SlideShare a Scribd company logo

Deep Learning with CNTK

Deep Learning fundamentals and Microsoft cognitive tool kit.

1 of 30
Download to read offline
Introduction to Deep Learning
with Microsoft Cognitive Toolkit
Deep Learning with CNTK
Deep learning at Microsoft
• Microsoft Cognitive Services
• Skype Translator
• Cortana
• Bing
• Bing Ads
• Augmented Reality
• Microsoft Research
deep learning at Microsoft
• Microsoft Cognitive Services
• Skype Translator
• Cortana
• Bing
• HoloLens
• Microsoft Research
Deep Learning with CNTK
Deep Learning with CNTK

Recommended

Microsoft Cognitive Toolkit (Atlanta Code Camp 2017)
Microsoft Cognitive Toolkit (Atlanta Code Camp 2017)Microsoft Cognitive Toolkit (Atlanta Code Camp 2017)
Microsoft Cognitive Toolkit (Atlanta Code Camp 2017)Mark Tabladillo
 
Deep Learning with Microsoft Cognitive Toolkit
Deep Learning with Microsoft Cognitive ToolkitDeep Learning with Microsoft Cognitive Toolkit
Deep Learning with Microsoft Cognitive ToolkitBarbara Fusinska
 
V like Velocity, Predicting in Real-Time with Azure ML
V like Velocity, Predicting in Real-Time with Azure MLV like Velocity, Predicting in Real-Time with Azure ML
V like Velocity, Predicting in Real-Time with Azure MLBarbara Fusinska
 
Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...
Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...
Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...Naoki (Neo) SATO
 
Deep Learning on Qubole Data Platform
Deep Learning on Qubole Data PlatformDeep Learning on Qubole Data Platform
Deep Learning on Qubole Data PlatformShivaji Dutta
 
Metta Innovations - Introdução ao Deep Learning aplicado a vídeo analytics
Metta Innovations - Introdução ao Deep Learning aplicado a vídeo analyticsMetta Innovations - Introdução ao Deep Learning aplicado a vídeo analytics
Metta Innovations - Introdução ao Deep Learning aplicado a vídeo analyticsEduardo Gaspar
 
Deeplearning on Hadoop @OSCON 2014
Deeplearning on Hadoop @OSCON 2014Deeplearning on Hadoop @OSCON 2014
Deeplearning on Hadoop @OSCON 2014Adam Gibson
 
Kaz Sato, Evangelist, Google at MLconf ATL 2016
Kaz Sato, Evangelist, Google at MLconf ATL 2016Kaz Sato, Evangelist, Google at MLconf ATL 2016
Kaz Sato, Evangelist, Google at MLconf ATL 2016MLconf
 

More Related Content

What's hot

GDG-Shanghai 2017 TensorFlow Summit Recap
GDG-Shanghai 2017 TensorFlow Summit RecapGDG-Shanghai 2017 TensorFlow Summit Recap
GDG-Shanghai 2017 TensorFlow Summit RecapJiang Jun
 
Approximate "Now" is Better Than Accurate "Later"
Approximate "Now" is Better Than Accurate "Later"Approximate "Now" is Better Than Accurate "Later"
Approximate "Now" is Better Than Accurate "Later"NUS-ISS
 
Introduction To TensorFlow
Introduction To TensorFlowIntroduction To TensorFlow
Introduction To TensorFlowSpotle.ai
 
Introducing TensorFlow: The game changer in building "intelligent" applications
Introducing TensorFlow: The game changer in building "intelligent" applicationsIntroducing TensorFlow: The game changer in building "intelligent" applications
Introducing TensorFlow: The game changer in building "intelligent" applicationsRokesh Jankie
 
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...Databricks
 
Large Scale Deep Learning with TensorFlow
Large Scale Deep Learning with TensorFlow Large Scale Deep Learning with TensorFlow
Large Scale Deep Learning with TensorFlow Jen Aman
 
Josh Patterson, Advisor, Skymind – Deep learning for Industry at MLconf ATL 2016
Josh Patterson, Advisor, Skymind – Deep learning for Industry at MLconf ATL 2016Josh Patterson, Advisor, Skymind – Deep learning for Industry at MLconf ATL 2016
Josh Patterson, Advisor, Skymind – Deep learning for Industry at MLconf ATL 2016MLconf
 
CI/CD for Machine Learning with Daniel Kobran
CI/CD for Machine Learning with Daniel KobranCI/CD for Machine Learning with Daniel Kobran
CI/CD for Machine Learning with Daniel KobranDatabricks
 
