kimia umum (8)

1,541 views

Published on

unj fmipa-fisika

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,541
On SlideShare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

kimia umum (8)

  1. 1. REACTION RATEHow Fast Does the Reaction Go<br />Irma<br />Sesion #08<br />JurusanKimia<br />FakultasMatematikadanIlmuPengetahuanAlam<br />
  2. 2. <ul><li>Mahasiswamemahami laju reaksi.</li></ul>06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />2<br />
  3. 3. INDIKATOR<br />Mendiskusikan faktor-faktor yang mempengaruhi laju reaksi<br />Mendefinisikan konstanta laju, dan orde reaksi dengan detail<br />Menghitung laju reaksi dan konstanta laju<br />Menentukan orde reaksi<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />3<br />
  4. 4. COLLISION THEORY<br />In order to react molecules and atoms must touch each other.<br />They must hit each other hard enough to react.<br />Anything that increase these things will make the reaction faster.<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />4<br />
  5. 5. Reactants<br />Energy<br />Products<br />Reaction coordinate<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />5<br />
  6. 6. Activation Energy - Minimum energy to make the reaction happen<br />Reactants<br />Energy<br />Products<br />Reaction coordinate<br />6<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  7. 7. Activated Complex or Transition State<br />Reactants<br />Energy<br />Products<br />Reaction coordinate<br />7<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  8. 8. Reactants<br />Products<br />Energy<br />Overall energy change<br />Reaction coordinate<br />8<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  9. 9. Things That Effect Rate<br /><ul><li>Temperature
  10. 10. Higher temperature faster </li></ul>particles.<br /><ul><li>More and hardercollisions.
  11. 11. Faster Reactions.</li></ul>9<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  12. 12. Things That Effect Rate<br /><ul><li>Concentration
  13. 13. More concentrated closer together the molecules.
  14. 14. Collide more often.
  15. 15. Faster reaction.</li></ul>10<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  16. 16. Concentration<br />11<br />If we make one reactant more concentrated (like making a drink of orange squash more concentrated)<br />There are moreparticles in the same volume to react<br />So the reaction goes faster.<br />There are less red particles in the same volume so there is less chance of a collision<br />There are more red particles in the same volume so there is more chance of a collision so the reaction goes faster<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  17. 17. Things that Effect Rate<br /><ul><li>Particle size
  18. 18. Molecules can only collide at the surface.
  19. 19. Smaller particles bigger surface area.
  20. 20. Smaller particles faster reaction.
  21. 21. Smallest possible is molecules or ions.
  22. 22. Dissolving speeds up reactions.
  23. 23. Getting two solids to react with each other is slow.</li></ul>12<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  24. 24. Particle size - Surface area<br />If we make the pieces of the reactants smaller we increase the number of particles on the surface which can react.<br />This makes the reaction faster.<br />13<br />The particles on the surface can react<br />When cut into smaller pieces the particles on the inside can react<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  25. 25. Things that Effect Rate<br /><ul><li>Catalysts- substances that speed up a reaction without being used up.(enzyme).
  26. 26. Speeds up reaction by giving the reaction a new path.
  27. 27. The new path has a lower activation energy.
  28. 28. More molecules have this energy.
  29. 29. The reaction goes faster.
  30. 30. Inhibitor- a substance that blocks a catalyst.</li></ul>14<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  31. 31. Reactants<br />Energy<br />Products<br />Reaction coordinate<br />15<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  32. 32. H<br />H<br />H<br />H<br />H<br />H<br />H<br />H<br />Catalysts<br />Hydrogen bonds to surface of metal.<br />Break H-H bonds<br />Pt surface<br />16<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  33. 33. H<br />H<br />H<br />H<br />Pt surface<br />Catalysts<br />17<br />H<br />H<br />C<br />C<br />H<br />H<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  34. 34. H<br />H<br />H<br />Catalysts<br />The double bond breaks and bonds to the catalyst.