Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Topic3 photosynthesiscellular respiration p ptnotes


Published on

Cellular Respiration

Published in: Education
  • Be the first to comment

  • Be the first to like this

Topic3 photosynthesiscellular respiration p ptnotes

  1. 1. Photosynthesis & Respiration
  2. 2. Energy for life processes <ul><li>Energy is the ability to cause matter to move or to change </li></ul><ul><li>The ability to do work </li></ul><ul><ul><li>Work for a cell includes </li></ul></ul><ul><ul><ul><li>Growth & repair </li></ul></ul></ul><ul><ul><ul><li>Active transport </li></ul></ul></ul><ul><ul><ul><li>Reproduction </li></ul></ul></ul><ul><ul><ul><li>Synthesis of molecules </li></ul></ul></ul><ul><ul><ul><li>Lots of other stuff!!! </li></ul></ul></ul>
  3. 3. Type of energy <ul><li>Potential energy </li></ul><ul><ul><li>Stored energy </li></ul></ul><ul><ul><li>Example: chemical energy in the chemical bonds of molecules such as ATP & glucose </li></ul></ul><ul><li>Kinetic energy </li></ul><ul><ul><li>Energy of motion </li></ul></ul><ul><ul><li>Examples: electrical energy in the flow of electrons, muscle contraction, active transports </li></ul></ul>
  4. 5. Biochemical pathways <ul><li>A series of reactions in which the product of one reaction is the reactant of the next </li></ul><ul><li>Examples: </li></ul><ul><ul><li>Photosynthesis: only autotrophs are capable of this </li></ul></ul><ul><ul><li>Cellular respiration: Both autotrophs & heterotrophs perform this to release energy to do cellular work </li></ul></ul>
  5. 6. Biochemical pathways
  6. 8. Thermodynamics <ul><li>The study of energy transformations </li></ul><ul><li>1 st law of thermodynamics </li></ul><ul><ul><li>Energy cannot be created or destroyed, only converted from one form to another </li></ul></ul><ul><ul><li>Photosynthesis converts LIGHT energy to CHEMICAL energy contained in the bonds of molecules </li></ul></ul><ul><ul><li>Cellular Respiration takes the chemical energy stored in the molecules and converts it into kinetic energy to use in cell processes </li></ul></ul>
  7. 10. ATP – the energy molecule <ul><li>AKA: adenosine triphosphate </li></ul><ul><li>Monomers: </li></ul><ul><ul><li>Adenine base </li></ul></ul><ul><ul><li>Ribose sugar </li></ul></ul><ul><ul><li>3 phosphate groups </li></ul></ul>
  8. 11. ATP <ul><li>The energy is stored in the bonds BETWEEN the phosphate groups </li></ul>
  9. 12. ATP/ADP Cycle <ul><li>We continuously make and break ATP as needed: FOR ENERGY!! </li></ul>
  10. 13. Light energy & the Electromagnetic Spectrum
  11. 14. Wave description <ul><li>Electromagnetic radiation – form of energy that exhibits wavelike behavior as it travels through space </li></ul><ul><li>Longer wavelength = lower energy </li></ul><ul><li>Has the ability to “excite” molecules and move electrons to carry the energy </li></ul>
  12. 15. EM Spectrum <ul><li>All forms of electromagnetic radiation </li></ul><ul><li>Visible light is the portion we will talk about (although plants absorb other parts of the spectrum). This is the part that we can see. </li></ul><ul><li>ROY G BIV is the order of colors from low to high energy (so long to short wavelength (750 nm to 380 nm) </li></ul>
  13. 17. Light <ul><li>When light strikes an object, it is: </li></ul><ul><ul><li>Absorbed – then we can NOT see it </li></ul></ul><ul><ul><li>Transmitted – goes through the object so we can see it on the other side of the object (like stained glass). The object must be transparent or translucent (like wax paper) for it to do this </li></ul></ul><ul><ul><li>Reflected – then we CAN see it because it bounces back to our eyes. </li></ul></ul>
