Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Radiation physics 2

3,186 views

Published on

Published in: Education
  • Be the first to comment

Radiation physics 2

  1. 1. Physics Applied to Radiology Chapter 3 Fundamentals of Physics
  2. 2. Physics <ul><li>natural science </li></ul><ul><li>deals with matter and energy </li></ul><ul><ul><li>defines & characterizes </li></ul></ul><ul><ul><li>interactions between matter and energy </li></ul></ul>
  3. 3. Matter <ul><li>a physical substance </li></ul><ul><li>characteristics of all matter </li></ul><ul><ul><li>occupies space </li></ul></ul><ul><ul><li>has mass </li></ul></ul>
  4. 4. Energy <ul><li>capacity for doing work </li></ul>
  5. 5. Math <ul><li>exact vs. approximate numbers </li></ul><ul><ul><li>exact -- defined or counted </li></ul></ul><ul><ul><li>approximate -- measured </li></ul></ul><ul><li>examples </li></ul><ul><ul><li>your height </li></ul></ul><ul><ul><li># of chairs in room </li></ul></ul><ul><ul><li># of seconds in a minute </li></ul></ul><ul><ul><li># seconds to run 100 m dash </li></ul></ul>
  6. 6. <ul><li># of digits in a value when... </li></ul><ul><ul><li>leading & trailing zeros are ignored </li></ul></ul><ul><ul><ul><li>trailing 0 may be designated as significant </li></ul></ul></ul><ul><ul><li>the decimal place is disregarded </li></ul></ul><ul><li>How many significant figures? </li></ul><ul><ul><ul><li>Value: significant figures </li></ul></ul></ul><ul><ul><ul><li>3.47 </li></ul></ul></ul><ul><ul><ul><li>0.039 </li></ul></ul></ul><ul><ul><ul><li>206.1 </li></ul></ul></ul><ul><ul><ul><li>5.90 </li></ul></ul></ul>Significant Figures
  7. 7. <ul><li># of digits in a value when... </li></ul><ul><ul><li>leading & trailing zeros are ignored </li></ul></ul><ul><ul><ul><li>trailing 0 may be designated as significant </li></ul></ul></ul><ul><ul><li>the decimal place is disregarded </li></ul></ul><ul><li>How many significant figures? </li></ul><ul><ul><ul><li>Value: significant figures </li></ul></ul></ul><ul><ul><ul><li>3.47 3 </li></ul></ul></ul><ul><ul><ul><li>0.039 2 </li></ul></ul></ul><ul><ul><ul><li>206.1 4 </li></ul></ul></ul><ul><ul><ul><li>5.90 2 </li></ul></ul></ul>Significant Figures
  8. 8. Accuracy vs. Precision <ul><li>accuracy -- # of significant figures </li></ul><ul><ul><ul><li>3.47 is more accurate than 0.039 </li></ul></ul></ul><ul><li>precision -- decimal position of the last significant figure </li></ul><ul><ul><ul><li>0.039 is more precise than 3.47 </li></ul></ul></ul>
  9. 9. Example <ul><li>Describe the accuracy and precision of the following information. </li></ul><ul><ul><li>2.5 cm metal sheet with a .025 cm coat of paint </li></ul></ul><ul><ul><ul><li>accuracy is same for both (2 sig. fig.) </li></ul></ul></ul><ul><ul><ul><li>precision is > for paint (1/1000 vs. 1/10) </li></ul></ul></ul>
  10. 10. Rounded Numbers <ul><li>all approximate # are rounded </li></ul><ul><li>last digit of approx. number is rounded </li></ul><ul><li>last sig. fig. of an approx. # is never an accurate # </li></ul><ul><li>error of last number is ½ of the last digit's place value </li></ul><ul><ul><li>(if place value is .1 then error = .05) </li></ul></ul>
  11. 11. Rounded Number <ul><li>example: </li></ul><ul><ul><li>if a measured value = 32.63 </li></ul></ul><ul><ul><ul><li>error is .005 (½ of .01) </li></ul></ul></ul><ul><ul><ul><li>actual # is between </li></ul></ul></ul><ul><ul><ul><li>32.635 (32.63 + .005) </li></ul></ul></ul><ul><ul><ul><li>32.625 (32.63 - .005) </li></ul></ul></ul>
