1-6 The Coordinate Plane part 2<br />L.E.Q.  How do you find the coordinates of the midpoint of a segment in the coordinat...
Midpoint<br />On a number line<br />		formula: <br />
On a coordinate plane	formula:<br />Where 	    is the x coordinate of the midpoint and        is the y coordinate of the m...
y<br />10<br />10<br />9<br />8<br />7<br />x = 1<br />x = 9<br />6<br />A(1, 7)<br />y = 7<br />y = 3<br />5<br />y<br />...
QS has endpoints Q(3, 5) and S(7, -9). Find the coordinates of its midpoint M. <br />EXAMPLE:  Finding the midpoint.<br />
Use the example to model your solution for this problem.<br />ON YOUR OWN:<br />
y<br />10<br />10<br />9<br />Finding an Endpoint<br />8<br />Suppose C(3, 5) is the midpoint of AB.  Find the coordinate ...
EXAMPLE:  Finding an Endpoint.<br />The midpoint of AB is M(3, 4).  One endpoint is A(-3, -2).  Find the coordinates of th...
The midpoint of DG is M(-1, 5).  One endpoint is D(1, 4).  Find the coordinates of the other endpoint G. <br />ON YOUR OWN...
Hw: pg. 46-47 #s 18-30 even, 44, 46.Chapter 1 Review:Pgs 61-63 #s 1 - 48 all.<br />
Upcoming SlideShare
Loading in …5
×

1-6 the coordinate plane part 2

992 views

Published on

Prentice Hall Geometry

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
992
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
12
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

1-6 the coordinate plane part 2

  1. 1. 1-6 The Coordinate Plane part 2<br />L.E.Q. How do you find the coordinates of the midpoint of a segment in the coordinate plane?<br />
  2. 2. Midpoint<br />On a number line<br /> formula: <br />
  3. 3. On a coordinate plane formula:<br />Where is the x coordinate of the midpoint and is the y coordinate of the midpoint. <br />
  4. 4. y<br />10<br />10<br />9<br />8<br />7<br />x = 1<br />x = 9<br />6<br />A(1, 7)<br />y = 7<br />y = 3<br />5<br />y<br />4<br />3<br />B(9, 3)<br />2<br />C(5, 5)<br />x<br />1<br />x<br />0<br />-1<br />-2<br />-2<br />10<br />-1<br />2<br />4<br />6<br />8<br />10<br />-2<br />3<br />7<br />1<br />9<br />-2<br />5<br />0<br />Midpoints<br />Find the midpoint, C(x, y), of a segment on the coordinate plane.<br />
  5. 5. QS has endpoints Q(3, 5) and S(7, -9). Find the coordinates of its midpoint M. <br />EXAMPLE: Finding the midpoint.<br />
  6. 6. Use the example to model your solution for this problem.<br />ON YOUR OWN:<br />
  7. 7. y<br />10<br />10<br />9<br />Finding an Endpoint<br />8<br />Suppose C(3, 5) is the midpoint of AB. Find the coordinate of B. <br />7<br />B(-1, 8) <br />6<br />5<br />4<br />3<br />A(7, 2)<br />2<br />C(3, 5)<br />1<br />x<br />0<br />-1<br />-2<br />-2<br />10<br />-1<br />2<br />4<br />6<br />8<br />10<br />-2<br />3<br />7<br />1<br />9<br />-2<br />5<br />0<br />x-coordinate of B<br />y-coordinate of B<br />Replace x1with 7and y1with 2<br />B(x, y) is somewhere over there.<br />midpoint<br />Multiply each <br />side by 2<br />Add or subtract toisolate the variable<br />
  8. 8. EXAMPLE: Finding an Endpoint.<br />The midpoint of AB is M(3, 4). One endpoint is A(-3, -2). Find the coordinates of the other endpoint B. <br />
  9. 9. The midpoint of DG is M(-1, 5). One endpoint is D(1, 4). Find the coordinates of the other endpoint G. <br />ON YOUR OWN:<br />
  10. 10. Hw: pg. 46-47 #s 18-30 even, 44, 46.Chapter 1 Review:Pgs 61-63 #s 1 - 48 all.<br />

×