Big data app meetup 2016-06-15
Big data app meetup 2016-06-15Big data app meetup 2016-06-15
Big data app meetup 2016-06-15Illia Polosukhin
 
Deep learning with tensorflow
Deep learning with tensorflowDeep learning with tensorflow
Deep learning with tensorflowCharmi Chokshi
 
Smaller and Easier: Machine Learning on Embedded Things
Smaller and Easier: Machine Learning on Embedded ThingsSmaller and Easier: Machine Learning on Embedded Things
Smaller and Easier: Machine Learning on Embedded ThingsNUS-ISS
 
On-device machine learning: TensorFlow on Android
On-device machine learning: TensorFlow on AndroidOn-device machine learning: TensorFlow on Android
On-device machine learning: TensorFlow on AndroidYufeng Guo
 
Practical Digital Image Processing 1
Practical Digital Image Processing 1Practical Digital Image Processing 1
Practical Digital Image Processing 1Aly Abdelkareem
 
Deep Learning with MXNet - Dmitry Larko
Deep Learning with MXNet - Dmitry LarkoDeep Learning with MXNet - Dmitry Larko
Deep Learning with MXNet - Dmitry LarkoSri Ambati
 
Hadoop Summit 2014 - San Jose - Introduction to Deep Learning on Hadoop
Hadoop Summit 2014 - San Jose - Introduction to Deep Learning on HadoopHadoop Summit 2014 - San Jose - Introduction to Deep Learning on Hadoop
Hadoop Summit 2014 - San Jose - Introduction to Deep Learning on HadoopJosh Patterson
 
Machine & Deep Learning: Practical Deployments and Best Practices for the Nex...
Machine & Deep Learning: Practical Deployments and Best Practices for the Nex...Machine & Deep Learning: Practical Deployments and Best Practices for the Nex...
Machine & Deep Learning: Practical Deployments and Best Practices for the Nex...inside-BigData.com
 
Deep learning with TensorFlow
Deep learning with TensorFlowDeep learning with TensorFlow
Deep learning with TensorFlowNdjido Ardo BAR
 
[Research] azure ml anatomy of a machine learning service - Sharat Chikkerur
[Research] azure ml  anatomy of a machine learning service - Sharat Chikkerur[Research] azure ml  anatomy of a machine learning service - Sharat Chikkerur
[Research] azure ml anatomy of a machine learning service - Sharat ChikkerurPAPIs.io
 

What's hot (20)

GDG-Shanghai 2017 TensorFlow Summit Recap
GDG-Shanghai 2017 TensorFlow Summit RecapGDG-Shanghai 2017 TensorFlow Summit Recap
GDG-Shanghai 2017 TensorFlow Summit Recap
 
Dato Keynote
Dato KeynoteDato Keynote
Dato Keynote
 
Approximate "Now" is Better Than Accurate "Later"
Approximate "Now" is Better Than Accurate "Later"Approximate "Now" is Better Than Accurate "Later"
Approximate "Now" is Better Than Accurate "Later"
 
Introduction To TensorFlow
Introduction To TensorFlowIntroduction To TensorFlow
Introduction To TensorFlow
 
Introducing TensorFlow: The game changer in building "intelligent" applications
Introducing TensorFlow: The game changer in building "intelligent" applicationsIntroducing TensorFlow: The game changer in building "intelligent" applications
Introducing TensorFlow: The game changer in building "intelligent" applications
 
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
 
Large Scale Deep Learning with TensorFlow
Large Scale Deep Learning with TensorFlow Large Scale Deep Learning with TensorFlow
Large Scale Deep Learning with TensorFlow
 
Josh Patterson, Advisor, Skymind – Deep learning for Industry at MLconf ATL 2016
Josh Patterson, Advisor, Skymind – Deep learning for Industry at MLconf ATL 2016Josh Patterson, Advisor, Skymind – Deep learning for Industry at MLconf ATL 2016
Josh Patterson, Advisor, Skymind – Deep learning for Industry at MLconf ATL 2016
 
CI/CD for Machine Learning with Daniel Kobran
CI/CD for Machine Learning with Daniel KobranCI/CD for Machine Learning with Daniel Kobran
CI/CD for Machine Learning with Daniel Kobran
 
Big data app meetup 2016-06-15
Big data app meetup 2016-06-15Big data app meetup 2016-06-15
Big data app meetup 2016-06-15
 