  12. 12. Rounding Rules <ul><li>round at the end of the total calculation </li></ul><ul><ul><li>do not round after each step in complex calculations </li></ul></ul><ul><li>when - or + use least precise # </li></ul><ul><ul><li>(same # of decimal places) </li></ul></ul><ul><li>when x or ÷ use least accurate # </li></ul><ul><ul><li>(same # of sig. figures) </li></ul></ul>
  13. 13. Rounding Example 1 <ul><li>73.2 </li></ul><ul><li>8.0627 </li></ul><ul><li>93.57 </li></ul><ul><li>+ 66.296 </li></ul><ul><li>241.1287 </li></ul><ul><li>241.1 # decimal places = to least precise value </li></ul>
  14. 14. Rounding Example 2 <ul><li>2.4832 </li></ul><ul><li>x 30.51 </li></ul><ul><li>75.762432 </li></ul><ul><li>75.76 # significant figures = to least accurate number </li></ul>
  15. 15. Numerical Relationships <ul><li>direct linear </li></ul><ul><ul><li>as x  y  (or vice versa) </li></ul></ul><ul><ul><li>example formula y = k x </li></ul></ul><ul><ul><li>expressed as proportion y  x </li></ul></ul><ul><ul><li>example: x y (for y = 5x) </li></ul></ul><ul><ul><li>1 5 </li></ul></ul><ul><ul><li>2 10 </li></ul></ul><ul><ul><li>3 15 </li></ul></ul>
  16. 16. Numerical Relationships <ul><li>direct exponential </li></ul><ul><ul><li>direct square (or other exponent) </li></ul></ul><ul><ul><li>as x  y  by an exponential value  (or vice versa) </li></ul></ul><ul><ul><li>example formula y = k x 2 </li></ul></ul><ul><ul><li>expressed as proportion y  x 2 </li></ul></ul><ul><ul><li>example: x y (for y = 5x 2 ) </li></ul></ul><ul><ul><li>1 5 </li></ul></ul><ul><ul><li>2 20 </li></ul></ul><ul><ul><li>3 45 </li></ul></ul>
  17. 17. Numerical Relationships (cont.) <ul><li>indirect </li></ul><ul><ul><li>as x  y  </li></ul></ul><ul><ul><li>example formula x y = constant </li></ul></ul><ul><ul><li>expressed as proportion y  1/x </li></ul></ul><ul><ul><li>example: x y (for xy = 100) </li></ul></ul><ul><ul><li>1 100 </li></ul></ul><ul><ul><li>2 50 </li></ul></ul><ul><ul><li>4 25 </li></ul></ul>
  18. 18. Numerical Relationships (cont.) <ul><li>indirect exponential </li></ul><ul><ul><li>inverse square (or other exponent) </li></ul></ul><ul><ul><li>as x  y  by an exponential value  (or vice versa) </li></ul></ul><ul><ul><li>example formula y x 2 = constant </li></ul></ul><ul><ul><li>expressed as proportion y  1/ x 2 </li></ul></ul><ul><ul><li>example: x y (for x 2 y = 100) </li></ul></ul><ul><ul><li>1 100 </li></ul></ul><ul><ul><li>2 25 </li></ul></ul><ul><ul><li>4 6.25 </li></ul></ul>
  19. 19. Graphs <ul><li>used to display relationships between 2 variables </li></ul><ul><ul><li>Y-axis (dependent) measured value </li></ul></ul><ul><ul><li>X-axis (independent) controlled value </li></ul></ul>x-axis y-axis
  20. 20. Graphic Relationships ( on linear graph paper) <ul><li>slope (left to right) </li></ul><ul><ul><li>direct = ascending </li></ul></ul><ul><ul><li>indirect = descending </li></ul></ul><ul><li>shape </li></ul><ul><ul><li>linear = straight </li></ul></ul><ul><ul><li>exponential = curved </li></ul></ul>
  21. 21. Evaluating Graphed Information <ul><li>identify variables </li></ul><ul><li>describe shape & slope of line </li></ul><ul><li>correlate information to theory </li></ul>
  22. 22. Example #1 <ul><ul><li>Relationship of mA to Intensity </li></ul></ul>
  23. 23. Example #1 (evaluated) <ul><ul><li>Relationship of mA to Intensity </li></ul></ul><ul><ul><ul><li>variables </li></ul></ul></ul><ul><ul><ul><ul><li>independent = mA </li></ul></ul></ul></ul><ul><ul><ul><ul><li>dependent = Exposure </li></ul></ul></ul></ul><ul><ul><ul><li>shape & slope </li></ul></ul></ul><ul><ul><ul><ul><li>slope = ascending (=direct) </li></ul></ul></ul></ul><ul><ul><ul><ul><li>shape = straight line (=linear) </li></ul></ul></ul></ul><ul><ul><ul><li>correlate to theory </li></ul></ul></ul><ul><ul><ul><ul><li>mA has a direct linear relationship to exposure; as mA increases exposure increases in a similar fashion; the graph demonstrates that if you double the mA (200 to 400) you also double the exposure (30 mR to 60 mR ) </li></ul></ul></ul></ul>
