Introduction toSemantic Web<br />Jose Emilio Labra Gayo<br />University of Oviedo, Spain<br />http://www.di.uniovi.es/~lab...
The current Web<br />Current Web = the biggest repository of information ever compiled by Humanity<br />Designed for direc...
Example of Web Page<br />What we see through a browser<br />
Source code of a web page<br />What a machine <br />can see<br />
Another web page<br />What we see through a browser<br />
Source code<br />What a machine <br />can see<br />
Difficult queries<br />Different languages<br />Multimedia<br />Combine different travel data<br />Example: Travel from Ov...
The Syntactic Web<br />Pages and links<br />http://www.euitio.uniovi.es<br />School of Computer Science Engineering<br />G...
Faculty of Chemistry
 …</li></ul>href<br />http://chemistry.uniovi.es<br />Faculty of Chemistry<br />Location<br />Staff<br />…<br />href<br />...
The Semantic Web<br />Data and semantic links<br />School of Computer Engineering<br />http://euitio.uniovi.es<br />r:name...
The semantic web<br />The Semantic Web = Web of Data<br />A vision of the web where data is published and can be linked wi...
Features of the Web <br />Non-centralized<br />The information may not be consistent<br />Dynamic information<br />Data ma...
Towards the Semantic Web<br />Trust<br />Digital Signature<br />Proof<br />Unifying Logic<br />Query:<br />SPARQL<br />Ont...
RDF<br />Resource Description Framework (1998)<br />Description of resources<br />Resources = entities identified by URI<b...
RDF Triples<br />Subject<br />A resource identified by URI<br />Can also be a blank node (bNode)<br />Predicate<br />Globa...
RDF Graph Model<br />Can be represented in N-Triples<br />@prefix r: <http://example.org#> .<br /><http://euitio.uniovi.es...
RDF is Compositional<br />graph3.rdf<br />graph2.rdf<br />r:subject<br />r:Building<br />http://euitio.uniovi.es<br />r:co...
RDF is Compositional<br />RDF graphs can be composed<br />graph1.rdf + graph2.rdf+ graph3.rdf<br />r:hasPicture<br />http:...
Blank Nodes in RDF<br />Blank nodes  are represented as _:number in N-Triples<br /><http://euitio.uniovi.es>  	r:author   ...
Tables in RDF<br />RDF can model relational databases<br />r:firstName<br />John<br />r:lastName<br />_:1<br />Smith<br />...
RDF serialization formats<br />There are several formats to represent RDF data:<br />N3<br />RDF/XML<br />N-Triples<br />T...
RDF Data<br />Lots of information is currently published in RDF<br />Some examples: <br />DBPedia offers RDF triples of mo...
From Wikipedia to DBPedia<br />Infoset<br />
From Wikipedia to DBPedia<br />
Benefits of RDF<br />RDF enables better integration of data<br />Transform the Web from fileserver to database<br />Linkin...
Benefits of RDF<br />Linking open data existing datasets<br />
RDF Schema<br />Extends RDF with a Schema vocabulary<br />Class, Property, Resource,…<br />type, subClassOf, subPropertyOf...
RDF Schema<br />Example<br />r:Person<br />r:Teacher<br />rdfs:subClassOf<br />rdfs:range<br />r:Teacher<br />r:hasTeacher...
RDFS Inference <br />rdfs:subClassOf<br />r:Person<br />r:Teacher<br />rdf:type<br />rdf:type<br />http://euitio.uniovi.es...
SPARQL<br />Simple Protocol and RDF Query Language<br />Query languagefor the semantic web<br />Graph matching language<br...
SPARQL<br />Example<br />prefix r: <http://example.org#> <br />select ?n where <br /> { ?p r:subject r:Building. <br />   ...
SPARQL example<br />r:subject<br />r:Building<br />r:hasPicture<br />?p<br />?x<br />r:name<br />?n<br />?p<br />?n<br />?...
SPARQL & Inference<br />The RDF Graph may be obtained by inference<br />rdf:type<br />Results<br />Mary Jordan<br />select...
SPARQL<br />More features<br />Limitthe number of returned results; remove duplicates, sort them, …<br />Optional subpatte...
Obtaining RDF<br />SPARQL Endpoints offer an integration mechanism<br />Big RDF datasets accesible to applications<br />Ex...
RDF and HTML<br />Problems to embed RDF/XML in (x)HTML<br />It can be linked from an HTML page<br />There are some “scrapp...
