Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Capitulo i jccp

Related Audiobooks

Free with a 30 day trial from Scribd

See all
  • Be the first to comment

  • Be the first to like this

Capitulo i jccp

  1. 1. CAPITULO I Conceptos Básicos de Electricidad
  2. 2. Introducción • Las Instalaciones eléctricas pueden tener un distinto grado de complejidad dependiendo del lugar que ocupen dentro del conjunto de instalaciones y de la función a desempeñar, es así como se pueden tener instalaciones tan simples como las que se observan a diario en los domicilios y que a simple vista se observan sus componentes con son las salidas para lámparas, los switchs, los contactos, etc. • En general se puede decir que el requerimiento fundamental para la utilización del la energía eléctrica, es el llamado “Circuito Eléctrico”.
  3. 3. Que es el circuito eléctrico? • Un circuito eléctrico en su forma mas elemental consiste de una fuente de voltaje como por ejemplo una batería, un generador o cualquier terminal entre las cuales aparezca un voltaje o diferencia de potencial, uno o mas dispositivos de carga, los cuales usan la corriente suministrada por la fuente y una trayectoria conductora formada por conductores eléctricos.
  4. 4. Partes de un Circuito Eléctrico 1. Una fuente de energía eléctrica que pueda forzar el flujo de electrones. 2. Conductores que transportan el flujo de electrones a través de todo el circuito 3. La carga, que es el dispositivo(s) a los cuales se suministra la energía. 4. Un dispositivo de control que permita conectar o desconectar el circuito.
  5. 5. Tipos de circuitos Eléctricos • Circuitos de alumbrado.- que obtienen el voltaje de un talero o punto de alimentación, hacia las cargas – La corriente que alimenta a las cargas circula cuando se cierra el circuito por medio de los interruptores o apagadores de pared
  6. 6. Tipos de circuitos Eléctricos • Los circuitos de fuerza o alimentación a motores.- En estos circuitos el voltaje se obtiene de un tablero o “panel” de alimentación y se lleva por medio de conductores al alimentadores hasta el motor, que representa la carga.
  7. 7. Tipos de circuitos Eléctricos • Los circuitos de Alimentadores.- son los que alimentan a su vez a otros circuitos llamados derivados. Ejemplos: las instalaciones de edificios de donde de un tablero sale a diferentes áreas.
  8. 8. Tipos de circuitos Eléctricos • Dependiendo de las características de la fuente los circuitos pueden ser de (c.c.) o (c.a.) y pueden operar en distintos rangos. Ej.: c.c. 5, 12, 24, 50, 125, 250, 500 voltios y en c.a. 127v fase-neutro (1f), 220v fase-fase (2f), 220, 380, 440v (3f). • Media tensión: 1000 hasta 13800v • Alta tensión: > 13800v
  9. 9. Conceptos Básicos de Circuitos Eléctricos • Corriente.- La capacidad de flujo de electrones libres que circula a través de un conductor y se designa generalmente por la letra I. Su unidad de medida es el Ampere (A). • Voltaje.- La energía necesaria para mover electrones dentro de un conductor, se designa por la letra V o E y su unidad de medida es el voltio (V). • Resistencia o Carga Resistiva.- La propiedad de un elemento de oponerse al paso de la corriente. Se lo designa con la letra R y su unidad de medida es el Ohm (Ω).
  10. 10. Conceptos Básicos de Circuitos Eléctricos • La ley de OHM
  11. 11. Conceptos Básicos de Circuitos Eléctricos • Ejemplos: • Sea el voltaje E=30v y la corriente I=6A, Cual es el valor de la resistencia R? • Si la resistencia de un circuito eléctrico es R=20 ohms y el voltaje E=100 volts, calcular el valor de la corriente. • Si el valor de la corriente en un circuito es de 5 A y la resistencia 20 Ω, cual es el valor del voltaje E.
  12. 12. Condiciones de operación de los circuitos • Conexión Serie.- Cuando todos los dispositivos están conectados uno a continuación de otro, es decir por todos circula la misma corriente. La corriente que circula a través del circuito se la calcula como:
  13. 13. Condiciones de operación de los circuitos