  24. 24. Example #2 <ul><li>Relationship of the # days before exam to amount of study time </li></ul>
  25. 25. Quantities & Units <ul><li>quantity = measurable property </li></ul><ul><ul><li>quantity definition (what is measured) </li></ul></ul><ul><ul><li>length distance between two points </li></ul></ul><ul><ul><li>mass amount of matter (not weight) </li></ul></ul><ul><ul><li>time duration of an event </li></ul></ul><ul><li>unit = standard used to express a measurement </li></ul><ul><ul><li>quantity unit other units </li></ul></ul><ul><ul><li>length meter </li></ul></ul><ul><ul><li>mass kilogram </li></ul></ul><ul><ul><li>time second </li></ul></ul>
  26. 26. Unit Systems <ul><li>System length mass time </li></ul><ul><li>English foot slug (pound) second </li></ul><ul><li>metric SI** meter kilogram second </li></ul><ul><ul><li>** also ampere, Kelvin, mole, candela </li></ul></ul><ul><li>metric MKS meter kilogram second </li></ul><ul><li>metric CGS centimeter gram second </li></ul><ul><li>Do not mix unit systems when doing calculations!! </li></ul>
  27. 27. Converting Units <ul><li>convert 3825 seconds to hours </li></ul><ul><ul><li>identify conversion factor(s) needed </li></ul></ul><ul><ul><li>factors needed: 60 sec = 1 min & 60 min = 1 hour </li></ul></ul><ul><ul><li>arrange factors in logical progression </li></ul></ul><ul><ul><ul><li>For seconds  hours </li></ul></ul></ul><ul><ul><ul><li>sec  min/sec  hour/min </li></ul></ul></ul><ul><ul><li>set up calculation </li></ul></ul>
  28. 28. Dimensional Prefixes Bushong, table 2-3 (pg 23) <ul><li>used with metric unit systems </li></ul><ul><li>modifiers used with unit </li></ul><ul><li>a power of 10 to express the magnitude </li></ul><ul><li>prefix symbol factor numerical equivalent </li></ul><ul><li> tera- T 10 12 1 000 000 000 000 </li></ul><ul><li> giga- G 10 9 1 000 000 000 </li></ul><ul><li> mega- M 10 6 1 000 000 </li></ul><ul><li> kilo- k 10 3 1 000 </li></ul><ul><li> centi- c 10 -2 .01 </li></ul><ul><li> milli m 10 -3 .001 </li></ul><ul><li> micro-  10 -6 .000 001 </li></ul><ul><li> nano- n 10 -9 .000 000 001 </li></ul><ul><li> pico- p 10 -12 .000 000 000 001 </li></ul>
  29. 29. Rules for Using Prefixes <ul><li>To use a prefix divide by prefix value & include the prefix with the unit </li></ul><ul><li>To remove a prefix multiply by prefix value & delete prefix notation from the unit </li></ul>
  30. 30. Base Quantities & Units (SI) <ul><li>describes a fundamental property of matter </li></ul><ul><li>cannot be broken down further </li></ul><ul><li>quantity SI unit definition for quantity </li></ul><ul><li>length meter distance between two points </li></ul><ul><li>mass kilogram amount of matter (not weight) </li></ul><ul><li>time second duration of an event </li></ul>
  31. 31. Derived Quantities & Units <ul><li>properties which arrived at by combining base quantities </li></ul><ul><li>quantity units definition for quantity </li></ul><ul><li>area m x m m 2 surface measure </li></ul><ul><li>volume m x m x m m 3 capacity </li></ul><ul><li>velocity m/s m/s distance traveled per unit time </li></ul><ul><li>acceleration m/s/s m/s 2 rate of change of velocity </li></ul><ul><li>ms -2 </li></ul>