GRDDL<br />dc:author<br />Mary Jordan<br />http://www.uniovi.es<br />2008-01-02<br />dc:date<br />page.html<br /><html xml...
RDFa<br />RDFa defines attributes to add meta-data to HTML elements<br />Similar to microformats<br />cal:Event<br />rdf:t...
Ontologies<br />RDFS does not solve all requirements<br />Applications need more expressivity and reasoning<br />In RDFS, ...
What is an Ontology?<br />A model of (some aspect of) the world<br />
What is an Ontology?<br />A model of (some aspect of) the world<br />Introduces vocabularyrelevant to domain, e.g.:<br />A...
What is an Ontology?<br />A model of (some aspect of) the world<br />Introduces vocabularyrelevant to domain, e.g.:<br />A...
What is an Ontology?<br />A model of (some aspect of) the world<br />Introduces vocabularyrelevant to domain, e.g.:<br />A...
What is an Ontology?<br />A model of (some aspect of) the world<br />Introduces vocabularyrelevant to domain, e.g.:<br />A...
What is an Ontology?<br />A model of (some aspect of) the world<br />Introduces vocabularyrelevant to domain, e.g.:<br />A...
What is an Ontology?<br />A model of (some aspect of) the world<br />Introduces vocabularyrelevant to domain<br />Specifie...
What is an Ontology?<br />A model of (some aspect of) the world<br />Introduces vocabularyrelevant to domain<br />Specifie...
OWL<br />OWL enables the description of new classes<br />By enumeration<br />Through intersection, union, complement<br />...
OWL: Classes by enumeration<br />Example: “The European Union is formed by Italy, France, Germany, etc.”<br />EUCountry = ...
OWL: Set theoretic definitions<br />Example: A person is a man or a woman<br />Person = Man  Woman<br />#Man<br />#Person...
OWL: Property restrictions<br />It is possible to define new classes by restricting the property values of some class<br /...
OWL: Property restrictions<br />Value constraints<br />some ()  value must be from a class<br />all ()  values must be f...
OWL: Property restrictions<br />Cardinality constraints (ie, how many times the property is used on an instance?)<br />exa...
OWL: Property characterizations<br />It is possible to characterize the behaviour of properties: <br />Symmetric, transiti...
OWL: Datatype properties<br />Properties whose range are typed literals<br />Example: age<br />datatypeProperty(#age)<br /...
OWL and Unique Name Assumption<br />Web = Open System<br />2 different URIs could identify the same object<br />OWL does n...
OWL: Open World Assumption<br />Traditional systems used Closed World Assumption <br />OWL uses the Open World Assumption<...
Conclusions<br />Semantic Web technologies = ready for deployment<br />It is easy to publish something in RDF<br />There a...
The End<br />Questions?<br />More information: <br />http://www.di.uniovi.es/~labra<br />
About Oviedo<br />
About Oviedo<br />220,000 habitants<br />Capital of the Principality of Asturias<br />
About the University of Oviedo<br />Established in 1608   (400 years)<br />Approx. 25000 students<br />31 faculties and s...
Upcoming SlideShare
Loading in …5
×

Sem webmaubeuge

742 views

Published on

Published in: Education
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
742
On SlideShare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
Downloads
9
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Sem webmaubeuge

  1. 1. Introduction toSemantic Web<br />Jose Emilio Labra Gayo<br />University of Oviedo, Spain<br />http://www.di.uniovi.es/~labra<br />
  2. 2. The current Web<br />Current Web = the biggest repository of information ever compiled by Humanity<br />Designed for direct human consumption<br />Lots of information available in:<br />Natural Language in HTML<br />English, Spanish, Chinese, Italian, etc.<br />More and More multimedia<br />Images, audio, video, etc.<br />Too much data, not enough knowledge<br />
  3. 3. Example of Web Page<br />What we see through a browser<br />
  4. 4. Source code of a web page<br />What a machine <br />can see<br />
  5. 5. Another web page<br />What we see through a browser<br />
  6. 6. Source code<br />What a machine <br />can see<br />
