costs + Target Profit<br />Contribution Margin Ratio<br />$200,000 + $100,000<br />40%<br />Sales (dollars) =<br />Sales (dollars) =<br />Necessary sales to have a $100,000 target profit<br />3<br />Target Profit<br />Unit Contribution Margin<br />Unit Selling Price<br />Contribution Margin Ratio =<br />= $750,000<br />
  24. 24. 4<br />Using a cost-volume-profit chart and a profit-volume chart, determine the break-even point and sales necessary to achieve a target profit.<br />4-34<br />
  25. 25. 4<br />The cost-volume-profit chart inSlides 36to 48is based on Exhibit 5. Exhibit 5 was constructed using the following data:<br />Unit selling price $ 50<br />Unit variable cost 30<br />Unit contribution margin $ 20<br />Total fixed costs $100,000<br />
  26. 26. Exhibit 5<br />Dollar amounts are indicated along the vertical axis.<br />4<br />Cost-Volume-Profit Chart<br />$500<br />$450<br />$400<br />$350<br />$300<br />$250<br />$200<br />$150<br />$100<br />$ 50<br />Sales and Costs (in thousands)<br />0<br /> 1 2 3 4 5 6 7 8 9 10<br />Units of Sales (in thousands)<br />Volume is shown on the horizontal axis.<br />(continued)<br />
  27. 27. 4<br />Using maximum sales of $500,000 and knowing that each unit sells for $50, we can find the values of the two axis. Where the horizontal sales and costs line intersects the vertical 10,000 unit of sales line is Point A in Slide 38.<br />
  28. 28. Exhibit 5<br />4<br />Cost-Volume-Profit Chart (continued)<br />Point A<br />$500<br />$450<br />$400<br />$350<br />$300<br />$250<br />$200<br />$150<br />$100<br />$ 50<br />Sales and Costs (in thousands)<br /> 1 2 3 4 5 6 7 8 9 10<br />0<br />Units of Sales (in thousands)<br />Point A could have been plotted at any sales level because linearity is assumed.<br />
  29. 29. Exhibit 5<br />4<br />Cost-Volume-Profit Chart (continued)<br />Point A<br />$500<br />$450<br />$400<br />$350<br />$300<br />$250<br />$200<br />$150<br />$100<br />$ 50<br />Sales and Costs (in thousands)<br />0<br /> 1 2 3 4 5 6 7 8 9 10<br />Units of Sales (in thousands)<br />Beginning at zero on the left corner of the graph, connect a straight line to the dot (Point A). <br />
  30. 30. Exhibit 5<br />4<br />Cost-Volume-Profit Chart (continued)<br />$500<br />$450<br />$400<br />$350<br />$300<br />$250<br />$200<br />$150<br />$100<br />$ 50<br />Sales and Costs (in thousands)<br />0<br /> 1 2 3 4 5 6 7 8 9 10<br />Units of Sales (in thousands)<br />Fixed cost of $100,000 is a horizontal line.<br />
  31. 31. 4<br />A point on the chart is needed to establish the revenue line. An arbitrary sales amount is picked of 10,000 units. At this sales level, the cost should be $400,000, calculated as follows: [(10,000 × $30) + $100,000] = $400,000.<br />
  32. 32. Exhibit 5<br />4<br />Cost-Volume-Profit Chart (continued)<br />$500<br />$450<br />$400<br />$350<br />$300<br />$250<br />$200<br />$150<br />$100<br />$ 50<br />Sales and Costs (in thousands)<br />0<br /> 1 2 3 4 5 6 7 8 9 10<br />Units of Sales (in thousands)<br />A line is drawn between fixed cost ($100,000) and the point.<br />
  33. 33. 4<br />The line would be the same if another point had been picked. For example, assume that 8,000 units had been chosen. At this sales level, the cost should be $400,000 [(8,000 × $30) + $100,000 = $340,000].<br />
  34. 34. Exhibit 5<br />Break-Even Point<br />4<br />Cost-Volume-Profit Chart (continued)<br />$500<br />$450<br />$400<br />$350<br />$300<br />$250<br />$200<br />$150<br />$100<br />$ 50<br />Sales and Costs (in thousands)<br />0<br /> 1 2 3 4 5 6 7 8 9 10<br />Units of Sales (in thousands)<br />
  35. 35. Exhibit 5<br />Break-Even Point<br />4<br />Cost-Volume-Profit Chart (continued)<br />$500<br />$450<br />$400<br />$350<br />$300<br />$250<br />$200<br />$150<br />$100<br />$ 50<br />Sales and Costs (in thousands)<br />0<br /> 1 2 3 4 5 6 7 8 9 10<br />Units of Sales (in thousands)<br />Break-even is sales of 5,000 units or $250,000. <br />