  32. 32. Derived Quantities with Named Units <ul><li>quantities with complex SI units </li></ul><ul><li>quantity units definition </li></ul><ul><li>frequency Hertz Hz # of ?? per second </li></ul><ul><li>force Newton N &quot;push or pull&quot; </li></ul><ul><li>energy Joule J ability to do work </li></ul><ul><li>absorbed dose Gray Gy radiation energy deposited (rad) in matter </li></ul>
  33. 33. Solving Problems <ul><li>1. Determine unknown quantity </li></ul><ul><li>2. Identify known quantities </li></ul><ul><li>3. Select an equation (fits known & unknown quantities) </li></ul><ul><li>4. Set up numerical values in equation </li></ul><ul><ul><li>same unit or unit system </li></ul></ul><ul><li>5. Solve for the unknown </li></ul><ul><ul><li>write answer with magnitude & units </li></ul></ul><ul><ul><li>raw answer vs. answer in significant figures </li></ul></ul>
  34. 34. Mechanics <ul><li>study of motion & forces </li></ul><ul><li>motion = change in position or orientation </li></ul><ul><li>types of motion </li></ul><ul><ul><li>translation </li></ul></ul><ul><ul><ul><li>one place to another </li></ul></ul></ul><ul><ul><li>rotation </li></ul></ul><ul><ul><ul><li>around axis of object's mass </li></ul></ul></ul>
  35. 35. Measuring Quantities in Mechanics <ul><li>all have magnitude & unit </li></ul><ul><li>scalar vs. vector quantities </li></ul><ul><ul><li>Scalar -- magnitude & unit </li></ul></ul><ul><ul><li>Vector -- magnitude, unit & direction </li></ul></ul>run 2 km vs run 2 km east
  36. 36. Vector Addition/Subtraction <ul><li>requires use of graphs, trigonometry or special mathematical rules to solve </li></ul><ul><li>example: </li></ul>F 1 F 2 F 1 + F 2 = Net force
  37. 37. Quantities in Mechanics <ul><li>speed </li></ul><ul><ul><li>rate at which an object covers distance </li></ul></ul><ul><ul><ul><li>rate </li></ul></ul></ul><ul><ul><ul><ul><li>indicates a relationship between 2 quantities </li></ul></ul></ul></ul><ul><ul><ul><ul><li>$/hour exams/tech # of people/sq. mile </li></ul></ul></ul></ul><ul><ul><li>speed = distance/time </li></ul></ul><ul><ul><li>speed is a scalar quantity </li></ul></ul>
  38. 38. Speed (cont.) d in m t in s v = m/s same at all times total distance total time General Formula: Variations: instantaneous uniform average v at 1 point in time v = d t distance time
  39. 39. Speed Example <ul><li>An e - travels the 6.0 cm distance between the anode & the cathode in .25 ns. What is the e - speed? [Assume 0 in 6.0 is significant] </li></ul><ul><ul><li>v = ?? 6.0 cm = distance .25 ns = time </li></ul></ul><ul><ul><li>v = d / t (units: m /s  need to convert) </li></ul></ul><ul><ul><li> 6.0 cm = 6.0 x 10 -2 m .25 ns = .25x10 -9 s </li></ul></ul><ul><ul><li>= 6 x 10 -2 m / .25x10 -9 s </li></ul></ul><ul><ul><li>= 2.40000 x 10 8 m/s (raw answer) </li></ul></ul><ul><ul><li>= 2.4 x 10 8 m/s (sig. fig. answer) </li></ul></ul>
  40. 40. Velocity <ul><li>speed + the direction of the motion </li></ul><ul><li>vector quantity </li></ul><ul><ul><li>A boat is traveling east at 15 km/hr and must pass through a current that is moving northeast at 10 km/hr . What will be the true velocity of the boat? </li></ul></ul>
  41. 41. Acceleration <ul><li>rate of change of velocity with time </li></ul><ul><ul><li>if velocity changes there is acceleration </li></ul></ul><ul><li>includes:  v  v  direction </li></ul><ul><li>formula: </li></ul> v = v f - v i units v in m/s t in s a = m/s 2 a =  v  t
  42. 42. Acceleration Example <ul><li>A car is traveling at 48 m/s. After 12 seconds it is traveling at 32 m/s. What is the car’s acceleration? </li></ul><ul><ul><li>a = ? 48 m/s = v i 12 s =  t 32 m/s = v f </li></ul></ul><ul><ul><li>a =  v /  t </li></ul></ul><ul><ul><li>   v = v f - v i = 32m/s - 48 m/s = -16 m/s </li></ul></ul><ul><ul><li>a = -16m/s / 12 s = -1.3333333333 m/s 2 </li></ul></ul><ul><ul><li>= -1.3 m/s 2 [ -sign designates slowing down] </li></ul></ul>
