This is Part 2 of the Presentations from the
       EV Li-ion Battery Forum 2009
              Forum Day 1 & 2
         Se...
Lithium Ion Battery and Electric Cars
                      Shanghai Sept 2009

                 Dr. Sankar Das Gupta
    ...
“It’s the batteries, Stupid”
                                                           The Honorable R. James Woolsey
   ...
Nanotechnology




A 30 kWh system (e.g. small BEV) requires

                              240 x   Electrovaya
          ...
Energy Density (Wh/kg)
• Most of world Lithium Ion Battery production
  uses organic liquid NMP (N- Methyl Pyrollidone)
• NMP recently suspected ...
Control
              Distributed     Intelligence
              Intelligence




            Battery System




Battery E...
1.   Mississauga, Ontario Canada

                                                  2.   New York State, U.S.A.
          ...
Production Flow




                          Pre-commercialization Activities
                          Cell Mfg.     Mod...
PHEV Conversions   Delivery Vans




•
•
•
Corporate
    Homepage
    Feature




•
•

•
•
•

•
奇瑞新能源   目
CNEAT




                          二00九年九月




                          C - Pure electricity Technology




奇瑞...
奇瑞新能源   目
CNEAT
    奇瑞      品已出口到全球70多个国家和地区




                          C - Pure electricity Technology




奇瑞新能源
CNEAT...
奇瑞新能源   目
CNEAT




                              C - Pure electricity Technology




奇瑞新能源   目
CNEAT



2000.12,完成奇瑞    汽...
奇瑞新能源    目
CNEAT



2002.01,A11        公司内立   ,并申   承担了“十五”一期863       划“QR
           ” 目
2002.12,第一 2 A11     功能    研制完成...
奇瑞新能源      目
CNEAT
 2004.11,以奇瑞 主 ,国 合作研 , 行A21_ISG中度混合与A21_BSG
度混合等两款混合 力       工程化与 化研 :
        行了3   化   开 , 了奇瑞两种混合 力...
奇瑞新能源   目
CNEAT




奇瑞公司提供58 A21_ISG与A21_BSG两种混合 力 ,在2008年北京
奥 会期 ,成功 行了示范      ,体 了“ 色奥 ”的宗旨。




                       ...
奇瑞新能源     目
CNEAT

                                             Q21
                     S18                              ...
奇瑞新能源   目
CNEAT


                 1000
                            6                                                     ...
奇瑞新能源    目
CNEAT




                                     C - Pure electricity Technology




奇瑞新能源    目
CNEAT




    a)
...
奇瑞新能源   目
CNEAT




                          C - Pure electricity Technology




奇瑞新能源
CNEAT
        目
                提
...
奇瑞新能源   目
CNEAT

              我    的目




              ……




                        C - Pure electricity Technology


...
奇瑞新能源   目
CNEAT


                  池本体

        一步提高比能量(EV及PHEV)
        一步提高比功率(PHEV)
        一步提高高温循 和低温性能
        一步提高...
奇瑞新能源   目
CNEAT


            控制(管理系   )

    化SOC和SOH算法,特别是SOH算法
   开展 磁兼容性能考核
    池包系 包括管理系 在内的 力蓄 池系                   ...
8Ah LMO Hi-Power cell, 89Wh/Kg, 1700W/Kg




 Cycling peformance of LMO cell module (100%DOD)
Rate performances of 40Ah LFP cell at 25°C
Power density

Energy density                   Working temp.range



       Safety                    Cost

             ...
FreedomCAR Energy Storage Goals




            J.M. Tarascon, M. Armand, Nature, 414, 2001, 359
Cathode                 Voltage       Specific   Price    Application   Safety
                        vs Graphite   Capac...
Hard Carbon Anode                  Li4Ti5O12 Anode




                                                    Si


          ...
Si Composite Anode materials
1

                 2
                 3
                 4
                 5
                 6
                 7
     ...
Tianjin Lishen Battery Joint-stock Co.,Ltd

                   Zhang Na


2-3 Sep, 2009 EV Li-ion Battery Forum, Shanghai,...
Background-Key Materials Challenges


   Safety              The number one concern for passenger vehicles


   Availabili...
Safety of Cathode Material



                                             DSC of LiNi1/3Co1/3Mn1/3O2 LiMn2O4
            ...
Study on LiFePO4 in Lishen—SEM