  14. 18. Color Examples <ul><li>When all colors are absorbed – BLACK </li></ul><ul><li>When all colors are reflected – WHITE </li></ul><ul><li>If only one color is reflected – OBJECT APPEARS THAT COLOR </li></ul><ul><li>Combinations of the 7 basic colors being A/T/R provide all the shades of color that we see. </li></ul><ul><li>IT IS THE PIGMENT MOLECULES THAT ARE PRESENT THAT REFLECT & ABSORB LIGHT ENERGIES AND THUS PROVIDE AN OBJECT WITH ITS COLOR </li></ul>
  15. 19. Pigments
  16. 20. Pigments <ul><li>Definition: Molecules that absorb energy of specific wavelengths. </li></ul><ul><ul><li>REMEMBER: whatever they absorb, we DON’T see </li></ul></ul>
  17. 21. Chlorophyll <ul><li>Definition: most common pigment for photosynthesis </li></ul><ul><li>Reflects GREEN so that is the color energy that we see </li></ul><ul><li>Absorbs all the other color energies si they get used to make glucose & starches for food </li></ul>
  18. 22. Accessory Pigments <ul><li>Definition: pigments that absorb some of the color energies that chlorophyll does not </li></ul><ul><li>Carotenes & xanthophylls REFLECT oranges & yellows </li></ul><ul><li>We see these colors in the fall when chlorophyll declines </li></ul><ul><li>Anthocyanins REFLECT reds & purples </li></ul><ul><li>Tannin (waste product) gives brown color to dying leaves </li></ul>
  19. 23. Some Accessory Pigments
  20. 24. Chloroplast <ul><li>Type of plastid </li></ul><ul><li>Site of photosynthesis </li></ul><ul><li>Has 3 major parts </li></ul>
  21. 25. Parts of a chloroplast <ul><li>Thylakoid membranes: </li></ul><ul><ul><li>flattened sacs of photosynthetic membrane </li></ul></ul><ul><ul><li>Embedded with chlorophyll & other pigments </li></ul></ul><ul><li>Grana (granum) </li></ul><ul><ul><li>Stack of thylakoid membranes </li></ul></ul><ul><ul><li>Connected to each other </li></ul></ul><ul><ul><li>Organizes pigments into 2 types of photosystems </li></ul></ul><ul><li>Stroma: gel like material surrounding grana </li></ul>
  22. 28. Photosynthesis Overview of the process
  23. 29. Plants & Sunlight <ul><li>Autotrophs trap energy from sunlight and use it to build carbohydrates. </li></ul><ul><li>Energy from sunlight is trapped by pigments and used to form sugars from CO2 and H2O </li></ul><ul><li>6CO2 + 6H2O + energy  C6H12O6 + 6O2 </li></ul>
  24. 30. A Continuous Process <ul><li>Light Dependent reactions – happen in the grana </li></ul><ul><ul><li>require energy from light and can only happen in the presence of light </li></ul></ul><ul><ul><li>light excites the electrons and the water splits into hydrogen and oxygen </li></ul></ul><ul><ul><li>“ photo” part – since it requires light </li></ul></ul>
  25. 31. A Continuous Process <ul><li>Light Independent reactions or Calvin cycle – happen in the stroma </li></ul><ul><ul><li>may occur in dark or light </li></ul></ul><ul><ul><li>require products of light reactions </li></ul></ul><ul><ul><li>form simple sugars from using CO2 and the H from the H2O </li></ul></ul><ul><ul><li>“ synthesis” part – since it puts together the simple sugars </li></ul></ul>
  26. 32. Enzymes in Metabolic pathways <ul><li>Photosynthesis & cellular respiration use enzymes to make them happen at the correct speed to maintain life. </li></ul>
  27. 33. Enzymes <ul><li>Enzymes are biological catalysts </li></ul><ul><li>They speed up chemical reactions by lowering the amount of activation energy needed by weakening the bonds of the substrate to make it easier to break apart </li></ul>
  28. 34. Activation Energy <ul><li>energy content of reactants is the same </li></ul><ul><li>energy content of products is the same </li></ul><ul><li>only the activation energy has been lowered by the catalyst (enzyme)(protein) </li></ul>