  7. 7. Difficult queries<br />Different languages<br />Multimedia<br />Combine different travel data<br />Example: Travel from Oviedo to Rome<br />Complex questions<br />Example: Asturian people who play soccer<br />
  8. 8. The Syntactic Web<br />Pages and links<br />http://www.euitio.uniovi.es<br />School of Computer Science Engineering<br />General Information<br />News<br />…<br />http://www.uniovi.es<br />University of Oviedo<br />List of Schools<br /><ul><li>School of Computer Science Engineering
  9. 9. Faculty of Chemistry
  10. 10. …</li></ul>href<br />http://chemistry.uniovi.es<br />Faculty of Chemistry<br />Location<br />Staff<br />…<br />href<br />Location…<br />…<br />…<br />href<br />Unit of information = HTML Page <br />Links are syntactic = href<br />Staff<br />…<br />…<br />href<br />
  11. 11. The Semantic Web<br />Data and semantic links<br />School of Computer Engineering<br />http://euitio.uniovi.es<br />r:name<br />23<br />r:contains<br />r:author<br />r:age<br />http://uniovi.es<br />Mary Jordan<br />r:name<br />r:name<br />r:contains<br />University of Oviedo<br />http://chemistry.uniovi.es<br />Faculty of Chemistry<br />r:name<br />Unit of information = Data<br />Links are semantic = Properties identified by URI<br />
  12. 12. The semantic web<br />The Semantic Web = Web of Data<br />A vision of the web where data is published and can be linked with other data<br />Goals:<br />Reuse data<br />Automate tasks<br />Tim Berners Lee, inventor of the WWW<br />
  13. 13. Features of the Web <br />Non-centralized<br />The information may not be consistent<br />Dynamic information<br />Data may change (or servers can fail)<br />Lots of information<br />The system cannot try to capture all the data<br />Open system<br />More information can appear in the future<br />
  14. 14. Towards the Semantic Web<br />Trust<br />Digital Signature<br />Proof<br />Unifying Logic<br />Query:<br />SPARQL<br />Ontologies<br />OWL<br />Rules<br />RIF<br />RDF Schema<br />RDF<br />XML<br />URI<br />Unicode<br />Semantic web layer cake, by Tim Berners Lee<br />
  15. 15. RDF<br />Resource Description Framework (1998)<br />Description of resources<br />Resources = entities identified by URI<br />Binary Relationships between resources<br /> Property = global name of the relationship (URI)<br />Subject  Predicate  Object<br />
  16. 16. RDF Triples<br />Subject<br />A resource identified by URI<br />Can also be a blank node (bNode)<br />Predicate<br />Global Property identified by URI<br />Object<br />Value of property<br />Can be URI, Literal or bNode<br />
  17. 17. RDF Graph Model<br />Can be represented in N-Triples<br />@prefix r: <http://example.org#> .<br /><http://euitio.uniovi.es> r:hasPicture <http://pictures.org/p1.jpg>.<br /><http://euitio.uniovi.es> r:name "School of Computer Engineering".<br /><http://pictures.org/p1.jpg> r:subject r:Building .<br />r:Building<br />r:hasPicture<br />http://pictures.org/p1.jpg<br />r:subject<br />http://euitio.uniovi.es<br />School of Computer Engineering<br />r:name<br /> URIs are usually abbreviated using namespace declarations<br />
  18. 18. RDF is Compositional<br />graph3.rdf<br />graph2.rdf<br />r:subject<br />r:Building<br />http://euitio.uniovi.es<br />r:contains<br />http://pictures.org/p2.jpg<br />University of Oviedo<br />r:hasPicture<br />http://uniovi.es<br />r:name<br />http://chemistry.uniovi.es<br />r:contains<br />r:name<br />http://chemistry.uniovi.es<br />Faculty of Chemistry<br />RDF graphs can be composed<br />graph1.rdf<br />r:Building<br />r:hasPicture<br />http://pictures.org/p1.jpg<br />r:subject<br />http://euitio.uniovi.es<br />School of Computer Engineering<br />r:name<br />
  19. 19. RDF is Compositional<br />RDF graphs can be composed<br />graph1.rdf + graph2.rdf+ graph3.rdf<br />r:hasPicture<br />http://pictures.org/p1.jpg<br />r:subject<br />School of Computer Engineering<br />r:Building<br />http://euitio.uniovi.es<br />r:name<br />r:subject<br />r:contains<br />http://pictures.org/p2.jpg<br />University of Oviedo<br />r:hasPicture<br />http://uniovi.es<br />r:name<br />http://chemistry.uniovi.es<br />r:contains<br />r:name<br />Faculty of Chemistry<br />