 A                     B




 C                     D




Study on LiFePO4 in Lishen—SE...
Study on LiFePO4 in Lishen—Discharge Performance




                                   Discharge Performance:
           ...
Study on LiFePO4 in Lishen—Discharge Performance




                                      Discharge Performance:
        ...
Anode Chemistry in Lishen

 Properties of anode materials

  Item          MCMB                     HC                 SC ...
Charge curves of anode materials

                                           No SEI forming, which can
                   ...
Electrochemical performances—rated charge

                                      LTO shows excellent high rate
           ...
Low temperature performance




                          Conclusions
Batteries are the primary barrier in making electric...
Thank You!
Solar   Wind
°


    °


        2   3 4   5
                          °

        1




1           2     3   4       5
μ
(1st cycle rate: C/20, other cycles: C/5)
http://www.hnei.hawaii.edu/




  Carbon-based economy (pollutions) will be gone
  eventually




  Clean electricity-ba...
  How can we insure a safe and optimal operation of a
   power source or energy storage (PS/ES) system?
      Field test...
Data collection                              Event D, high wind speed,
                                                   ...
  Degradation is often complex
       Need a reference point (SOC tracing)
       Need in situ characterization
       ...
  Single cell to pack modeling
       Accommodate cell-to-cell variations
       Adapt to topology
                    ...
  Diagnostic and prognostic tools




                               V,SOC
Real time data
                 I,T,SOC,SOH   ...
Representative
                                        usage schedule
                                                    ...
Troy A. Hayes, Ph.D., P.E.
             General Manager
             Exponent China
             +1 (650) 688-7127 (US)
  ...
Outline
       • Technologies used for identifying defective
            cells
               –      X-Ray
               ...
X-Ray
       • X-Ray is useful as a 100% inspection
            procedure to verify proper anode/cathode
            align...
X-Ray




TRK7335.000 61CN 0809 EV09




                             CT Scanning
       • CT Scanning can be used on a sa...
CT Scanning




TRK7335.000 61CN 0809 EV09   100 x 100 x t=50 μm Fe   50 x 50 x t=20 μm Ni




                           ...
Hi-Pot Testing
       • How were the Hi-Pot values chosen?
               – Need a properly-designed DOE
                 ...
Sorting
       • Why sort?
       • Do you really know what causes the variation
            between cells of various clas...
Impedance Measurement Between
                             Tab and Cell (Soft Pouch)
       • When the inner polymer layer...
Maintaining Your Brand’s Trust
       • Recalls are for the consumer’s
         protection
       • Recalls must be proper...
Data Analysis
       • Need to consider
               – End of life
               – Time in service at time of incident
...
Timeline for Possible Contributing
                             Factors
      2007                        2008            ...
Questions?




TRK7335.000 61CN 0809 EV09




                                 Cell and Battery Pack Analysis, Including:
...
Evlib part 2
Evlib part 2
Evlib part 2
Evlib part 2
Evlib part 2
Evlib part 2
Evlib part 2
Evlib part 2
Evlib part 2
Evlib part 2
Evlib part 2
Evlib part 2
Evlib part 2
Evlib part 2
Evlib part 2
Evlib part 2
Evlib part 2
Upcoming SlideShare
Loading in …5
×

Evlib part 2

1,521 views

Published on

presentations of EV/LIB Forum held in China 2009, totally 2 parts.

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,521
On SlideShare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
Downloads
39
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Evlib part 2