<br />18<br />H<br />C<br />C<br />H<br />H<br />H<br />H<br />Pt surface<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  35. 35. H<br />H<br />H<br />H<br />Catalysts<br />The hydrogen atoms bond with the carbon<br />19<br />C<br />C<br />H<br />H<br />H<br />H<br />Pt surface<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  36. 36. 20<br />H<br />H<br />C<br />C<br />H<br />H<br />H<br />H<br />H<br />H<br />Catalysts<br />Pt surface<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  37. 37. Reaction Mechanism<br />Elementary reaction- a reaction that happens in a single step.<br />Reaction mechanism is a description of how the reaction really happens.<br />It is a series of elementary reactions.<br />The product of an elementary reaction is an intermediate.<br />An intermediate is a product that immediately gets used in the next reaction.<br />21<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  38. 38. 22<br /><ul><li>This reaction takes place in three steps</li></ul>06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  39. 39. First step is fast<br />Low activation energy<br />Ea<br />23<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  40. 40. Ea<br />Second step is slow<br />High activation energy<br />24<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  41. 41. Ea<br />Third step is fast<br />Low activation energy<br />25<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  42. 42. Second step is rate determining<br />26<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  43. 43. Intermediates are present<br />27<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  44. 44. Activated Complexes or Transition States<br />28<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  45. 45. Mechanisms and rates <br />There is an activation energy for each elementary step.<br />Slowest step (rate determining) must have the highest activation energy.<br />29<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  46. 46. THERMODYNAMICS<br />Will a reaction happen?<br />30<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  47. 47. ENERGY<br />Substances tend react to achieve the lowest energy state.<br />Most chemical reactions are exothermic.<br />Doesn’t work for things like ice melting.<br />An ice cube must absorb heat to melt, but it melts anyway. Why?<br />31<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  48. 48. ENTROPY<br />The degree of randomness or disorder.<br />The first law of thermodynamics. The energy of the universe is constant.<br />The second law of thermodynamics. The entropy of the universe increases in any change.<br />Drop a box of marbles.<br />Watch your room for a week.<br />32<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  49. 49. ENTROPY<br />A solid has an orderly arrangement.<br />A liquid has the molecules next to each other.<br />A gas has molecules moving all over the place.<br />33<br />Entropy of a liquid<br />Entropy of a solid<br />Entropy of a gas<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  50. 50. Entropy increases when...<br />Reactions of solids produce gases or liquids, or liquids produce gases.<br />A substance is divided into parts -so reactions with more reactants than products have an increase in entropy.<br />the temperature is raised -because the random motion of the molecules is increased.<br />a substance is dissolved.<br />34<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  51. 51. Entropy calculations<br />There are tables of standard entropy.<br />Standard entropy is the entropy at 25ºC and 1 atm pressure.<br />Abbreviated Sº, measure in J/K.<br />The change in entropy for a reaction is <br /> DSº= Sº(Products)-Sº(Reactants)<br />Calculate DSº for this reaction <br /> CH4(g) + O2(g) ® CO2(g) + H2O(g)<br />35<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  52. 52. SPONTANEITY<br />Will the reaction happen, and how can we make it?<br />36<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  53. 53. Spontaneous reaction<br />Reactions that will happen.<br />Nonspontaneous reactions don’t.<br />Even if they do happen, we can’t say how fast.<br />Two factors influence.<br />Enthalpy (heat) and entropy(disorder).<br />37<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  54. 54. Two Factors<br />Exothermic reactions tend to be spontaneous.<br />Negative DH.<br />Reactions where the entropy of the products is greater than reactants tend to be spontaneous.<br />Positive DS.<br />A change with positive DS and negative DH is always spontaneous.<br />A change with negative DS and positive DH is never spontaneous.