  36. 36. Exhibit 5<br />4<br />Cost-Volume-Profit Chart (continued)<br />$500<br />$450<br />$400<br />$350<br />$300<br />$250<br />$200<br />$150<br />$100<br />$ 50<br />Operating Loss Area<br />Sales and Costs (in thousands)<br />0<br /> 1 2 3 4 5 6 7 8 9 10<br />Units of Sales (in thousands)<br />
  37. 37. Exhibit 5<br />4<br />Cost-Volume-Profit Chart (continued)<br />$500<br />$450<br />$400<br />$350<br />$300<br />$250<br />$200<br />$150<br />$100<br />$ 50<br />Sales and Costs (in thousands)<br />Operating Profit Area<br />0<br /> 1 2 3 4 5 6 7 8 9 10<br />Units of Sales (in thousands)<br />
  38. 38. Exhibit 5<br />4<br />Cost-Volume-Profit Chart (concluded)<br />
  39. 39. Exhibit 6<br />4<br /> Revised Cost-Volume-Profit Chart<br />Break-even in sales would be reduced from $250,000 to $200,000 (5,000 to 4,000 in units).<br />
  40. 40. Maximum Profit<br />4<br />The maximum operating loss is equal to the fixed costs of $100,000. Assuming that the maximum unit sales within the relevant range is 10,000 units, the maximum operating profit is $100,000, computed as follows:<br /> Sales (10,000 units × $50) $500,000<br /> Variable costs (10,000 units × $30) 300,000<br /> Contribution margin (10,000 units × $20) $200,000<br /> Fixed costs 100,000<br /> Operating profit $100,000<br />
  41. 41. 5<br />Compute the break-even point for a company selling more than one product, the operating leverage, and the margin of safety.<br />4-51<br />
  42. 42. Unit Unit Unit Sales<br /> Selling Variable Contribution Mix<br /> Product Price Cost Margin %<br /> A $ 90 $70 $20 80%<br /> B 140 95 45 20%<br />5<br />Cascade Company Example<br />Cascade Company sold 8,000 units of Product A and 2,000 units of Product B during the past year. Cascade Company’s fixed costs are $200,000. Other relevant data are as follows:<br />
  43. 43. 5<br />It is useful to think of the individual products as components of one overall enterprise product. For Cascade Company, the overall enterprise product is called E.<br />Unit selling price of E: ($90 × 0.8) + ($140 × 0.2) = $100<br />Unit variable cost of E: ($70 × 0.8) + ($95 × 0.2) = 75<br />Unit contribution margin of E: $ 25<br />
  44. 44. $200,000<br />$25<br />Break-Even Sales (units) =<br />5<br />Break-Even Point of 8,000 Units of E<br />Fixed Costs<br />Unit Contribution Margin<br />Break-Even Sales (units) =<br />Break-Even Sales (units) = 8,000 units<br />
  45. 45. 5<br />Operating Leverage Example<br /> Jones Inc. Wilson Inc.<br />Sales $400,000 $400,000<br />Variable costs 300,000 300,000<br />Contribution margin $100,000 $100,000<br />Fixed costs 80,000 50,000<br />Income from operations $ 20,000 $ 50,000<br />Operating leverage ? ? <br />Both companies have the same contribution margin.<br />
  46. 46. 5<br />Operating Leverage Example<br /> Jones Inc. Wilson Inc.<br />Sales $400,000 $400,000<br />Variable costs 300,000 300,000<br />Contribution margin $100,000 $100,000<br />Fixed costs 80,000 50,000<br />Income from operations $ 20,000 $ 50,000<br />Operating leverage ? ? <br />5<br />Contribution Margin<br />Income from Operations<br />$100,000<br /> Jones Inc.:<br />= 5<br />$20,000<br />
  47. 47. 5<br />Operating Leverage Example<br /> Jones Inc. Wilson Inc.<br />Sales $400,000 $400,000<br />Variable costs 300,000 300,000<br />Contribution margin $100,000 $100,000<br />Fixed costs 80,000 50,000<br />Income from operations $ 20,000 $ 50,000<br />Operating leverage ? ? <br />5<br />2<br />Contribution Margin<br />Income from Operations<br />$100,000<br /> Wilson Inc.:<br />= 2<br />$50,000<br />
  48. 48. 5<br />Margin of Safety<br />The margin of safety indicates the possible decrease in sales that may occur before an operating loss results.<br />

×