  1. 1. This is Part 2 of the Presentations from the EV Li-ion Battery Forum 2009 Forum Day 1 & 2 September 2009 Shanghai Battery Join in the discussion look for the group on For more information, please call +65 6243 0050 or email yvonne@ev-li-ionbatteryforum.com www.ev-li-ionbatteryforum.com
  2. 2. Lithium Ion Battery and Electric Cars Shanghai Sept 2009 Dr. Sankar Das Gupta CEO , Electrovaya • Climate Change 900 million vehicles worldwide rely on • Urban pollution fossil fuels • Rising oil prices 50 - 70 million new • Energy security vehicles on the road each year • Healthcare costs 85 Million Barrels • Government initiatives of oil Burnt every day
  3. 3. “It’s the batteries, Stupid” The Honorable R. James Woolsey The Honorable George P. Shultz Co-Chairmen Notes: (1) James Woolsey – former CIA Director (2) George Shultz – former US Secretary of State Electric Vehicle Components Unnecessary Internal Combustion Components Battery System Gas Tank Engine Electric Motor Transmis sion Muffler Fuel reformer Onboard Charge & Motor Controller Oil Lines Oil Pan Water Cooling system Catalytic Converter Electric drive train Fuel Injection System Various Auxiliary System
  4. 4. Nanotechnology A 30 kWh system (e.g. small BEV) requires 240 x Electrovaya 35Ah cells 7120 x 18650 cells (commercial phosphate) 3390 x 26650 cells (commercial phosphate)
  5. 5. Energy Density (Wh/kg)
  6. 6. • Most of world Lithium Ion Battery production uses organic liquid NMP (N- Methyl Pyrollidone) • NMP recently suspected of reproductive Toxicity (birth defects) California 2001, EU 2003 • Electrovaya – Unique Production Technology does not use NMP “Zero Emission Manufacturing for Zero Emission Vehicles”.
  7. 7. Control Distributed Intelligence Intelligence Battery System Battery Engineering Team Thermal Engineering Team Power Electronics Team Mechanical Engineering Team Electrical Engineering Team
  8. 8. 1. Mississauga, Ontario Canada 2. New York State, U.S.A. 3. Licensee, Miljobil Joint Venture - Norway Strategic Implications of Unique Manufacturing: • Zero emission manufacturing process - Thus can manufacture anywhere – urban areas (Toronto), countries (Norway) with minimal environmental footprint • Capital cost for Manufacturing Plant is lowest for the industry - Thus can expand more cost effectively Mississauga, Ontario Canada
  9. 9. Production Flow Pre-commercialization Activities Cell Mfg. Module Build integration System design system build verification Commercial Systems Engineering (Engineers, Scientists, Technicians) Type of Labour Required Battery R&D Team (Scientists, Engineers, Technicians) Thermal Engineering Team (Engineers, Technicians) Power Electronics Team (Computer Scientists, Engineers, Technicians) Mechanical Engineering Team (Scientists, Engineers, Technicians) Electrical Engineering Team (Engineers, Electricians, Technicians) Mechatronics Team iterative work Battery Electric Vehicles Production : USA, Canada, Norway Plug-in Hybrid Electric Vehicles Passenger Delivery Vans Off-Road maya-300 OEMs & Buses Cars Urban cars
  10. 10. PHEV Conversions Delivery Vans • • •
  11. 11. Corporate Homepage Feature • • • • • •
  12. 12. 奇瑞新能源 目 CNEAT 二00九年九月 C - Pure electricity Technology 奇瑞新能源 CNEAT 目 提 一、奇瑞公司 介 二、奇瑞新能源 展 三、主要 池 品技 参数 四、下一步的需求 C - Pure electricity Technology
  13. 13. 奇瑞新能源 目 CNEAT 奇瑞 品已出口到全球70多个国家和地区 C - Pure electricity Technology 奇瑞新能源 CNEAT 目 提 一、奇瑞公司 介 二、奇瑞新能源 展 三、主要 池 品技 参数 四、下一步的需求 C - Pure electricity Technology
  14. 14. 奇瑞新能源 目 CNEAT C - Pure electricity Technology 奇瑞新能源 目 CNEAT 2000.12,完成奇瑞 汽 目的可行性分析与立 ,成立 汽 目 2001.10,申 承担了“十五”一期863 划“奇瑞混合 力 ” 目 2002.12,第一 3 ISG混合 力功能 研制完成,于2003.2通 863 划 收。 2004.09,第二 5 ISG混合 力功能 研制完成,并承担了“十五”二期863 划“QR混合 力 研 。 C - Pure electricity Technology