  20. 20. Blank Nodes in RDF<br />Blank nodes are represented as _:number in N-Triples<br /><http://euitio.uniovi.es> r:author _:1 .<br /><http://euitio.uniovi.es> r:author _:2 .<br />_:1 r:name “John Smith” .<br />_:2 r:age “23”^^xsd:positiveInteger .<br />_:2 r:name “Mary Jordan” .<br />Blank nodes are used to identify things that have no URI<br />Example: The author of a web page is a person, not a URI<br />r:name<br />John Smith<br />r:author<br />r:age<br />http://euitio.uniovi.es<br />23<br />r:author<br />Mary Jordan<br />r:name<br />
  21. 21. Tables in RDF<br />RDF can model relational databases<br />r:firstName<br />John<br />r:lastName<br />_:1<br />Smith<br />r:nodes<br />r:age<br />_:0<br />25<br />r:next<br />r:firstName<br />Mary<br />_:2<br />r:lastName<br />Jordan<br />r:age<br />23<br />
  22. 22. RDF serialization formats<br />There are several formats to represent RDF data:<br />N3<br />RDF/XML<br />N-Triples<br />Turtle<br />etc.<br />
  23. 23. RDF Data<br />Lots of information is currently published in RDF<br />Some examples: <br />DBPedia offers RDF triples of more than 80,000 persons, 293,000 places, 62,000 music albums, 36,000 films, etc.<br />
  24. 24. From Wikipedia to DBPedia<br />Infoset<br />
  25. 25. From Wikipedia to DBPedia<br />
  26. 26. Benefits of RDF<br />RDF enables better integration of data<br />Transform the Web from fileserver to database<br />Linking open data<br />Expose open datasets in RDF<br />Set links among the data of those datasets<br />Set up query endpoints<br />Altogether billions of triples, millions of links<br />
  27. 27. Benefits of RDF<br />Linking open data existing datasets<br />
  28. 28. RDF Schema<br />Extends RDF with a Schema vocabulary<br />Class, Property, Resource,…<br />type, subClassOf, subPropertyOf,…<br />range, domain,…<br />RDF Schema enables simple inferences<br />
  29. 29. RDF Schema<br />Example<br />r:Person<br />r:Teacher<br />rdfs:subClassOf<br />rdfs:range<br />r:Teacher<br />r:hasTeacher<br />Meaning:<br />if x rdf:type r:Teacher<br />then x rdf:type r:Person<br />Meaning:<br />if X r:hasTeacher Y <br />then Y rdf:type r:Teacher<br />
  30. 30. RDFS Inference <br />rdfs:subClassOf<br />r:Person<br />r:Teacher<br />rdf:type<br />rdf:type<br />http://euitio.uniovi.es<br />r:hasTeacher<br />r:name<br />Jose<br />
  31. 31. SPARQL<br />Simple Protocol and RDF Query Language<br />Query languagefor the semantic web<br />Graph matching language<br />Extracts information from RDF models<br />A protocol<br />Defines a way of invoking a service<br />WSDL description file<br />HTTP and SOAP bindings<br />It also defines an XML vocabulary for results<br />
  32. 32. SPARQL<br />Example<br />prefix r: <http://example.org#> <br />select ?n where <br /> { ?p r:subject r:Building. <br /> ?x r:hasPicture ?p .<br /> ?x r:name ?n . <br /> }<br />“Find names of resources who have a picture whose subject is Building”<br />
  33. 33. SPARQL example<br />r:subject<br />r:Building<br />r:hasPicture<br />?p<br />?x<br />r:name<br />?n<br />?p<br />?n<br />?x<br />?p<br />Results<br />School of Computer Engineering<br />?x<br />?n<br />r:subject<br />http://pictures.org/p1<br />r:Building<br />r:hasPicture<br />School of Computer Engineering<br />r:subject<br />r:name<br />http://euitio.uniovi.es<br />http://pictures.org/p2.<br />r:contains<br />University of Oviedo<br />http://uniovi.es<br />r:name<br />r:hasPicture<br />http://chemistry.uniovi.es<br />r:contains<br />r:name<br />Faculty of Chemistry<br />Faculty of Chemistry<br />select ?n where <br /> { ?p r:subject r:Building. <br /> ?x r:hasPicture ?p .<br /> ?x r:name ?n . <br /> }<br />
  34. 34. SPARQL & Inference<br />The RDF Graph may be obtained by inference<br />rdf:type<br />Results<br />Mary Jordan<br />select ?n where <br /> { ?x rdf:type r:Person. <br /> ?x r:name ?n . <br /> }<br />r:Teacher<br />rdf:type<br />rdfs:subClassOf<br />r:name<br />r:Person<br />Mary Jordan<br />