  29. 35. Enzyme Action <ul><li>Enzymes are highly specific so they only act on ONE substrate </li></ul><ul><li>Remember: lactase only acts on lactose </li></ul>
  30. 36. Enzymes <ul><li>The active site is the location on the enzyme where the substrates join together or break apart </li></ul><ul><li>Excesses in temperature & pH can denature the enzyme by breaking the H bonds which destroys the active site. </li></ul>
  31. 37. Mitochondria
  32. 38. Mitochondria-3 Major parts <ul><li>Smooth outer membrane </li></ul>
  33. 39. Mitochondria - 3 Major parts <ul><li>Folded inner membrane </li></ul><ul><ul><li>Surface area is increase by all the folds (they are called CRISTAE ) </li></ul></ul><ul><ul><li>Lots of SA is important so we can produce lots of ATP !! </li></ul></ul>
  34. 40. Mitochondria – 3 parts <ul><li>Matrix </li></ul><ul><ul><li>Dense protein solution that surrounds the cristae </li></ul></ul>
  35. 41. Function of Mitochondria <ul><li>Site of cellular respiration </li></ul><ul><li>Powerhouse of the cell </li></ul><ul><li>Continues the breakdown of glucose that starts in the cytoplasm </li></ul>
  36. 42. Structure determines Function <ul><li>The # of mitochondria in a cell is determined by its function </li></ul><ul><li>REMEMBER: structure determines function </li></ul><ul><li>A liver cell will have ~1000 mito </li></ul><ul><li>While a muscle cell will have ~10,000 mito </li></ul>
  37. 43. Liver vs. Muscle On left: liver cell On right: skeletal muscle cell – note # of pink mitochondria compared to liver cell
  38. 44. Cellular Respiration Overview <ul><li>C 6 H 12 O 6 + 6O 2 -----> 6CO 2 + 6H 2 0 + energy (heat and ATP) </li></ul><ul><li>Definition: series of reactions resulting in a controlled release of energy from organic molecules </li></ul><ul><ul><li>Most often glucose </li></ul></ul><ul><ul><li>The energy in one molecule of glucose may be used to produce 36 ATP </li></ul></ul>
  39. 45. Series of Reactions <ul><li>Glycolysis </li></ul><ul><ul><li>Takes place in cytoplasm of EVERY type of cell </li></ul></ul><ul><ul><li>Anaerobic (no oxygen required) </li></ul></ul><ul><li>Krebs cycle takes place in the matrix </li></ul><ul><li>Electron transport chain takes place in the cristae </li></ul>
  40. 46. Choices <ul><li>After glycolysis: </li></ul><ul><ul><li>If no oxygen is available in the cell, fermentation (anaerobic respiration) will take place. </li></ul></ul><ul><ul><ul><li>Alcoholic fermentation </li></ul></ul></ul><ul><ul><ul><li>Lactic acid fermentation </li></ul></ul></ul><ul><ul><ul><li>If oxygen is available in the cell, aerobic respiration takes place </li></ul></ul></ul><ul><ul><ul><ul><li>Krebs cycle and electron transport chain </li></ul></ul></ul></ul>
  41. 47. Alcoholic Fermentation <ul><li>alcoholic fermentation: </li></ul><ul><ul><li>end products are ethyl alcohol and carbon dioxide (CO 2 ) </li></ul></ul><ul><ul><li>occurs in bacteria and yeasts – used to produce bread, wine, beer </li></ul></ul>
  42. 48. Lactic Acid Fermentation <ul><li>end product is lactic acid </li></ul><ul><li>occurs in bacteria, plants, and most animals </li></ul><ul><li>used to make yogurt, cheese, soy sauce, sourdough bread, and chocolate </li></ul>
  43. 49. Lactic Acid Fermentation <ul><li>Muscle cells during strenuous exercise cannot get enough ocygen delivered so energy comes from pyruvic acid breaking down into lactic acid – this is what causes sore muscles </li></ul><ul><ul><li>Getting oxygen back into the muscle so the lactic acid can be broken down is the “cure” </li></ul></ul>
  44. 50. See Chart Overview of cellular respiration reactions