Deep learning with tensorflow
Deep learning with tensorflowDeep learning with tensorflow
Deep learning with tensorflow
 
Smaller and Easier: Machine Learning on Embedded Things
Smaller and Easier: Machine Learning on Embedded ThingsSmaller and Easier: Machine Learning on Embedded Things
Smaller and Easier: Machine Learning on Embedded Things
 
Practical Deep Learning
Practical Deep LearningPractical Deep Learning
Practical Deep Learning
 
On-device machine learning: TensorFlow on Android
On-device machine learning: TensorFlow on AndroidOn-device machine learning: TensorFlow on Android
On-device machine learning: TensorFlow on Android
 
Practical Digital Image Processing 1
Practical Digital Image Processing 1Practical Digital Image Processing 1
Practical Digital Image Processing 1
 
Deep Learning with MXNet - Dmitry Larko
Deep Learning with MXNet - Dmitry LarkoDeep Learning with MXNet - Dmitry Larko
Deep Learning with MXNet - Dmitry Larko
 
Hadoop Summit 2014 - San Jose - Introduction to Deep Learning on Hadoop
Hadoop Summit 2014 - San Jose - Introduction to Deep Learning on HadoopHadoop Summit 2014 - San Jose - Introduction to Deep Learning on Hadoop
Hadoop Summit 2014 - San Jose - Introduction to Deep Learning on Hadoop
 
Machine & Deep Learning: Practical Deployments and Best Practices for the Nex...
Machine & Deep Learning: Practical Deployments and Best Practices for the Nex...Machine & Deep Learning: Practical Deployments and Best Practices for the Nex...
Machine & Deep Learning: Practical Deployments and Best Practices for the Nex...
 
Deep learning with TensorFlow
Deep learning with TensorFlowDeep learning with TensorFlow
Deep learning with TensorFlow
 
[Research] azure ml anatomy of a machine learning service - Sharat Chikkerur
[Research] azure ml  anatomy of a machine learning service - Sharat Chikkerur[Research] azure ml  anatomy of a machine learning service - Sharat Chikkerur
[Research] azure ml anatomy of a machine learning service - Sharat Chikkerur
 

Similar to Deep Learning with CNTK

C19013010 the tutorial to build shared ai services session 1
C19013010  the tutorial to build shared ai services session 1C19013010  the tutorial to build shared ai services session 1
C19013010 the tutorial to build shared ai services session 1Bill Liu
 
Using Algorithmia to leverage AI and Machine Learning APIs
Using Algorithmia to leverage AI and Machine Learning APIsUsing Algorithmia to leverage AI and Machine Learning APIs
Using Algorithmia to leverage AI and Machine Learning APIsRakuten Group, Inc.
 
Designing Artificial Intelligence
Designing Artificial IntelligenceDesigning Artificial Intelligence
Designing Artificial IntelligenceDavid Chou
 
How to use Artificial Intelligence with Python? Edureka
How to use Artificial Intelligence with Python? EdurekaHow to use Artificial Intelligence with Python? Edureka
How to use Artificial Intelligence with Python? EdurekaEdureka!
 
Lessons Learned from Building Machine Learning Software at Netflix
Lessons Learned from Building Machine Learning Software at NetflixLessons Learned from Building Machine Learning Software at Netflix
Lessons Learned from Building Machine Learning Software at NetflixJustin Basilico
 
AWS re:Invent 2016: Bringing Deep Learning to the Cloud with Amazon EC2 (CMP314)
AWS re:Invent 2016: Bringing Deep Learning to the Cloud with Amazon EC2 (CMP314)AWS re:Invent 2016: Bringing Deep Learning to the Cloud with Amazon EC2 (CMP314)
AWS re:Invent 2016: Bringing Deep Learning to the Cloud with Amazon EC2 (CMP314)Amazon Web Services
 
Artificial Intelligence with Python | Edureka
Artificial Intelligence with Python | EdurekaArtificial Intelligence with Python | Edureka
Artificial Intelligence with Python | EdurekaEdureka!
 
