Successfully reported this slideshow.
Your SlideShare is downloading. ×

Curso: Redes y comunicaciones I: 07 Redes

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Loading in …3
×

Check these out next

1 of 17 Ad

Curso: Redes y comunicaciones I: 07 Redes

Curso: Redes y comunicaciones I: 07 Redes.
Fue dictado en la Universidad Tecnológica del Perú -UTP, Lima - Perú, en los ciclos 2011-2 (junio/2011), 2011-3 (octubre/2011) y 2012-1 (abril/2012).

Curso: Redes y comunicaciones I: 07 Redes.
Fue dictado en la Universidad Tecnológica del Perú -UTP, Lima - Perú, en los ciclos 2011-2 (junio/2011), 2011-3 (octubre/2011) y 2012-1 (abril/2012).

Advertisement
Advertisement

More Related Content

Slideshows for you (19)

Viewers also liked (20)

Advertisement

More from Jack Daniel Cáceres Meza (20)

Advertisement

Recently uploaded (20)

Curso: Redes y comunicaciones I: 07 Redes

  1. 1. Semana 13 Redes Redes y Comunicaciones I Ingeniería de Telecomunicaciones Facultad de Ingeniería de Telecomunicaciones y Telemática Universidad Tecnológica del Perú Ing. CIP Jack Daniel Cáceres Meza Septiembre 2011
  2. 2. 2 Ing. CIP Jack Daniel Cáceres Meza Domain Name System -DNS  RFC 1035 (1987)  Actualizaciones: 882, 883, 973, 1034, 4033, 4035  Puerto: 53  The goal of domain names is to provide a mechanism for naming resources in such a way that the names are usable in different hosts, networks,protocol families, internets, and administrative organizations. From the user's point of view, domain names are useful as arguments to a local agent, called a resolver, which retrieves information associated with the domain name. Thus a user might ask for the host address or mail information associated with a particular domain name. To enable the user to request a particular type of information, an appropriate query type is passed to the resolver with the domain name. To the user, the domain tree is a single information space; the resolver is responsible for hiding the distribution of data among name servers from the user.
  3. 3. 3 Ing. CIP Jack Daniel Cáceres Meza DNS Domain Namespace Jerarquía Delegación
  4. 4. 4 Ing. CIP Jack Daniel Cáceres Meza Types of DNS Domain Names Name Type Description Example Root domain This is the top of the tree. When used in a DNS domain name, it is stated by a trailing period (.) to designate that the name is located at the root or highest level of the domain hierarchy. In this instance, the DNS domain name is considered to be complete and points to an exact location in the tree of names. Names stated this way are called fully qualified domain names (FQDNs). A single period (.) or a period used at the end of a name, such as “example.microsoft.com.” Top level domain A name used to indicate a country/region or the type of organization using a name. ““.com”, which indicates a name registered to a business for commercial use on the Internet. Second level domain Variable-length names registered to an individual or organization for use on the Internet. These names are always based upon an appropriate top-level domain, depending on the type of organization or geographic location where a name is used. ““microsoft.com. ”, which is the second-level domain name registered to Microsoft by the Internet DNS domain name registrar.
  5. 5. 5 Ing. CIP Jack Daniel Cáceres Meza Types of DNS Domain Names Name Type Description Example Subdomain Additional names that an organization can create that are derived from the registered second-level domain name. These include names added to grow the DNS tree of names in an organization and divide it into departments or geographic locations. ““example.microsoft.com. ”, which is a fictitious subdomain assigned by Microsoft for use in documentation example names. Host or resource name Names that represent a leaf in the DNS tree of names and identify a specific resource. Typically, the leftmost label of a DNS domain name identifies a specific computer on the network. For example, if a name at this level is used in a host (A) RR, it is used to look up the IP address of computer based on its host name. ““host-a.example.microsoft.com.”, where the first label (“host-a”) is the DNS host name for a specific computer on the network.
