Inside Darwin Analytics

172 views

Published on

A small look into the development side of Darwin Analytics.

Notes: https://gist.github.com/jelmersnoeck/5005575

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
172
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Inside Darwin Analytics

  1. 1. M O R E I N SI G H TS, L E SS ME T R I CS.
  2. 2. The tree hasall the answers.
  3. 3. data sources
  4. 4. magicdata sources
  5. 5. profit++magicdata sources
  6. 6. Overview & insightsAdviceFuture
  7. 7. Overview & insightsAdviceFuture
  8. 8. Overview & insightsAdviceFuture
  9. 9. Answers to what?
  10. 10. Effect Which channel is most effectivein reaching your marketing objectives?
  11. 11. Cost Which channel is most cost-efficientin reaching your marketing objectives?
  12. 12. EvolutionHow am I evolving towardsmy marketing objectives?
  13. 13. Answers for who?
  14. 14. Mark Eaters
  15. 15. Third partyconnections data sources
  16. 16. Business logic layer magic
  17. 17. Business logic layerHarvesters Processors
  18. 18. Business logic layerHarvesters Processors
  19. 19. Business logic layerHarvesters Processors
  20. 20. Business logic layerHarvesters Processors
  21. 21. Business logic layerHarvesters Processors
  22. 22. Business logic layerHarvesters Processors
  23. 23. Presentation layer profit
  24. 24. Future: API layer
  25. 25. “#TDD is the process of describing what code should do before writing it. Saying that you can’t do that is saying that you can’t think!” ~ @everzet
  26. 26. Fail fast, succeed faster. 130+ tests, 350+ assertions Still too low (no functional tests)
  27. 27. “Ink is better than memory” phpDocumentor 2 16k+ ncloc 8k+ cloc
  28. 28. Vagrant
  29. 29. Vagrantdependencies
  30. 30. Vagrant dependencieseasy configuration
  31. 31. Parallelization
  32. 32. Parallelization Multiprocessing
  33. 33. Parallelization Multiprocessing Streaming
  34. 34. Parallelization Multiprocessing Streaming Message Queue
  35. 35. Machine learning
  36. 36. Build server
  37. 37. Whoops, there’s my exit! @jelmersnoeck

×