  43. 43. Application of v and a in Radiology <ul><li>KE (motion) of e- used to produce x rays </li></ul><ul><ul><li>controlling the v of e- enables the control of the photon energies </li></ul></ul><ul><li>Brems photons are produced when e - undergo a -a close to the nucleus of an atom </li></ul>
  44. 44. Newton's Laws of Motion <ul><li>1. Inertia </li></ul><ul><li>2. Force </li></ul><ul><li>3. Recoil </li></ul>
  45. 45. Newton's First Law <ul><li>defined -- in notes </li></ul><ul><li>inertia: resistance to a  in motion </li></ul><ul><ul><li>property of all matter </li></ul></ul><ul><ul><li>mass = a measure of inertia </li></ul></ul>
  46. 46. Inertia <ul><li>Semi-trailer truck </li></ul><ul><ul><li>large mass </li></ul></ul><ul><ul><li>large inertia </li></ul></ul><ul><li>Bicycle </li></ul><ul><ul><li>small mass </li></ul></ul><ul><ul><li>small inertia </li></ul></ul>
  47. 47. Newton's 2nd Law (Force) <ul><li>Force </li></ul><ul><ul><li>anything that can  object's motion </li></ul></ul><ul><ul><li>Fundamental forces </li></ul></ul><ul><ul><ul><li>Nuclear forces </li></ul></ul></ul><ul><ul><ul><ul><li>&quot;strong&quot; & &quot;weak&quot; </li></ul></ul></ul></ul><ul><ul><ul><li>Gravitational force </li></ul></ul></ul><ul><ul><ul><li>Electromagnetic force </li></ul></ul></ul>
  48. 48. Mechanical Force <ul><li>push or pull </li></ul><ul><li>vector quantity </li></ul><ul><ul><li>net force = vector sum of all forces </li></ul></ul><ul><ul><li>push on box + friction from floor </li></ul></ul><ul><li>equilibrium -- net force = 0 </li></ul>Vector sum
  49. 49. 2nd Law (Force) <ul><li>defined -- in notes </li></ul><ul><li>formula for the quantity “force” </li></ul><ul><ul><li>force = mass x acceleration </li></ul></ul><ul><ul><li>F = m x a </li></ul></ul>Newton N a =  v  t kg m s 2 <ul><li>units kg x m/s 2 </li></ul>
  50. 50. Example Problem for 2nd Law <ul><li>What is the net force needed to accelerate a 5.1 kg laundry cart to 3.2 m/s 2 ? </li></ul><ul><ul><li>F =?? 5.1 kg = mass 3.2 m/s 2 = acceleration </li></ul></ul><ul><ul><li>F = m a </li></ul></ul><ul><ul><li>= 5.1 kg x 3.2 m/s 2 </li></ul></ul><ul><ul><li>= 16.32 kg m/s 2 </li></ul></ul><ul><ul><li>= 16 N </li></ul></ul>
  51. 51. Example 2: <ul><li>A net force of 275 N is applied to a 110 kilogram mobile unit. What is the unit's acceleration? </li></ul><ul><ul><li>acceleration =?? 275 N = F 110 kg = mass </li></ul></ul><ul><ul><li>F = m a </li></ul></ul><ul><ul><li>a = F / m </li></ul></ul><ul><ul><li>= 275[kg m/s 2 ] / 110kg </li></ul></ul><ul><ul><li>= 2.5 m/s 2 </li></ul></ul>
  52. 52. Example 3 <ul><li>An object experiences a net force of 376N. After 2 seconds the change in the object's velocity 15m/s. What is the object's mass? </li></ul><ul><li>mass =?? 376 N = F 2 s =  t 15 m/s =  v </li></ul><ul><ul><li>F = m a  m = F / a </li></ul></ul><ul><ul><li>a =  v/  t </li></ul></ul><ul><ul><li>= 15 m / s / 2 s = 7.5 m/s 2 </li></ul></ul><ul><ul><li>m = 376 [kg m/s 2 ] / 7.5 m/s 2 </li></ul></ul><ul><ul><li> = 50.13333333333 kg = 50 kg </li></ul></ul>
  53. 53. Weight <ul><li>adaptation of Newton's 2nd law </li></ul><ul><li>weight = force caused by the pull of gravitation </li></ul><ul><ul><li>weight  mass </li></ul></ul><ul><ul><li>gravitational force inertia of the object </li></ul></ul><ul><ul><li>varies with gravity always constant </li></ul></ul><ul><ul><li>unit = N [pound] unit = kg [slug] </li></ul></ul><ul><li>when g is a constant then weight proportional mass </li></ul>