<br />38<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  55. 55. Other Possibilities<br />Temperature affects entropy.<br />Higher temperature, higher entropy.<br />For an exothermic reaction with a decrease in entropy (like rusting).<br />Spontaneous at low temperature.<br />Nonspontaneous at high temperature.<br />Entropy driven.<br />39<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  56. 56. Other Possibilities<br />An endothermic reaction with an increase in entropy like melting ice.<br />Spontaneous at high temperature. <br />Nonspontaneous at low temperature.<br />Enthalpy driven.<br />40<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  57. 57. Gibbs Free Energy<br />The energy free to do work is the change in Gibbs free energy.<br />DGº = DHº - TDSº (T must be in Kelvin)<br />All spontaneous reactions release free energy. <br />So DG <0 for a spontaneous reaction.<br />41<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  58. 58. -<br />+<br />-<br />+<br />+<br />?<br />-<br />-<br />?<br />+<br />-<br />+<br />DG=DH-TDS<br />Spontaneous?<br />DH<br />DS<br />DG<br />At all Temperatures<br />At high temperatures, <br />“entropy driven”<br />At low temperatures, <br />“enthalpy driven”<br />Not at any temperature,<br />Reverse is spontaneous<br />42<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  59. 59. Problems <br />Using the information, determine if the following changes are spontaneous at 25ºC.<br />2H2S(g) + O2(g) ® 2H2O(l) + S(rhombic)<br />At what temperature does it become spontaneous?<br />43<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  60. 60. 2H2S(g) + O2(g) ® 2H2O(l) + 2S<br />From the information, we find Hf° for each component<br />H2S = -20.1 kJ O2= 0 kJ<br />H2O = -285.8 kJ S = 0 kJ<br />Then Products - Reactants<br />H = [2 (-285.8) - 0] - [2 (-20.1) + 1(0)] <br /> = -531.4 kJ<br />44<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  61. 61. 2H2S(g) + O2(g) ® 2H2O(l) + 2 S<br />From Pg. 407 we find S for each component<br />H2S = 205.6 J/K O2= 205.0 J/K<br />H2O = 69.94 J/K S = 31.9 J/K<br />Then Products - Reactants<br />S= [2 (69.94) - 2(31.9) ] - [2 (205.6) + 205] <br /> = -412.5 J/K<br />45<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  62. 62. 2H2S(g) + O2(g) ® 2H2O(l) + 2 S<br />G = H - T S<br />G = -531.4 kJ - 298K (-412.5 J/K)<br />G = -531.4 kJ - -123000 J<br />G = -531.4 kJ - -123 kJ<br />G = -408.4 kJ<br />Spontaneous<br />Exergonic- it releases free energy.<br />At what temperature does it become spontaneous?<br />46<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  63. 63. Spontaneous<br /><ul><li>It becomes spontaneous when G = 0
  64. 64. That’s where it changes from positive to negative.
  65. 65. Using 0 = H - T S and solving for T
  66. 66. 0 - H = - T S
  67. 67. = -T
  68. 68. T = = = </li></ul>47<br />-H<br /> S<br />H<br />S<br /> -531.4 kJ<br />-412.5 J/K<br /> -531400 J<br /> -412.5 J/K<br />= 1290 K<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  69. 69. There’s Another Way<br />There are tables of standard free energies of formation compounds<br />DGºf is the free energy change in making a compound from its elements at 25º C and 1 atm.<br /> for an element DGºf = 0<br />Look them up.<br />DGº= DGºf(products) - DGºf(reactants)<br />Check the last problems.<br />48<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  70. 70. 2H2S(g) + O2(g) ® 2H2O(l) + 2S<br />From Pg. 414 we find Hf° for each component<br />H2S = -33.02 kJ O2= 0 kJ<br />H2O = -237.2 kJ S = 0 kJ<br />Then Products - Reactants<br />H = [2 (-237.2) - 2(0)] - [2 (-33.02) + 1(0)] <br /> = -408.4 kJ<br />49<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  71. 71. 50<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  72. 72. Reversible Reactions<br />Reactions are spontaneous if DG is negative.<br />If DG is positive the reaction happens in the opposite direction.<br />2H2(g) + O2(g) ® 2H2O(g) + energy<br />2H2O(g) + energy ® 2H2(g) + O2(g)<br />2H2(g) + O2(g) 2H2O(g) + energy<br />51<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  73. 73. Equilibrium<br />When I first put reactants together the <br />forward reaction starts.<br />Since there are no products there is no reverse reaction.<br />As the forward reaction proceeds the reactants are used up so the forward reaction slows.<br />The products build up, and the reverse reaction speeds up.<br />52<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  74. 74. Equilibrium<br />Eventually you reach a point where the reverse reaction is going as fast as the forward reaction.