AI powered emotion recognition: From Inception to Production - Global AI Conf...
AI powered emotion recognition: From Inception to Production - Global AI Conf...AI powered emotion recognition: From Inception to Production - Global AI Conf...
AI powered emotion recognition: From Inception to Production - Global AI Conf...Apache MXNet
 
AI powered emotion recognition: From Inception to Production - Global AI Conf...
AI powered emotion recognition: From Inception to Production - Global AI Conf...AI powered emotion recognition: From Inception to Production - Global AI Conf...
AI powered emotion recognition: From Inception to Production - Global AI Conf...Vandana Kannan
 
201906 02 Introduction to AutoML with ML.NET 1.0
201906 02 Introduction to AutoML with ML.NET 1.0201906 02 Introduction to AutoML with ML.NET 1.0
201906 02 Introduction to AutoML with ML.NET 1.0Mark Tabladillo
 
Cognitive Toolkit - Deep Learning framework from Microsoft
Cognitive Toolkit - Deep Learning framework from MicrosoftCognitive Toolkit - Deep Learning framework from Microsoft
Cognitive Toolkit - Deep Learning framework from MicrosoftŁukasz Grala
 
TechEvent 2019: Artificial Intelligence in Dev & Ops; Martin Luckow - Trivadis
TechEvent 2019: Artificial Intelligence in Dev & Ops; Martin Luckow - TrivadisTechEvent 2019: Artificial Intelligence in Dev & Ops; Martin Luckow - Trivadis
TechEvent 2019: Artificial Intelligence in Dev & Ops; Martin Luckow - TrivadisTrivadis
 
Strata London - Deep Learning 05-2015
Strata London - Deep Learning 05-2015Strata London - Deep Learning 05-2015
Strata London - Deep Learning 05-2015Turi, Inc.
 
AI hype or reality
AI  hype or realityAI  hype or reality
AI hype or realityAwantik Das
 
Big Data Analytics (ML, DL, AI) hands-on
Big Data Analytics (ML, DL, AI) hands-onBig Data Analytics (ML, DL, AI) hands-on
Big Data Analytics (ML, DL, AI) hands-onDony Riyanto
 
Deep learning on mobile
Deep learning on mobileDeep learning on mobile
Deep learning on mobileAnirudh Koul
 
Machine Learning Infrastructure
Machine Learning InfrastructureMachine Learning Infrastructure
Machine Learning InfrastructureSigOpt
 

Similar to Deep Learning with CNTK (20)

Introduction to ML.NET
Introduction to ML.NETIntroduction to ML.NET
Introduction to ML.NET
 
C19013010 the tutorial to build shared ai services session 1
C19013010  the tutorial to build shared ai services session 1C19013010  the tutorial to build shared ai services session 1
C19013010 the tutorial to build shared ai services session 1
 
Using Algorithmia to leverage AI and Machine Learning APIs
Using Algorithmia to leverage AI and Machine Learning APIsUsing Algorithmia to leverage AI and Machine Learning APIs
Using Algorithmia to leverage AI and Machine Learning APIs
 
Designing Artificial Intelligence
Designing Artificial IntelligenceDesigning Artificial Intelligence
Designing Artificial Intelligence
 
Machine Learning
Machine LearningMachine Learning
Machine Learning
 
How to use Artificial Intelligence with Python? Edureka
How to use Artificial Intelligence with Python? EdurekaHow to use Artificial Intelligence with Python? Edureka
How to use Artificial Intelligence with Python? Edureka
 
Lessons Learned from Building Machine Learning Software at Netflix
Lessons Learned from Building Machine Learning Software at NetflixLessons Learned from Building Machine Learning Software at Netflix
Lessons Learned from Building Machine Learning Software at Netflix
 
AWS re:Invent 2016: Bringing Deep Learning to the Cloud with Amazon EC2 (CMP314)
AWS re:Invent 2016: Bringing Deep Learning to the Cloud with Amazon EC2 (CMP314)AWS re:Invent 2016: Bringing Deep Learning to the Cloud with Amazon EC2 (CMP314)
AWS re:Invent 2016: Bringing Deep Learning to the Cloud with Amazon EC2 (CMP314)
 
Artificial Intelligence with Python | Edureka
Artificial Intelligence with Python | EdurekaArtificial Intelligence with Python | Edureka
Artificial Intelligence with Python | Edureka
 
AI powered emotion recognition: From Inception to Production - Global AI Conf...
AI powered emotion recognition: From Inception to Production - Global AI Conf...AI powered emotion recognition: From Inception to Production - Global AI Conf...
AI powered emotion recognition: From Inception to Production - Global AI Conf...
 
AI powered emotion recognition: From Inception to Production - Global AI Conf...
AI powered emotion recognition: From Inception to Production - Global AI Conf...AI powered emotion recognition: From Inception to Production - Global AI Conf...
AI powered emotion recognition: From Inception to Production - Global AI Conf...
 
