Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Redes sociales-en-un-rato-piiisa

1,526 views

Published on

  • Be the first to comment

Redes sociales-en-un-rato-piiisa

  1. 1. Lo que siempre quisiste saber de las redes sociales JJ Merelo @jjmerelo Http://facebook.com/jjmerelo
  2. 2. ¿Por qué las redes? Todo es una red. La red tiene una dinámica. Formamos parte de una red Y lo que escribimos también. Escribir mejor, difundir mejor. 2
  3. 3. Nudos y mallas Los elementos de una red son nodos y las conexiones entre ellos aristas o arcos. 3
  4. 4. Redes a cascoporro Las aristas o arcos pueden ser físicos, virtuales o referirse a una relación 4
  5. 5. ¿Quieres ser un superhéroe? Alberich, y luego Gleiser, han investigado el Universo Marvel 5
  6. 6. Las redes no se pueden dejar al azar Ésta sería la apariencia de una red generada al azar. Tienen pinta de maraña. Pero no son muy realistas. 6
  7. 7. Y hay que imponer el orden 7
  8. 8. ¿En qué se diferencian? 8
  9. 9. ¿Los amigos de mis amigos son mis amigos? 9
  10. 10. Los atajos 10
  11. 11. ... que muchas veces surgen de los caminos deseados 11
  12. 12. Y hacen al mundo más pequeño 12
  13. 13. Y nos conducen hacia Kevin Bacon John Landis Enrique Villén 13
  14. 14. Las buenas noticias viajan rápido Debido al camino medio pequeño, la información se propaga rápidamente
  15. 15. Lo que provoca modas, monopolios, y monotonía En redes sociales, la ley del mínimo esfuerzo exige estar de acuerdo con todo el mundo.
  16. 16. Porque se propagan a través de los más conectados El reparto de conexiones no suele ser equitativo.
  17. 17. Y esto lleva a una distribución desigual Ley de potencias El primero tiene 2 veces más que el segundo,, éste 2 más que el tercero... Libre de escala La escala o número típico del sistema no existe
  18. 18. Leyes de potencia en el grado  P(k) ≈ k-  Donde k es el grado del vértice 18
  19. 19. Quien tiene, tendrá
  20. 20. Descubriendo a los conectores
  21. 21. O atacándolos
  22. 22. Lo que lleva a un comportamiento libre de escala  No hay número de enlaces preferido  En redes aleatorias la distribución es de Poisson (puntiaguda). lo que no hay una escala preferida  Por  Muchos enlaces son improbables, pero posibles. 22
  23. 23. ¿Por qué aparecen las leyes de potencia?  Enlazado  No siempre se cumple.  Efecto  preferencial (Barábasi) San Mateo Los mejores consiguen más.  Otros modelos: log-normal, exponencial estirada, Weibull. 23
  24. 24. Estos ricos, como lo viven  Se habla de club de ricos cuando los vértices con muchos enlaces solo se enlazan entre si 24
  25. 25. También hay redes antisociales  El grado de asortatividad depende de la red.  En el caso de los superhéroes, son disortativos. 25
  26. 26. ¿Y por qué deberían de importarme?  Distribuciones 80/20 (Pareto)  Listas-A:  Cola populares. larga.  Condensado de Bose- Einstein.  Monopolios naturales 26
  27. 27. Qué pequeño es el mundo redes mundo-pañuelo necesitan pocos enlaces para conectarlo todo  Las  Coeficiente alto de clustering  Escalado logarítmico de la longitud de camino con el tamaño. 27
  28. 28. Empequeñeciendo el mundo A partir de una red regular, con pocos enlaces.
  29. 29. Y al aborregamiento subsiguiente Las redes mundopequeño tienen un coeficiente de agrupamiento alto y un camino medio corto.
  30. 30. Redes complejas (clustering)  Enlazado preferencial  Leyes de potencias  Mundo pequeño  Componente gigante  Modularidad  Agrupamiento 30
  31. 31. ¿Y qué pasa con los nodos?  Miden la relevancia de un nodo (o enlace) dentro de la red.  Basadas en geodésicas  Cercanía  Intermediación (betweenness)  Basadas  en el grado (o flujo) Centralidad de flujo 31
  32. 32. En medio, como el jueves  El grado de intermediación mide la frecuencia con la que un nodo aparece en las geodésicas.  Si es alta controla el flujo de información. Número de geodésicas del nodo j al k que pasan por el nodo i. C BET i =∑ j <k # g jik # g jk Número de geodésicas del nodo j al nodo k. 32
  33. 33. Traspasos de la liga 33
  34. 34. Nos estamos acercando  La centralidad de cercanía mide cómo de cerca está un nodo del resto. C CLO i 1 = ∑ dij j Longitud de la geodésica del nodo i al nodo k. 34
  35. 35. Hay que tirar  Los nodos con alta cercanía son los primeros que consiguen nueva información (y los más eficientes para diseminarla). 35
  36. 36. Centros y autoridades  En grafos dirigidos, importa los que reciben enlaces (autoridades) y los que los emiten (hubs) 36
  37. 37. ¿Y Google, qué opina de esto?  Los buenos hubs apuntan a buenas autoridades y viceversa.  El pagerank de Google se basa en el mismo concepto. 37
  38. 38. La autoridad reside en los reyes Autoridad Hub Autoridad Autoridad+Hub +Hub 38
  39. 39. Llegando por varios sitios al gol 39
  40. 40. Eso es todo ¡A trabajar! Redes complejas 40

×