<br />This is dynamic equilibrium.<br />The rate of the forward reaction is equal to the rate of the reverse reaction.<br />The concentration of products and reactants stays the same, but the reactions are still running. <br />53<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  75. 75. Equilibrium<br />Equilibrium position- how much product and reactant there are at equilibrium.<br />Shown with the double arrow.<br /> Reactants are favored<br /> Products are favored<br />Catalysts speed up both the forward and reverse reactions so don’t affect equilibrium position.<br />54<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  76. 76. Measuring equilibrium<br />At equilibrium the concentrations of products and reactants are constant.<br />We can write a constant that will tell us where the equilibrium position is.<br />Keq equilibrium constant<br />Keq = [Products]coefficients [Reactants]coefficients<br />Square brackets [ ] means concentration in molarity (moles/liter) <br />55<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  77. 77. Writing Equilibrium Expressions<br />General equation aA + bB cC + dD<br />Keq [C]c [D]d [A]a [B]b<br />Write the equilibrium expressions for the following reactions.<br />3H2(g) + N2(g) 2NH3(g)<br />2H2O(g) 2H2(g) + O2(g)<br />56<br />=<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  78. 78. Calculating Equilibrium<br />Keq is the equilibrium constant, it is only effected by temperature.<br />Calculate the equilibrium constant for the following reaction. 3H2(g) + N2(g) 2NH3(g) if at <br />25ºC there 0.15 mol of N2 , 0.25 mol of NH3 , and 0.10 mol of H2 in a 2.0 L container.<br />57<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  79. 79. What it tells us<br />If Keq > 1 Products are favored<br />If Keq < 1 Reactants are favored<br />58<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  80. 80. LeChâtelier’s Principle<br />Regaining Equilibrium<br />59<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  81. 81. LeChâtelier’s Principle<br />If something is changed in a system at equilibrium, the system will respond to relieve the stress.<br />Three types of stress are applied.<br />60<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  82. 82. Changing Concentration<br />If you add reactants (or increase their concentration).<br />The forward reaction will speed up.<br />More product will form.<br />Equilibrium “Shifts to the right”<br />Reactants ® products<br />61<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  83. 83. Changing Concentration<br />If you add products (or increase their concentration).<br />The reverse reaction will speed up.<br />More reactant will form.<br />Equilibrium “Shifts to the left”<br />Reactants ¬ products<br />62<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  84. 84. Changing Concentration<br />If you remove products (or decrease their concentration).<br />The forward reaction will speed up.<br />More product will form.<br />Equilibrium “Shifts to the right”<br />Reactants ® products<br />63<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  85. 85. Changing Concentration<br />If you remove reactants (or decrease their concentration).<br />The reverse reaction will speed up.<br />More reactant will form.<br />Equilibrium “Shifts to the left”.<br />Reactants ¬ products<br />Used to control how much yield you get from a chemical reaction.<br />64<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  86. 86. Changing Temperature<br />Reactions either require or release heat.<br />Endothermic reactions go faster at higher temperature.<br />Exothermic go faster at lower temperatures.<br />All reversible reactions will be exothermic one way and endothermic the other.<br />65<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  87. 87. Changing Temperature<br />As you raise the temperature the reaction proceeds in the endothermic direction.<br />As you lower the temperature the reaction proceeds in the exothermic direction.<br />Reactants + heat ® Products at high T<br />Reactants + heat ¬ Products at low T<br />66<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  88. 88. Changes in Pressure<br />As the pressure increases the reaction will shift in the direction of the least gases.<br />At high pressure 2H2(g) + O2(g) ® 2 H2O(g)<br />At low pressure 2H2(g) + O2(g) ¬ 2 H2O(g)<br />67<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  89. 89. HAPPY <br />STUDY<br />68<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />

×