  54. 54. Weight (cont.) <ul><li>formula for quantity “weight” </li></ul><ul><li> modified from force formula </li></ul><ul><ul><li>F = m x a </li></ul></ul><ul><ul><li>Wt. = m x g g earth = 9.8m/s 2 </li></ul></ul>Newton N kg m s 2 units kg x m/s 2
  55. 55. Weight Problem <ul><li>What is the weight (on earth) of a 42 kg person? </li></ul><ul><ul><li>Wt. = ?? 42 kg = mass [9.8m/s 2 = gravity] </li></ul></ul><ul><ul><li>Wt. = m x g </li></ul></ul><ul><ul><li>= 42 kg x 9.8m/s 2 </li></ul></ul><ul><ul><li>= 411.6 kg m/ s 2 </li></ul></ul><ul><ul><li>= 410 N </li></ul></ul>
  56. 56. Weight Problem #2 <ul><li>What is the mass of a 2287N mobile x-ray unit? </li></ul><ul><ul><li>mass = ?? 2287N = Wt [9.8m/s 2 = gravity] </li></ul></ul><ul><ul><li>Wt. = m x g </li></ul></ul><ul><ul><li>m = Wt. / g </li></ul></ul><ul><ul><li>= 2287N / 9.8m/s 2 </li></ul></ul><ul><ul><li>= 233.3673469388 kg </li></ul></ul><ul><ul><li>= 233.4 kg </li></ul></ul>
  57. 57. 3rd Law (Recoil) <ul><li>Defined -- in notes </li></ul><ul><ul><li>no single force in nature </li></ul></ul><ul><ul><li>all forces act in pairs </li></ul></ul><ul><ul><ul><li>action vs. reaction </li></ul></ul></ul><ul><li>formula </li></ul><ul><ul><li>F AB = -F BA </li></ul></ul>A B
  58. 58. Momentum (Linear) <ul><li>measures the amount of motion of an object </li></ul><ul><li>tendency of an object to go in straight line when at a constant velocity </li></ul><ul><li>formula </li></ul><ul><ul><li>p = m x v </li></ul></ul><ul><li>units </li></ul><ul><ul><li>= kg x m/s </li></ul></ul><ul><ul><li>= </li></ul></ul>kg m s
  59. 59. Momentum vs. Mass (Inertia) <ul><li>p = m x v </li></ul><ul><li>p  m </li></ul>Direct proportional relationship  m =  p  m =  p
  60. 60. Momentum vs. Velocity <ul><li>p = m x v </li></ul><ul><li>p  v </li></ul>Direct proportional relationship 50 km/hr  v =  p 100 km/hr  v =  p
  61. 61. Momentum Problem <ul><li>What is the momentum of a 8.8 kg cart that has a speed of 1.24 m/s? </li></ul><ul><ul><li>p = ?? 8.8 kg = mass 1.24 m/s = velocity </li></ul></ul><ul><ul><li>p = m x v </li></ul></ul><ul><ul><li>= 8.8 kg x 1.24 m/s </li></ul></ul><ul><ul><li>= 10.912 kg m/s </li></ul></ul><ul><ul><li>= 11 kg m/s </li></ul></ul>
  62. 62. Momentum Problem #2 <ul><li>What is the speed of a 3.5x10 4 kg car that has a momentum of 1.4x10 5 kg m/s? </li></ul><ul><ul><li>velocity = ?? 3.5x10 4 kg = mass 1.4x10 5 kg m/s = momentum </li></ul></ul><ul><ul><li>p = m x v </li></ul></ul><ul><ul><li>v = p / m </li></ul></ul><ul><ul><li>= 1.4x10 5 kg m/s / 3.5x10 4 kg </li></ul></ul><ul><ul><li>= 4.0 x 10 0 m/s </li></ul></ul><ul><ul><li>= 4.0 m/s </li></ul></ul>
  63. 63. Conservation Laws <ul><li>Statements about quantities which remain the same under specified conditions. </li></ul><ul><li>Most Notable Conservation Laws </li></ul><ul><ul><li>Conservation of Energy </li></ul></ul><ul><ul><li>Conservation of Matter </li></ul></ul><ul><ul><li>Conservation of Linear Momentum </li></ul></ul>
  64. 64. Conservation of Linear Momentum <ul><li>momentum after a collision will equal momentum before collision </li></ul><ul><li>results in a redistribution momentum among the objects </li></ul><ul><li>p 1 = p 2 </li></ul><ul><li>m 1 v 1 = m 2 v 2 </li></ul>
  65. 65. Example before collision collision occurs after collision m 1 v 1 = 1 kg m/s mv = 0 mv = 0 m 2 v 2 = 1 kg m/s
  66. 66. Example #2 m 1 v 1 = 5 kg m/s mv = 0 m 2 v 2 = 5 kg m/s before collision collision occurs after collision m 2 = m A + m B v 2 = v A + v B A B A B
  67. 67. Work <ul><li>defined -- in notes </li></ul><ul><ul><li>measures the change a force has on an object's position or motion </li></ul></ul><ul><ul><li>If there is NO change in position or motion, NO mechanical work is done. </li></ul></ul>F d