  15. 15. 奇瑞新能源 目 CNEAT 2002.01,A11 公司内立 ,并申 承担了“十五”一期863 划“QR ” 目 2002.12,第一 2 A11 功能 研制完成。 2003.02,第二 5 A11 功能 研制完成,并通 863 划 收。 C - Pure electricity Technology 奇瑞新能源 目 CNEAT C - Pure electricity Technology
  16. 16. 奇瑞新能源 目 CNEAT 2004.11,以奇瑞 主 ,国 合作研 , 行A21_ISG中度混合与A21_BSG 度混合等两款混合 力 工程化与 化研 : 行了3 化 开 , 了奇瑞两种混合 力 的 化 建立了新能源开 平台,如 件、硬件平台等 培养了奇瑞新能源开 的核心人 列入863 划有4个 ISG中度混合 力 技 与 利 奇瑞所有 BSG 度混合 力 C - Pure electricity Technology 奇瑞新能源 目 CNEAT 2007年10月,奇瑞在 湖投放10台A21 BSG出租 行示范 。每台 行超 20万公里,共累 示范 超 200万公里 据 与反 ,在 湖市出租 行,BSG 油在10%左右 C - Pure electricity Technology
  17. 17. 奇瑞新能源 目 CNEAT 奇瑞公司提供58 A21_ISG与A21_BSG两种混合 力 ,在2008年北京 奥 会期 ,成功 行了示范 ,体 了“ 色奥 ”的宗旨。 C - Pure electricity Technology 奇瑞新能源 目 CNEAT 2009年1月,奇瑞A21 BSG混合 力 在 湖批量上市,首期上市 150 。截至 在, 已 行近8万公里,累 行 1200万公里。 2009年底,奇瑞A21 ISG混合 力 将批量上市 C - Pure electricity Technology
  18. 18. 奇瑞新能源 目 CNEAT Q21 S18 A5 Q21 S18b QQ3 全混 B22 混 合 中混:ISG A5 A3 力 混:BSG A5 2008 2009 2010 C - Pure 2011 electricity Technology 2012 奇瑞新能源 CNEAT 目 提 一、奇瑞公司 介 二、奇瑞新能源 展 三、主要 池 品技 参数 四、下一步的需求 C - Pure electricity Technology
  19. 19. 奇瑞新能源 目 CNEAT 1000 6 IC Engine 4 EV 2 Li - ion PHEV 100 (Wh/kg) 6 Ni - MH 4 Lead - Acid 2 HEV 10 6 Capacitors 4 2 1 0 1 2 3 4 10 10 10 10 10 (W/kg) C - Pure electricity Technology 奇瑞新能源 目 CNEAT NiH AGM QQ EV M1 A5 PHEV PHEV ISG BSG C - Pure electricity Technology
  20. 20. 奇瑞新能源 目 CNEAT C - Pure electricity Technology 奇瑞新能源 目 CNEAT a) b) 336 V c) 40Ah d) 0.2C 98% e) 80% f) 1C g) 13.4 kWh h) 3C i) 1C j) 30 21KW k) 100%DOD 2000 l) 220 kg C - Pure electricity Technology
  21. 21. 奇瑞新能源 目 CNEAT C - Pure electricity Technology 奇瑞新能源 CNEAT 目 提 一、奇瑞公司 介 二、奇瑞新能源 展 三、主要 池 品技 参数 四、下一步的需求 C - Pure electricity Technology
  22. 22. 奇瑞新能源 目 CNEAT 我 的目 …… C - Pure electricity Technology 奇瑞新能源 目 CNEAT 安全与主要性能相兼 C - Pure electricity Technology
  23. 23. 奇瑞新能源 目 CNEAT 池本体 一步提高比能量(EV及PHEV) 一步提高比功率(PHEV) 一步提高高温循 和低温性能 一步提高均匀一致性和安全性 一步降低成本(重要) C - Pure electricity Technology 奇瑞新能源 目 CNEAT 系 池包 化 、 等 循 寿命考核,如常 循 和工况循 安全性能考核,如使用初期和使用中后期 境 用性考核,如温度和机械等 C - Pure electricity Technology
  24. 24. 奇瑞新能源 目 CNEAT 控制(管理系 ) 化SOC和SOH算法,特别是SOH算法 开展 磁兼容性能考核 池包系 包括管理系 在内的 力蓄 池系 性能 的 合考核,如寿命、 境适 性等 C - Pure electricity Technology 奇瑞新能源 目 CNEAT ! C - Pure electricity Technology
  25. 25. 8Ah LMO Hi-Power cell, 89Wh/Kg, 1700W/Kg Cycling peformance of LMO cell module (100%DOD)
  26. 26. Rate performances of 40Ah LFP cell at 25°C
  27. 27. Power density Energy density Working temp.range Safety Cost Life
  28. 28. FreedomCAR Energy Storage Goals J.M. Tarascon, M. Armand, Nature, 414, 2001, 359
  29. 29. Cathode Voltage Specific Price Application Safety vs Graphite Capacity LiCoO2 3.7V 140Ah/kg $35/kg Consumer Low LiNoCoMn 3.6V 155Ah/kg $24/kg Consumer mid Powertool LiNiCoAl 3.55V 170Ah/kg $26/kg Consumer Low/mid Industial LiMn2O4 3.8V 110Ah/kg $12/kg Powertool High Vehicel LiFePO4 3.2V 150Ah/kg $30/kg Powertool High Vehicel Voltage Specific Price vs Graphite Capacity Anode Graphite 0V 330Ah/kg $10/kg Hard Carbon 0.3V 250Ah/kg $40/kg Li4Ti5O12 1.3V 160Ah/kg $25/kg Graphite Anode
  30. 30. Hard Carbon Anode Li4Ti5O12 Anode Si Si Cu foil nano-Si/C After discharging Electrochem. agglomeration H. Li, X. J. Huang et al, Electrochemical and Solid-State Letters, 2 (11) 547-549 (1999)
  31. 31. Si Composite Anode materials
  32. 32. 1 2 3 4 5 6 7 8 LFP/Graphite *Patent licensing fee is not included
  33. 33. Tianjin Lishen Battery Joint-stock Co.,Ltd Zhang Na 2-3 Sep, 2009 EV Li-ion Battery Forum, Shanghai, China Outline