201906 02 Introduction to AutoML with ML.NET 1.0
201906 02 Introduction to AutoML with ML.NET 1.0201906 02 Introduction to AutoML with ML.NET 1.0
201906 02 Introduction to AutoML with ML.NET 1.0
 
Cognitive Toolkit - Deep Learning framework from Microsoft
Cognitive Toolkit - Deep Learning framework from MicrosoftCognitive Toolkit - Deep Learning framework from Microsoft
Cognitive Toolkit - Deep Learning framework from Microsoft
 
TechEvent 2019: Artificial Intelligence in Dev & Ops; Martin Luckow - Trivadis
TechEvent 2019: Artificial Intelligence in Dev & Ops; Martin Luckow - TrivadisTechEvent 2019: Artificial Intelligence in Dev & Ops; Martin Luckow - Trivadis
TechEvent 2019: Artificial Intelligence in Dev & Ops; Martin Luckow - Trivadis
 
Strata London - Deep Learning 05-2015
Strata London - Deep Learning 05-2015Strata London - Deep Learning 05-2015
Strata London - Deep Learning 05-2015
 
ML basics.pptx
ML basics.pptxML basics.pptx
ML basics.pptx
 
AI hype or reality
AI  hype or realityAI  hype or reality
AI hype or reality
 
Big Data Analytics (ML, DL, AI) hands-on
Big Data Analytics (ML, DL, AI) hands-onBig Data Analytics (ML, DL, AI) hands-on
Big Data Analytics (ML, DL, AI) hands-on
 
Deep learning on mobile
Deep learning on mobileDeep learning on mobile
Deep learning on mobile
 
Machine Learning Infrastructure
Machine Learning InfrastructureMachine Learning Infrastructure
Machine Learning Infrastructure
 

Recently uploaded

PrismCRM-RealEstate-SalesCRM_byCode5Company
PrismCRM-RealEstate-SalesCRM_byCode5CompanyPrismCRM-RealEstate-SalesCRM_byCode5Company
PrismCRM-RealEstate-SalesCRM_byCode5CompanyMustafa Kuğu
 
Large Language Models and Applications in Healthcare
Large Language Models and Applications in HealthcareLarge Language Models and Applications in Healthcare
Large Language Models and Applications in HealthcareAsma Ben Abacha
 
How AI and ChatGPT are changing cybersecurity forever.pptx
How AI and ChatGPT are changing cybersecurity forever.pptxHow AI and ChatGPT are changing cybersecurity forever.pptx
How AI and ChatGPT are changing cybersecurity forever.pptxInfosec
 
Microsoft x 2toLead Webinar Session 1 - How Employee Communication and Connec...
Microsoft x 2toLead Webinar Session 1 - How Employee Communication and Connec...Microsoft x 2toLead Webinar Session 1 - How Employee Communication and Connec...
Microsoft x 2toLead Webinar Session 1 - How Employee Communication and Connec...2toLead Limited
 
Leonis Insights: The State of AI (7 trends for 2023 and 7 predictions for 2024)
Leonis Insights: The State of AI (7 trends for 2023 and 7 predictions for 2024)Leonis Insights: The State of AI (7 trends for 2023 and 7 predictions for 2024)
Leonis Insights: The State of AI (7 trends for 2023 and 7 predictions for 2024)Jay Zhao
 
How We Grew Up with CloudStack and its Journey – Dilip Singh, DataHub
How We Grew Up with CloudStack and its Journey – Dilip Singh, DataHubHow We Grew Up with CloudStack and its Journey – Dilip Singh, DataHub
How We Grew Up with CloudStack and its Journey – Dilip Singh, DataHubShapeBlue
 
ChatGPT's Code Interpreter: Your secret weapon for SEO automation success - S...
ChatGPT's Code Interpreter: Your secret weapon for SEO automation success - S...ChatGPT's Code Interpreter: Your secret weapon for SEO automation success - S...
ChatGPT's Code Interpreter: Your secret weapon for SEO automation success - S...SearchNorwich
 
How to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response PlanHow to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response PlanDatabarracks
 
Building Bridges: Merging RPA Processes, UiPath Apps, and Data Service to bu...
Building Bridges:  Merging RPA Processes, UiPath Apps, and Data Service to bu...Building Bridges:  Merging RPA Processes, UiPath Apps, and Data Service to bu...
Building Bridges: Merging RPA Processes, UiPath Apps, and Data Service to bu...DianaGray10
 