  35. 35. SPARQL<br />More features<br />Limitthe number of returned results; remove duplicates, sort them, …<br />Optional subpatterns (match if possible…)<br />Specify several data sources within the query <br />Construct a graph combining a separate pattern and the query results, or simply askwhether a pattern matches <br />Use datatypes and/or language tags when matching a pattern<br />
  36. 36. Obtaining RDF<br />SPARQL Endpoints offer an integration mechanism<br />Big RDF datasets accesible to applications<br />Example: DBPedia<br />Nowadays Data is mostly in Databases<br />It is not feasible to convert all databases to RDF More practical to convert on the fly<br />Several systems: Oracle 11g, Sesame, …<br />
  37. 37. RDF and HTML<br />Problems to embed RDF/XML in (x)HTML<br />It can be linked from an HTML page<br />There are some “scrappers” to extract the structure of web pages and dynamically generate RDF<br />Can be a solution for legacy web content<br />Not very elegant<br />2 proposals for a more systematic way:<br />GRDDL<br />RDFa<br />
  38. 38. GRDDL<br />dc:author<br />Mary Jordan<br />http://www.uniovi.es<br />2008-01-02<br />dc:date<br />page.html<br /><html xmlns="http://www.w3.org/1999/"><br /> <head profile="http://www.w3.org/2003/g/data-view"><br /> <title>University of Oviedo</title><br /> <link rel="transformation" href="http:…/dc-extract.xsl"/><br /> <meta name="DC.author" content=“Mary Jordan"/> <br /> ...<br /> </head><br /> ...<br /> <span class="date">2008-01-02</span><br /> ...<br /></html><br />http:…/dc-extract.xsl<br />
  39. 39. RDFa<br />RDFa defines attributes to add meta-data to HTML elements<br />Similar to microformats<br />cal:Event<br />rdf:type<br />cal:location<br />meetingBcn<br />Barcelona<br />cal:dtstart<br />20070508T1000+0200<br /><html <br /> xmlns:cal="http://www.w3.org/2002/12/cal/ical#"> …<br /><body> <br /><p class="cal:Event" about="#meetingBcn"> <br /> I will attend a meeting in<br /> <span property="cal:location">Barcelona</span>, <br /> on <br /> <span property="cal:dtstart" <br /> content="20070508T1000+0200"><br /> May 8th at 10am<br /> </span> </p> ... <br /> </body> <br /></html> <br />
  40. 40. Ontologies<br />RDFS does not solve all requirements<br />Applications need more expressivity and reasoning<br />In RDFS, it is not possible to create new subclasses<br />OWL (Web Ontology Language) offers a common language to define ontologies<br />
  41. 41. What is an Ontology?<br />A model of (some aspect of) the world<br />
  42. 42. What is an Ontology?<br />A model of (some aspect of) the world<br />Introduces vocabularyrelevant to domain, e.g.:<br />Anatomy<br />
  43. 43. What is an Ontology?<br />A model of (some aspect of) the world<br />Introduces vocabularyrelevant to domain, e.g.:<br />Anatomy<br />Cellular biology<br />
  44. 44. What is an Ontology?<br />A model of (some aspect of) the world<br />Introduces vocabularyrelevant to domain, e.g.:<br />Anatomy<br />Cellular biology<br />Aerospace<br />
  45. 45. What is an Ontology?<br />A model of (some aspect of) the world<br />Introduces vocabularyrelevant to domain, e.g.:<br />Anatomy<br />Cellular biology<br />Aerospace<br />Dogs<br />
  46. 46. What is an Ontology?<br />A model of (some aspect of) the world<br />Introduces vocabularyrelevant to domain, e.g.:<br />Anatomy<br />Cellular biology<br />Aerospace<br />Dogs<br />Hotdogs<br />…<br />
  47. 47. What is an Ontology?<br />A model of (some aspect of) the world<br />Introduces vocabularyrelevant to domain<br />Specifies meaning of terms<br />Heartis amuscular organ thatis part of the circulatory system<br />
  48. 48. What is an Ontology?<br />A model of (some aspect of) the world<br />Introduces vocabularyrelevant to domain<br />Specifies meaning of terms<br />Heartis amuscular organ thatis part of the circulatory system<br />Formalised using suitable logic<br />
  49. 49. OWL<br />OWL enables the description of new classes<br />By enumeration<br />Through intersection, union, complement<br />Through property restrictions<br />It is based on Description Logics<br />Well defined semantics<br />A subset of Predicate Logic <br />Limited use of variables <br />Binary predicates = Properties<br />Unary predicates = Classes<br />