  34. 34. Background-Key Materials Challenges Safety The number one concern for passenger vehicles Availability Meet a wide temperature range of -30 to 60 Durability Cycle and calendar life must allow for 10~15 years of battery operation Cost Batteries for EV with large batteries require low cost Cathode Chemistry in Lishen KPI of Cathode Materials Voltage Capacity / Cycle Life Cost Safety Range/V (mAh/g) LiMn2O4 3.0-4.2 100 120 Good Low Better LiFePO4 2.0-3.6 130 150 Excellent Low Excellent NCM 2.5-4.2 150 Better High Good NCA 2.5-4.2 150 Better High Good •At least four different cathode chemistries are being considered in power battery •NCA and NCM are the choices for high energy density •LFP shows the lowest energy density due to low voltage and low material density
  35. 35. Safety of Cathode Material DSC of LiNi1/3Co1/3Mn1/3O2 LiMn2O4 LiFePO4 and Electrolyte at 4.3V •Most cathode materials exhibit a strong exothermal reaction with the electrolyte in the charged state which can lead to a thermal runaway of the battery •LFP is completely stable and allows the development of an intrinsically safe cell Study on LiFePO4 in Lishen—Basic Performance Energy Type Power Type Items A B C D E F G H Surface area (m2/g) 9 11 16 10 14 18 15 14 Tapped density (g/cm3) 0.8 1.0 0.9 1.1 1.0 1.0 1.0 0.6 Particle size (μm) (D10) 2.2 1.5 0.6 1.1 0.8 0.75 0.2 0.2 (D50) 5.4 3.4 2.3 4.2 4.5 5.1 0.8 0.6 (D90) 9.1 5.9 11.2 10.3 12.2 16.6 4.8 5.0 Moisture (ppm) 420 800 300 500 1100 100 410 700 Discharge capacity (mAh/ 148 150 145 148 145 143 143 152 g) Processability Hard Hard Hard Hard OK OK Hard Harder
  36. 36. Study on LiFePO4 in Lishen—SEM A B C D Study on LiFePO4 in Lishen—SEM E F G H
  37. 37. Study on LiFePO4 in Lishen—Discharge Performance Discharge Performance: A E B C D F Study on LiFePO4 in Lishen—Cycle Life Cycle Life( According to cycle life trend line): B C A E D
  38. 38. Study on LiFePO4 in Lishen—Discharge Performance Discharge Performance: G E Study on LiFePO4 in Lishen—Safety performance No Hot Oven Nail Penetration No Explosion 150 /10min Nail: 3- 8mm, Explosion No Fire Speed:10-40mm/s No Fire No No Explosion Over Safety & Abuse Over Explosion No Fire Discharge Testing Charge No Fire 1C/10V No No Explosion Crush Short Circuit Explosion No Fire No Fire All the Materials are Safe!
  39. 39. Anode Chemistry in Lishen Properties of anode materials Item MCMB HC SC LTO Structure SEM KPI of anode materials Particle size Capacity Tap Density/ Advantage Disadvantage D50/(μm) /(mAh/g) (g/cc) Graphite Low cost; Low temp.; 8.104 300 1.3 (MCMB) High capacity Rapid charge Energy; Initial Hard High Power; 9.146 430 0.9 Longevity Efficiency; low Carbon tap density Low energy Soft 11.216 360 0.8 Low cost; Longevity density; low tap Carbon density High Power; Low energy Li4Ti5O4 9.7 150 1.2 Longevity density Low Temp.; Safety
  40. 40. Charge curves of anode materials No SEI forming, which can improve the low temp. electron conductivity. the voltage Vs. Li is Anode electrode Potential (V) 1.5V, which can effectively avoid Hard carbon has the excellent the creating of the lithium specific capacity, and the charge dendrites. and discharge curve shows good gradient, which is propitious to estimate the SOC of the battery . 1.5V Vs Li LTO Hard Carbon The properties of soft carbon Soft Carbon is between hard carbon and artificial graphite. Graphite 0.1V Vs Li Charge Capacity (mAh) Electrochemical performances—rated discharge Because of the intrinsic properties, hard carbon is benefit to be discharged at large current. The hard carbon displays the higher voltage than soft carbon and MCMB at high rate discharge.