National Institute of Standards and Technology (NIST) Cybersecurity Framework...
National Institute of Standards and Technology (NIST) Cybersecurity Framework...National Institute of Standards and Technology (NIST) Cybersecurity Framework...
National Institute of Standards and Technology (NIST) Cybersecurity Framework...MichaelBenis1
 
IT Nation Evolve event 2024 - Quarter 1
IT Nation Evolve event 2024  - Quarter 1IT Nation Evolve event 2024  - Quarter 1
IT Nation Evolve event 2024 - Quarter 1Inbay UK
 
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...UiPathCommunity
 
CloudStack Tooling Ecosystem – Kiran Chavala, ShapeBlue
CloudStack Tooling Ecosystem – Kiran Chavala, ShapeBlueCloudStack Tooling Ecosystem – Kiran Chavala, ShapeBlue
CloudStack Tooling Ecosystem – Kiran Chavala, ShapeBlueShapeBlue
 
Relationship Counselling: From Disjointed Features to Product-First Thinking ...
Relationship Counselling: From Disjointed Features to Product-First Thinking ...Relationship Counselling: From Disjointed Features to Product-First Thinking ...
Relationship Counselling: From Disjointed Features to Product-First Thinking ...Product School
 
Battle of React State Managers in frontend applications
Battle of React State Managers in frontend applicationsBattle of React State Managers in frontend applications
Battle of React State Managers in frontend applicationsEvangelia Mitsopoulou
 
Learning About GenAI Engineering with AWS PartyRock [AWS User Group Basel - F...
Learning About GenAI Engineering with AWS PartyRock [AWS User Group Basel - F...Learning About GenAI Engineering with AWS PartyRock [AWS User Group Basel - F...
Learning About GenAI Engineering with AWS PartyRock [AWS User Group Basel - F...Chris Bingham
 
ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...
ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...
ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...Neo4j
 
iOncologi_Pitch Deck_2024 slide show for hostinger
iOncologi_Pitch Deck_2024 slide show for hostingeriOncologi_Pitch Deck_2024 slide show for hostinger
iOncologi_Pitch Deck_2024 slide show for hostingerssuser9354ce
 
Launching New Products In Companies Where It Matters Most by Product Director...
Launching New Products In Companies Where It Matters Most by Product Director...Launching New Products In Companies Where It Matters Most by Product Director...
Launching New Products In Companies Where It Matters Most by Product Director...Product School
 
CloudStack 101: The Best Way to Build Your Private Cloud – Rohit Yadav, VP Ap...
CloudStack 101: The Best Way to Build Your Private Cloud – Rohit Yadav, VP Ap...CloudStack 101: The Best Way to Build Your Private Cloud – Rohit Yadav, VP Ap...
CloudStack 101: The Best Way to Build Your Private Cloud – Rohit Yadav, VP Ap...ShapeBlue
 

Recently uploaded (20)

PrismCRM-RealEstate-SalesCRM_byCode5Company
PrismCRM-RealEstate-SalesCRM_byCode5CompanyPrismCRM-RealEstate-SalesCRM_byCode5Company
PrismCRM-RealEstate-SalesCRM_byCode5Company
 
Large Language Models and Applications in Healthcare
Large Language Models and Applications in HealthcareLarge Language Models and Applications in Healthcare
Large Language Models and Applications in Healthcare
 
How AI and ChatGPT are changing cybersecurity forever.pptx
How AI and ChatGPT are changing cybersecurity forever.pptxHow AI and ChatGPT are changing cybersecurity forever.pptx
How AI and ChatGPT are changing cybersecurity forever.pptx
 
Microsoft x 2toLead Webinar Session 1 - How Employee Communication and Connec...
Microsoft x 2toLead Webinar Session 1 - How Employee Communication and Connec...Microsoft x 2toLead Webinar Session 1 - How Employee Communication and Connec...
Microsoft x 2toLead Webinar Session 1 - How Employee Communication and Connec...
 
Leonis Insights: The State of AI (7 trends for 2023 and 7 predictions for 2024)
Leonis Insights: The State of AI (7 trends for 2023 and 7 predictions for 2024)Leonis Insights: The State of AI (7 trends for 2023 and 7 predictions for 2024)
Leonis Insights: The State of AI (7 trends for 2023 and 7 predictions for 2024)
 
How We Grew Up with CloudStack and its Journey – Dilip Singh, DataHub
How We Grew Up with CloudStack and its Journey – Dilip Singh, DataHubHow We Grew Up with CloudStack and its Journey – Dilip Singh, DataHub
How We Grew Up with CloudStack and its Journey – Dilip Singh, DataHub
 
ChatGPT's Code Interpreter: Your secret weapon for SEO automation success - S...
ChatGPT's Code Interpreter: Your secret weapon for SEO automation success - S...ChatGPT's Code Interpreter: Your secret weapon for SEO automation success - S...
ChatGPT's Code Interpreter: Your secret weapon for SEO automation success - S...
 