  14. 14. Condiciones de operación de los circuitos • Conexión Paralelo.- todos los elementos o cargas se conectan a los conductores que alimenta la fuente de voltaje. El valor de R(eq) se calcula con la siguiente formula:
  15. 15. Condiciones de operación de los circuitos • Con el mismo voltaje, la corriente total es igual a la suma de las corrientes individuales: I = V / R(eq) • 1/16
  16. 16. Condiciones de operación de los circuitos
  17. 17. Condiciones de operación de los circuitos • Potencia.- En los circuitos eléctricos la capacidad de realizar un trabajo se le conoce como potencia se le designa con la letra P, y su unidad de medida es el watt o kilowatt. (W)
  18. 18. Condiciones de operación de los circuitos • Ejemplos: • Supóngase que se tiene una lámpara (foco) incandescente conectada a 127v y toma una corriente de 0.47 A. Cual es el valor de la potencia y de la carga resistiva?.
  19. 19. Condiciones de operación de los circuitos • Cual es el valor de potencia que consume y que corriente circula por una lámpara que tiene una resistencia de 268,5 Ω y se conecta a una alimentación de 127 v. • En una parrilla eléctrica están ilegibles los datos de una placa y no se puede leer la potencia, pero cuando se conecta a una alimentación de 127v demanda una corriente de 11,81 A, calcular la resistencia de y potencia de la parrilla.
  20. 20. Conceptos Básicos de Mediciones Eléctricas (Instrumentos de Medición) • El Voltímetro.- Calibrado para dar directamente la lectura del valor de voltaje aplicado y se debe conectar en paralelo a la carga.
  21. 21. Conceptos Básicos de Mediciones Eléctricas (Instrumentos de Medición) • El Amperímetro.- Diseñado para medir corriente eléctrica (Amperes), se conecta en serie con la carga.
  22. 22. Conceptos Básicos de Mediciones Eléctricas (Instrumentos de Medición) • Wattmetro.- Instrumento de medición directa que mide la potencia, la misma que es una combinación del voltímetro y del amperímetro. (4 hilos).
  23. 23. Condiciones de operación de los circuitos • Resumen
  24. 24. La Energía Eléctrica $72 • La potencia eléctrica consumida durante un determinado periodo se conoce como la energía eléctrica y se expresa como watts-hora o kilowatts-hora. P = E x I x t • Siendo t el tiempo expresado en horas. • Ej: Si se tiene una lámpara de 250 watts que trabaja durante 10 horas la energía consumida por la lámpara es: 250 x 10 = 2500 watts-hora • El kilowatt-hora es la base para el pago de consumo de energía eléctrica supongamos 6 lámparas cada una de 100 w que operan 8 horas durante 30 días y el costo de la energía eléctrica es de $0,50. El costo para operar estas lámparas es:
  25. 25. La Energía Eléctrica
  26. 26. Concepto de Caída de Voltaje • Cuando la corriente fluye por un conductor, parte del voltaje se “pierde” en superar la resistencia del conductor. = problemas de operación de aparatos eléctricos. • Para calcular la caída de voltaje se debe aplicar la ley de ohm. • Los conductores utilizan la estandarización americana AWG (American Wire Gage) que designa a cada conductor por un número o calibre y esta relacionado con su diámetro. • Cada conductor de cada calibre tiene su propia resistencia expresada en ohm por cada metro de longitud lo que permite calcular la resistencia total del conductor. R = r x L r = resistencia en ohms/metro. L = longitud total del conductor.
  27. 27. Concepto de Caída de Voltaje • Ejemplo: • La caída de voltaje en un conductor de cobre forrado con aislamiento TW del No 12 AWG por el que va a circular una corriente de 10 A y que tiene una longitud total de 100m con un valor de resistencia estándar de 5,39 ohms/kilómetros • R = r x L R = 5.39/1000 x 100 R = 0,539 ohms Por lo que la caída de voltaje es: E = R x I = 0.539 x 10 = 5,39 v
  28. 28. • Calcular la caída de voltaje en el conductor TW de No 14 AWG que alimenta a un taladro de 900 watts a 127 v, si tiene 5m de longitud y r = 0.00827 ohms/metro: Concepto de Caída de Voltaje

×