  41. 41. Electrochemical performances—rated charge LTO shows excellent high rate charging property, which is better than HC and SC, and the high rate charging capacity of the MCMB is the least. Time of charging to 90%SOC (10C) Anode Time/min MCMB 12.8 HC 7.3 SC 5.4 LTO 5.6 Electrochemical performances—cycle life
  42. 42. Low temperature performance Conclusions Batteries are the primary barrier in making electric-drive vehicles possible. Li-ion batteries can best meet the electric-drive challenge; LiFePO4 is an intrinsically safe system with good cycle life. At present LiFePO4 platform is one of the best choice for EV/HEV application in Lishen; MCMB and hard carbon are used in Lishen present EV/ HEV cell products; Li4Ti5O12 has higher rate charge ability (at low Temp. vs. AG) , so it seems that Li4Ti5O12 is the best choice for next generation HEV application; Raw material is one of the key premise for good battery, but the electrode process is a big challenge for battery maker due to the property of LiFePO4. Lishen has sound base and enough manufacture experience to penetrate the EV market.
  43. 43. Thank You!
  44. 44. Solar Wind
  45. 45. ° ° 2 3 4 5 ° 1 1 2 3 4 5
  46. 46. μ
  47. 47. (1st cycle rate: C/20, other cycles: C/5)
  48. 48. http://www.hnei.hawaii.edu/   Carbon-based economy (pollutions) will be gone eventually   Clean electricity-based economy will take over   Electrified transportation will prevail
  49. 49.   How can we insure a safe and optimal operation of a power source or energy storage (PS/ES) system?   Field testing?   Laboratory testing?   Modeling & simulation?   All of the above?   What tools do we need to reach that objective?   Model/simulation? Diagnosis? Prognosis?   Are they easy to handle?   Can they be used in real time ?   Can they be used to forecast the available capacity ?   How to understand field data?   Analyze the duty/generation cycle   Link usage (duty cycle) to size & performance of the PS/ES system Data collection   Allow accurate sizing of the battery pack for geographically-dependent duty cycle Pattern Recognition Duty cycle analysis
  50. 50. Data collection Event D, high wind speed, low gusts distribution Pattern Recognition Duty cycle Event cycle analysis analysis Event forecasting   How to understand battery degradation ?   Battery electrochemical behavior is:   Rate dependent Small scale tests   Temperature dependent Specific protocols   Age dependent   Need to test the cells under Performance Rate, T, … appropriate protocols under load effects   Derived from representative usage schedule (rate, temperature)   Matrix of different parameters   Rate   Pulses   Temperature   …
  51. 51.   Degradation is often complex   Need a reference point (SOC tracing)   Need in situ characterization   Incremental capacity analysis   Close-to-equil. OCV analysis Small scale tests Specific protocols Life & degradation mechanisms   Single cell model   Derived from performance tests Small scale tests Specific protocols Cell performance Rate, T Performance model effects under load   ECM approach: accurate & not computation intensive
  52. 52.   Single cell to pack modeling   Accommodate cell-to-cell variations   Adapt to topology Small scale tests Specific protocols Cell performance Rate, T model Performance under load effects Pack model Cell to cell variations   Diagnostic and prognostic tools   Developed from knowledge in single cell testing and analysis   Nominal vs. anomalies   ID & Quantification Small scale tests Specific protocols Cell performance Rate, T Performance model effects under load Pack model Cell to cell variations Diagnostic model Life & degradation Prognostic model mechanisms