How to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response PlanHow to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response Plan
 
Building Bridges: Merging RPA Processes, UiPath Apps, and Data Service to bu...
Building Bridges:  Merging RPA Processes, UiPath Apps, and Data Service to bu...Building Bridges:  Merging RPA Processes, UiPath Apps, and Data Service to bu...
Building Bridges: Merging RPA Processes, UiPath Apps, and Data Service to bu...
 
National Institute of Standards and Technology (NIST) Cybersecurity Framework...
National Institute of Standards and Technology (NIST) Cybersecurity Framework...National Institute of Standards and Technology (NIST) Cybersecurity Framework...
National Institute of Standards and Technology (NIST) Cybersecurity Framework...
 
IT Nation Evolve event 2024 - Quarter 1
IT Nation Evolve event 2024  - Quarter 1IT Nation Evolve event 2024  - Quarter 1
IT Nation Evolve event 2024 - Quarter 1
 
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
 
CloudStack Tooling Ecosystem – Kiran Chavala, ShapeBlue
CloudStack Tooling Ecosystem – Kiran Chavala, ShapeBlueCloudStack Tooling Ecosystem – Kiran Chavala, ShapeBlue
CloudStack Tooling Ecosystem – Kiran Chavala, ShapeBlue
 
Relationship Counselling: From Disjointed Features to Product-First Thinking ...
Relationship Counselling: From Disjointed Features to Product-First Thinking ...Relationship Counselling: From Disjointed Features to Product-First Thinking ...
Relationship Counselling: From Disjointed Features to Product-First Thinking ...
 
Battle of React State Managers in frontend applications
Battle of React State Managers in frontend applicationsBattle of React State Managers in frontend applications
Battle of React State Managers in frontend applications
 
Learning About GenAI Engineering with AWS PartyRock [AWS User Group Basel - F...
Learning About GenAI Engineering with AWS PartyRock [AWS User Group Basel - F...Learning About GenAI Engineering with AWS PartyRock [AWS User Group Basel - F...
Learning About GenAI Engineering with AWS PartyRock [AWS User Group Basel - F...
 
ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...
ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...
ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...
 
iOncologi_Pitch Deck_2024 slide show for hostinger
iOncologi_Pitch Deck_2024 slide show for hostingeriOncologi_Pitch Deck_2024 slide show for hostinger
iOncologi_Pitch Deck_2024 slide show for hostinger
 
Launching New Products In Companies Where It Matters Most by Product Director...
Launching New Products In Companies Where It Matters Most by Product Director...Launching New Products In Companies Where It Matters Most by Product Director...
Launching New Products In Companies Where It Matters Most by Product Director...
 
CloudStack 101: The Best Way to Build Your Private Cloud – Rohit Yadav, VP Ap...
CloudStack 101: The Best Way to Build Your Private Cloud – Rohit Yadav, VP Ap...CloudStack 101: The Best Way to Build Your Private Cloud – Rohit Yadav, VP Ap...
CloudStack 101: The Best Way to Build Your Private Cloud – Rohit Yadav, VP Ap...
 