  50. 50. OWL: Classes by enumeration<br />Example: “The European Union is formed by Italy, France, Germany, etc.”<br />EUCountry = { Italy, France, Germany, … }<br />#Italy<br />#France<br />#EUCountry<br />oneOf<br />#Germany<br />…<br />
  51. 51. OWL: Set theoretic definitions<br />Example: A person is a man or a woman<br />Person = Man  Woman<br />#Man<br />#Person<br />unionOf<br />#Woman<br />It also has IntersectionOf and complementOf<br />
  52. 52. OWL: Property restrictions<br />It is possible to define new classes by restricting the property values of some class<br />Reasoner acts as a classifier<br />
  53. 53. OWL: Property restrictions<br />Value constraints<br />some () value must be from a class<br />all () values must be from a class<br />Example: “An european is a person who has nationality from a European Union country”<br />European  Person   hasNationality EUCountry<br />hasNationality(#Sergio, #Italy)<br />Person(#Sergio)<br />inference<br />European(#Sergio)<br />x (European(x)  Person(x)  y (hasNationality(x,y)  EUCountry(y))<br />
  54. 54. OWL: Property restrictions<br />Cardinality constraints (ie, how many times the property is used on an instance?)<br />exact cardinality<br />minimum cardinality<br />maximum cardinality<br />Person  hasFather = 1<br />x (Person(x)  y (hasFather(x,y) z (hasFather(x,z)  z = y)))<br />
  55. 55. OWL: Property characterizations<br />It is possible to characterize the behaviour of properties: <br />Symmetric, transitive, functional, inverse functional, …<br />transitive(isPartOf)<br />inference<br />isPartOf(#Rome,#Europe)<br />isPartOf(#Rome, #Italy)<br />isPartOf(#Italy, #Europe)<br />
  56. 56. OWL: Datatype properties<br />Properties whose range are typed literals<br />Example: age<br />datatypeProperty(#age)<br />range(#age, xsd:positiveInteger)<br />CanVote  Person  age > “18” <br />inference<br />CanVote(#Sergio)<br />Person(#Sergio)<br />age(#Sergio, 20)<br />
  57. 57. OWL and Unique Name Assumption<br />Web = Open System<br />2 different URIs could identify the same object<br />OWL does not support Unique Name Assumption<br />There is no error in the model<br />It infers that #williamand#Billare the same<br />Person  hasFather = 1<br />hasFather(#Peter, #William)<br />hasFather(#Peter, #Bill)<br />Person(#Peter)<br />
  58. 58. OWL: Open World Assumption<br />Traditional systems used Closed World Assumption <br />OWL uses the Open World Assumption<br />Singleton    isMarriedWith Person<br />Married   isMarriedWith Person<br />Person(#Peter)<br />Person(#Mary)<br />Person(#James)<br />isMarriedWith(#Mary,#Peter)<br />Married(#James)<br />It infers: Married(#Mary)<br />It does not infer:<br /> Married(#Peter) <br /> Singleton(#Peter)<br />It also infers that James <br />…is married with someone…<br /> but it does not know with whom<br />
  59. 59. Conclusions<br />Semantic Web technologies = ready for deployment<br />It is easy to publish something in RDF<br />There are already huge amounts of data in RDF<br />Linking to existing ontologies is already possible<br />Social barriers have to be overcome<br />“Open door” policy<br />Use standards<br />Connect to others so others can connect to you<br />A little semantics can have a lot of impact<br />
  60. 60. The End<br />Questions?<br />More information: <br />http://www.di.uniovi.es/~labra<br />
  61. 61. About Oviedo<br />
  62. 62. About Oviedo<br />220,000 habitants<br />Capital of the Principality of Asturias<br />
  63. 63. About the University of Oviedo<br />Established in 1608  (400 years)<br />Approx. 25000 students<br />31 faculties and schools<br />79 bachelorprogrammes<br />35 doctoral programmes<br />26 masterprogrammes<br />
  64. 64. About the School of Computing<br />Established in 1982<br /> 1000 students<br />  1200 graduates<br />Programmes:<br />Bachelor in Software Engineering<br />Master in Web Engineering<br />Doctoral programme in Web Engineering<br />http://www.informatica.uniovi.es<br />
  65. 65. Acknowledgements<br />Parts of this presentation have been taken from similar presentations by:<br />Ivan Hermann<br />Jacco van Ossenbruggen<br />Nova Spivak<br />Ian Horrocks<br />

×