  53. 53.   Diagnostic and prognostic tools V,SOC Real time data I,T,SOC,SOH Analysis and V,SOC prognostic module
  54. 54. Representative usage schedule Small scale tests Data collection Specific protocols Pattern Cell performance Rate, T Performance Recognition model effects under load Pack model Cell to cell variations Duty cycle Event cycle analysis analysis Diagnostic model Life & degradation Event forecasting Prognostic model mechanisms   More details ―   Roadmap   M. Dubarry, V. Svoboda, R. Hwu and B.Y. Liaw, “A roadmap to understand battery performance in electric and hybrid vehicle operation,” J. Power Sources 174 (2007) 366.   M. Dubarry, N. Vuillaume, B.Y. Liaw, and T. Quinn, “Vehicle evaluation, battery modeling, and fleet-testing experiences in Hawaii: A roadmap to understanding evaluation data and simulation” J. Asian Electric Vehicles 5 (2007) 1033.   Event pattern recognition   B.Y. Liaw, M. Dubarry, “From driving cycle analysis to understanding battery performance in real-life electric hybrid vehicle operation” (invited) to the Special Issue on Hybrid Electric Vehicles, J. Power Sources 174 (2007) 76.   Battery Analysis   M. Dubarry, V. Svoboda, R. Hwu and B.Y. Liaw, “Capacity and power fading mechanism identification from a commercial cell evaluation,” J. Power Sources 165 (2007) 566.   M. Dubarry, V. Svoboda, R. Hwu and B.Y. Liaw, “Capacity loss in rechargeable lithium cells during cycle life testing: The importance of determining state-of- charge” J. Power Sources 174 (2007) 1121.   Modeling   M. Dubarry and B.Y. Liaw, “Development of a universal modeling tool for rechargeable lithium batteries,” J. Power Sources 174 (2007) 856.
  55. 55. Troy A. Hayes, Ph.D., P.E. General Manager Exponent China +1 (650) 688-7127 (US) +86 (571) 2802 1727 (China) thayes@exponent.com September 3, 2009 TRK7335.000 61CN 0109 FLA1 TRK7335.000 61CN 0809 EV09 Who We Are • Professional services firm • Engineering & scientific consulting • 650+ consulting and technical staff • Best known for analyzing accidents & failures • Design and manufacturing consulting based on FA experience TRK7335.000 61CN 0809 EV09
  56. 56. Outline • Technologies used for identifying defective cells – X-Ray – CT Scanning – Hi-Pot testing – OCV – Sorting – Imaging laser tab welds – Tab-to-cell impedance (soft pouch) • Maintaining your brand’s trust – Recalls – when and why? – Managing a recall TRK7335.000 61CN 0809 EV09 TRK7335.000 61CN 0809 EV09
  57. 57. X-Ray • X-Ray is useful as a 100% inspection procedure to verify proper anode/cathode alignment – Note: this is not 100% accurate • X-Ray is also useful when used on a sampling basis (using both is most desirable) TRK7335.000 61CN 0809 EV09 X-Ray Ni tab kink TRK7335.000 61CN 0809 EV09
  58. 58. X-Ray TRK7335.000 61CN 0809 EV09 CT Scanning • CT Scanning can be used on a sampling basis to evaluate: – Metallic contamination – Holes in active material – High-density spots in active material – Wrinkles in electrodes/current collectors – Delamination of electrodes – Detailed alignment – Deformation of windings associated with tabs, bends etc. • Disadvantages: – Slow for a complete scan (7 hours for an 18650) – Expensive ($250K USD for a good machine) TRK7335.000 61CN 0809 EV09
  59. 59. CT Scanning TRK7335.000 61CN 0809 EV09 100 x 100 x t=50 μm Fe 50 x 50 x t=20 μm Ni CT Scanning • Cu dissolution due to repeated over- discharge • Cathode delamination TRK7335.000 61CN 0809 EV09