  6. 6. 6 Ing. CIP Jack Daniel Cáceres Meza Description Class Time To Live (TTL) Type Data Start of Authority Internet (IN) Default TTL is 60 minutes SOA Owner Name Primary Name Server DNS Name, Serial Number Refresh Interval Retry Interval Expire Time Minimum TTL Host Internet (IN) Record-specific TTL if present, or else zone (SOA) TTL A Owner Name (Host DNS Name) Host IP Address Name Server Internet (IN) Record-specific TTL if present, or else zone (SOA) TTL NS Owner Name Name Server DNS Name Mail Exchanger Internet (IN) Record-specific TTL if present, or else zone (SOA) TTL MX Owner Name Mail Exchange Server DNS Name, Preference Number Canonical Name (an alias) Internet (IN) Record-specific TTL if present, or else zone (SOA) TTL CNAME Owner Name (Alias Name) Host DNS Name Common DNS Resource Records http://www.iana.org/assignments/dns-parameters
  7. 7. 7 Ing. CIP Jack Daniel Cáceres Meza Modelo de funcionamiento whois
  8. 8. 8 Ing. CIP Jack Daniel Cáceres Meza Ejemplo de funcionamiento
  9. 9. 9 Ing. CIP Jack Daniel Cáceres Meza Tablas DNS -partial zone for physics department Remember named.conf file 32 bit time interval, in seconds 32 bit unsignedYYYYMMDDNNN -formatted number
  10. 10. 10 Ing. CIP Jack Daniel Cáceres Meza Tablas DNS -glue records for physics department
  11. 11. 11 Ing. CIP Jack Daniel Cáceres Meza Tablas DNS -in-addr.arpa records Subnet 12 Network 149.76
  12. 12. 12 Ing. CIP Jack Daniel Cáceres Meza Modelo de red actual
  13. 13. 13 Ing. CIP Jack Daniel Cáceres Meza Conmutación de circuitos
  14. 14. 14 Ing. CIP Jack Daniel Cáceres Meza Conmutación de paquetes
  15. 15. 15 Ing. CIP Jack Daniel Cáceres Meza HDSL SHDSLADSL, ADSL2+ VDSL Satélite 812.11 WiFi / WiMesh PONSONET / SDH HFC SDV 812.16 WiMAX WLL / WIpLL (FTTH) Coaxial & Fibra Par trenzado Wireless Fibra Óptica Alternativas de Acceso Banda Ancha
  16. 16. 16 Ing. CIP Jack Daniel Cáceres Meza Wi-FI  802.11a - 54 Mbps standard, 5 GHz signaling (ratified 1999), usado en ambientes comerciales, poca distancia, frecuencia regulada  802.11b - 11 Mbps standard, 2.4 GHz signaling (1999), usado en ambientes domésticos, propenso a interferencias, frecuencia no regulada  802.11c - operation of bridge connections (moved to 802.1D)  802.11d - worldwide compliance with regulations for use of wireless signal spectrum (2001)  802.11e - Quality of Service (QoS) support (not yet ratified)  802.11F - Inter-Access Point Protocol recommendation for communication between access points to support roaming clients (2003)  802.11g - 54 Mbps standard, 2.4 GHz signaling (2003), buen rango de señal, poco propenso a obstrucción, propenso a interferencias en frecuencia no regulada  802.11h - enhanced version of 802.11a to support European regulatory requirements (2003)  802.11i - security improvements for the 802.11 family (2004)  802.11j - enhancements to 5 GHz signaling to support Japan regulatory requirements (2004)  802.11k - WLAN system management (in progress)  802.11m - maintenance of 802.11 family documentation  802.11n - 100+ Mbps standard improvements over 802.11g (in progress) , más resistente a interferencias  802.11p - Wireless Access for the Vehicular Environment  802.11r - fast roaming support via Basic Service Set transitions  802.11s - ESS mesh networking for access points  802.11T - Wireless Performance Prediction - recommendation for testing standards and metrics  802.11u - internetworking with 3G / cellular and other forms of external networks  802.11v - wireless network management / device configuration  802.11w - Protected Management Frames security enhancement  802.11y - Contention Based Protocol for interference avoidance
  17. 17. Ing. CIP Jack Daniel Cáceres Meza jack_caceres@hotmail.com Gracias por su atención ¿Preguntas?

×