  68. 68. Work (cont.) <ul><li>formula </li></ul><ul><ul><li>Work = force x distance </li></ul></ul><ul><ul><li> W = F x d </li></ul></ul><ul><li>units = N x m </li></ul><ul><ul><li>= </li></ul></ul>kg m s 2 x m kg m 2 s 2 = Joule J =
  69. 69. Example <ul><li>How much mechanical work is done to lift a 12 kg mass 8.2 m off of the floor if a force of 130 N is applied? </li></ul><ul><li>work = ?? 12 kg = mass 8.2 m = distance 130 N = force </li></ul><ul><ul><li>W = F x d </li></ul></ul><ul><ul><li>= 130 N x 8.2 m </li></ul></ul><ul><ul><li>= 1066 N m </li></ul></ul><ul><ul><li>= 1100 J (1.1 kJ) </li></ul></ul>
  70. 70. Example #2 <ul><li>A 162 N force is used to move a 45 kg box 32 m. What is the work that is done moving the box? </li></ul><ul><ul><li>work = ?? 162 N = force 45 kg = mass 32 m = distance </li></ul></ul><ul><ul><li>W = F x d </li></ul></ul><ul><ul><li>= 162 N x 32 m </li></ul></ul><ul><ul><li>= 5184 N m </li></ul></ul><ul><ul><li>= 5200 J or 5.2 kJ </li></ul></ul>
  71. 71. Energy <ul><li>property of matter </li></ul><ul><li>enables matter to perform work </li></ul><ul><li>broad categories </li></ul><ul><ul><li>Kinetic Energy: due to motion </li></ul></ul><ul><ul><li>Potential Energy: due to position in a force field </li></ul></ul><ul><ul><li>Rest Energy: due to mass </li></ul></ul>
  72. 72. Kinetic Energy <ul><li>work done by the motion of an object </li></ul><ul><ul><li>translation, rotation, or vibration </li></ul></ul><ul><li>formula </li></ul><ul><ul><li>KE = ½ mass x velocity squared </li></ul></ul><ul><ul><li>= ½ m v 2 </li></ul></ul><ul><li>units = kg x [m/s] 2 </li></ul>kg m 2 s 2 = Joule J =
  73. 73. Example <ul><li>Find the kinetic energy of a 450 kg mobile unit moving at 6 m/s. </li></ul><ul><ul><li>kinetic energy = ?? 450 kg = mass 6 m/s = velocity </li></ul></ul><ul><ul><li>KE = ½ m v 2 </li></ul></ul><ul><ul><li>= ½ x 450 kg x [6 m/s] 2 </li></ul></ul><ul><ul><li>= 8100 kg m 2 /s 2 </li></ul></ul><ul><ul><li>= 8000 J or 8 kJ </li></ul></ul>
  74. 74. Potential Energy <ul><li>capacity to do work because of the object's position in a force field </li></ul><ul><li>fields </li></ul><ul><ul><li>nuclear </li></ul></ul><ul><ul><li>electromagnetic </li></ul></ul><ul><ul><li>gravitational </li></ul></ul>
  75. 75. Gravitational Potential Energy <ul><li>barbell with PE </li></ul><ul><li>formula </li></ul><ul><ul><li>PE g = mass x gravity x height </li></ul></ul><ul><ul><li>= m x g x h </li></ul></ul><ul><li>units </li></ul><ul><ul><li>= kg x m/s 2 x m </li></ul></ul><ul><ul><li>= </li></ul></ul>h g m = Joule J kg m 2 s 2
  76. 76. Example <ul><li>How much energy does a 460 kg mobile unit possess when it is stationed on the 3rd floor of the hospital? (42m above ground) </li></ul><ul><li>PE = ?? 460 kg = mass 42 m = height [9.8 m/s 2 = gravity] </li></ul><ul><ul><li>Pe g = m x g x h </li></ul></ul><ul><ul><li>= 460 kg x 9.8 m/s 2 x 42 m </li></ul></ul><ul><ul><li>= 189 336 kg m 2 /s 2 </li></ul></ul><ul><ul><li>= 190 000 J or 1.9x10 5 J or 190 kJ </li></ul></ul>
  77. 77. Rest Mass Energy <ul><li>energy due to mass </li></ul><ul><li>Einstein's Theory </li></ul><ul><li>formula (variation of KE formula) </li></ul><ul><ul><li>E m = mass x speed of light squared </li></ul></ul><ul><ul><li>= m c 2 [ c = 3x10 8 m/s ] </li></ul></ul><ul><li>units = kg x [m/s] 2 </li></ul>kg m 2 s 2 = Joule J =
  78. 78. Example <ul><li>What is the energy equivalent of a 2.2 kg object? </li></ul><ul><li>E m = ?? 2.2 kg = mass [3x10 8 m/s = speed of light] </li></ul><ul><ul><li>E m = m c 2 </li></ul></ul><ul><ul><li>= 2.2 kg x [3x10 8 m/s ] 2 </li></ul></ul><ul><ul><li>= 1.98 x 10 17 kg m 2 /s 2 </li></ul></ul><ul><ul><li> = 2.0 x 10 17 J [trailing 0 is significant] </li></ul></ul>