  60. 60. Hi-Pot Testing • How were the Hi-Pot values chosen? – Need a properly-designed DOE • Metallic particle size/type • Voltage level and application time – Will vary with capacity/size • Hi-Pot failures – Data analysis – Failure analysis – Closed-loop corrective action TRK7335.000 61CN 0809 EV09 OCV Testing • How are the limits chosen? – IEEE 1725 5.5.7 • Data analysis • Failure analysis • Closed-loop corrective action TRK7335.000 61CN 0809 EV09
  61. 61. Sorting • Why sort? • Do you really know what causes the variation between cells of various classes? – Loading versus other properties – Self discharge rate • Is it possible for two independent causes to create a cell of a particular class? – If so, cells of one class may age differently Cap 2,000 – 2,150 2,151 – 2,300 Voltage mAh mAh V 3.82V Grade B Grade A 3.82 > V 3.77 Grade D Grade C TRK7335.000 61CN 0809 EV09 Laser Weld Visual Inspection • Entirely dependent on operator skill • Is the visual inspection reliable? TRK7335.000 61CN 0809 EV09
  62. 62. Impedance Measurement Between Tab and Cell (Soft Pouch) • When the inner polymer layer on the Al pouch is compromised, a current leakage path can occur – Corrosion – Gas generation – Cell swelling – Electrolyte leakage • Compromised pouches can be identified during production by measuring the impedance between the negative tab and the Al pouch after cell formation and aging TRK7335.000 61CN 0809 EV09 Part 2: Maintaining Your Brand’s Trust TRK7335.000 61CN 0809 EV09
  63. 63. Maintaining Your Brand’s Trust • Recalls are for the consumer’s protection • Recalls must be properly managed • Recall as soon as possible – don’t wait • Recall everywhere, not just where you are required (e.g., by the CPSC) • Consumers will have more confidence in your brand if they know you are acting in their best interest • Communicate to the customer TRK7335.000 61CN 0809 EV09 Limiting a Recall – TRACEABILITY • Tracing all material lots and equipment is extremely important! – Cap assemblies – Electrode batches – Current collectors – Slitting blade number – Winding machine – The more detail, the better • Remember, most date codes disappear during a thermal runaway event – Can you differentiate dates and machines by something internal to the cell? TRK7335.000 61CN 0809 EV09
  64. 64. Data Analysis • Need to consider – End of life – Time in service at time of incident – Geography and power type/stability where incidents occur – Differences in population versus failure rate (e.g., type of charger, etc.) – Changes on manufacturing line – Material changes – Design changes – Failure rates (Hi-Pot, OCV, etc.) – Other factors TRK7335.000 61CN 0809 EV09 Data Analysis Expected Number of Failures per Million Cells TRK7335.000 61CN 0809 EV09
  65. 65. Timeline for Possible Contributing Factors 2007 2008 2009 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 Factor A Factor B Anode material B Cu Foil B Can vendor B Winder #2 in use Winder #16 in use TRK7335.000 61CN 0809 EV09 Summary • Technologies used for identifying defective cells – X-Ray – CT Scanning – Hi-Pot testing – OCV – Sorting – Imaging laser tab welds – Tab-to-cell impedance (soft pouch) • Maintaining your brand’s trust – Recall if necessary – Manage the recall and communicate to the customer TRK7335.000 61CN 0809 EV09 Make your product as traceable as possible
  66. 66. Questions? TRK7335.000 61CN 0809 EV09 Cell and Battery Pack Analysis, Including: Auditing, Failure Analysis, Design Review, Testing, CTIA Certification and Regulatory Consulting 24 Offices Worldwide Boston, Los Angeles, Phoenix, San Francisco and China +1-888-656-EXPO (US) +86 571 2802 1788 (China) www.exponent.com/batteries www.exponentchina.com info@exponent.com exponentchina@exponent.com TRK7335.000 61CN 0109 FLA1 TRK7335.000 61CN 0809 EV09

×