Deep Learning with CNTK

  • 1. Introduction to Deep Learning with Microsoft Cognitive Toolkit
  • 3. Deep learning at Microsoft • Microsoft Cognitive Services • Skype Translator • Cortana • Bing • Bing Ads • Augmented Reality • Microsoft Research
  • 4. deep learning at Microsoft • Microsoft Cognitive Services • Skype Translator • Cortana • Bing • HoloLens • Microsoft Research
  • 7. Microsoft’s historic speech breakthrough • Microsoft 2016 research system for conversational speech recognition • 5.9% word-error rate • enabled by CNTK’s multi-server scalability [W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, G. Zweig: “Achieving Human Parity in Conversational Speech Recognition,” https://arxiv.org/abs/1610.05256]
  • 8. Machine Learning in a Nutshell Machine learning algorithm Model Application Data Contains patterns Finds patterns Recognizes patterns Provides new data to see if it matches known patterns
  • 9. Deploy chosen model Chosen Model Apply learning algorithm to data Candidate Model The Machine Learning Process Prepared Data Apply pre- processing to data Iterate to find the best model Data Preprocessing Modules Iterate until data is ready Preprocessing Modules Machine Learning Algorithms Applications The goal: Smarter applications Raw Data Raw Data Choose data
  • 10. Terminology Training data The prepared data used to create a model Creating a model is called training a model Supervised learning The value you want to predict is in the training data The data is labeled Unsupervised learning The value you want to predict is not in the training data The data is unlabeled The most common approach
  • 11. Styles of Machine Learning Algorithms Examples Decision tree Neural network Bayesian K-means P(A) P(B|A) P(B) P(A|B) = Deep learning uses this
  • 12. What is deep learning --- Yoshua Bengio Machine learning is a way to try to make machines intelligent by allowing computers to learn from examples about the world around us or about some specific aspect of it. Deep learning is an approach to machine learning, particular among all the machine learning methods in that it is inspired by some of the things we know about the brain. It’s trying to make computers learn multiple levels of abstraction and representation, which is presumably what makes these systems so successful Reinforcement learning is a type of machine learning where the learner doesn’t get to know what a human would do in this context. The learner only gets to see if the actions were good or bad after a long set of actions. A lot of the recent progress in this area is in things like playing games, but reinforcement learning probably is going to be very important for things like self-driving cars.
  • 13. Deep learning fundamentals • Model Generalization • Network Architecture • Activation function • Regularization • Model Training • Loss functions • Parameter gradient computation with backpropagation • Gradient descent algorithms DL is trying to make computers learn multiple levels of abstraction and representation
  • 16. Logistic regression Features Weights 1.21 x 0.12 -2.2 x -3.4 -0.32 x 1.11 -1.29 x -0.94 1.4 x -1.2 Multiply features by weights dot product Sum them up, add a bias term Pass result through the logistic function 0.94
  • 17. A single-layer neural network (also known as doing multiple logistic regressions at the same time) Features 0.12 0.92 0.33 0.02 0.99 0.42 0.12 0.92 0.33 0.02 0.99 0.42 Another vector! What might we do with this? Weight matrix Input vector Bias vector(pretend the weights are different)
  • 18. Multi-Layer Perceptrons Network depth Result of one layer becomes features to next
  • 19. These diagrams are getting hard to read Let’s make each individual input and logistic regression into a circle
  • 20. How do we figure out the weights? Start with random weights Try out the model Determine the error Figure out how responsible each weight is for the error Punish each weight in proportion to its crime Truth: Forward propagate to make prediction Backward propagate errors
  • 21. CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into complex computational networks, supporting relevant network types and applications Microsoft Cognitive Toolkit
  • 22. • Microsoft’s open-source deep-learning toolkit • https://github.com/Microsoft/CNTK • Created by Microsoft Speech researchers (Dong Yu et al.) in 2012, “Computational Network Toolkit” • On GitHub since Jan 2016 under MIT license • Renamed from CNTK to “Cognitive Toolkit” • Community contributions e.g. from MIT, Stanford and NVidia Microsoft Cognitive Toolkit
  • 23. CNTK - Other Benefits • Python and C++ API • Mostly implemented in C++ • Low level + high level Python API • Extensibility • User functions and learners in pure Python • Readers • Distributed, highly efficient built-in data readers • Details: https://docs.microsoft.com/en-us/cognitive-toolkit/reasons-to-switch-from-tensorflow- to-cntk Microsoft Cognitive Toolkit
  • 24. Anatomy of a CNTK training job Script configure and executes through CNTK Python APIs… trainer • SGD (momentum, Adam, …) • minibatching reader • minibatch source • task-specific deserializer • automatic randomization • distributed reading corpus model network • model function • criterion function • CPU/GPU execution engine • packing, padding
  • 25. Terms to remember: Neural Networks/Deep Networks • Backpropagation • Forward Pass • Loss Function • Backward pass • Weight Adjustment • Hidden layer – Neither an input nor and output layer • Activation Function & Activation Value • Activation Matrix (CNN) • Stochastic Gradient Descent • Convolutional Layers • Auto Feature Detection • Weights • Bias • Regularization
  • 26. CNTK – Jupyter Notebook MNIST Data – Recognize Digits 1. Logistic Regression 2. Multi Layer Perceptron 3. Convolution Neural Networks
  • 27. Machine Learning – Logistic Regression
  • 28. Deep Learning – Multi Level Perceptron