  79. 79. Conservation Of Energy (Matter) <ul><li>Energy is neither created nor destroyed but can be interchanged </li></ul><ul><li>(Matter is neither created nor destroyed but can be interchanged) </li></ul><ul><li>Because mass has rest energy, conservation of matter & energy can be combined </li></ul>
  80. 80. Power <ul><li>Rate at which work is done </li></ul><ul><ul><li>Faster work = more power </li></ul></ul><ul><li>Rate at which energy changes </li></ul><ul><ul><li>Large E  = more power </li></ul></ul>
  81. 81. Power (cont.) <ul><li>formula </li></ul><ul><ul><li>power = work / time or  energy / time </li></ul></ul><ul><ul><li>P = W / t or  E / t </li></ul></ul><ul><li>units = J / s </li></ul>kg m 2 s 3 = Watt W = kg m 2 s 2 = s
  82. 82. Example <ul><li>How much power is used when an 80N force moves a box 15 m during a 12 s period of time? </li></ul><ul><ul><li>(hint: solve for work first) </li></ul></ul><ul><ul><li>P = ?? 80 N = force 15 m = distance 12 s = time </li></ul></ul><ul><ul><li>P = W / t & W = F d </li></ul></ul><ul><ul><li>P = ( F d ) / t </li></ul></ul><ul><ul><li>= ( 80 N x 15 m ) / 12 s </li></ul></ul><ul><ul><li>= 100 Nm/s </li></ul></ul><ul><ul><li>= 100 W </li></ul></ul>
  83. 83. Heat energy <ul><li>internal kinetic energy of matter </li></ul><ul><ul><li>from the random motion of molecules or atoms </li></ul></ul><ul><ul><li>KE & PE of molecules </li></ul></ul><ul><ul><li>heat E in matter moves from area of higher E in object to area of lower internal E </li></ul></ul><ul><li>Unit -- Calorie (a form of the joule) </li></ul><ul><ul><li>amount of heat required to raise one gram of water one degree Celsius. </li></ul></ul>
  84. 84. Heat Transfer <ul><li>movement of heat energy from the hotter to cooler object (or portion of object) </li></ul><ul><li>3 methods of transfer </li></ul><ul><ul><li>conduction </li></ul></ul><ul><ul><li>convection </li></ul></ul><ul><ul><li>radiation </li></ul></ul>
  85. 85. conduction <ul><li>primary means in solid objects </li></ul><ul><li>classification of matter by heat transfer </li></ul><ul><ul><li>conductors--rapid transfer </li></ul></ul><ul><ul><li>insulator--very slow to transfer </li></ul></ul>
  86. 86. convection <ul><li>primary means in gasses and liquids </li></ul><ul><li>convection current--continuing rise of heated g/l and sinking of cool g/l </li></ul>
  87. 87. radiation <ul><li>transfer without the use of a medium </li></ul><ul><ul><li>(i.e. no solid, liquid or gas) </li></ul></ul><ul><li>occurs in a vacuum </li></ul>
  88. 88. Heat Radiation <ul><li>term “radiation” may simply refer to heat energy and not the transfer of heat </li></ul><ul><li>infra-red radiation, part of EM spectrum, is heat energy </li></ul>
  89. 89. Effects of Heat Transfer <ul><li>change in physical state of matter </li></ul><ul><ul><li>solid  liquid  gas </li></ul></ul><ul><ul><li> melt boil </li></ul></ul><ul><li>change in temperature </li></ul><ul><ul><li>measure of the average KE of an object </li></ul></ul><ul><ul><li>relative measure of sensible heat or cold </li></ul></ul>
  90. 90. Temperature Scales <ul><ul><li>Scales Boil (steam) Freeze (ice) No KE </li></ul></ul><ul><ul><li>Fahrenheit 212° 32° -460° </li></ul></ul><ul><ul><li>Celsius 100° 0° -273° </li></ul></ul><ul><ul><li>Kelvin (SI) 373 273 0 </li></ul></ul><ul><ul><li>1K = 1°C = 1.8°F </li></ul></ul><ul><ul><li>Conversion formulae </li></ul></ul><ul><ul><li>°F = 32 + (1.8 °C) </li></ul></ul><ul><ul><li>°C = (°F - 32)  1.8 </li></ul></ul><ul><ul><li> K = °C + 273 </li></ul></ul>

×