Trial kedah 2014 spm add math k2

Cikgu Pejal
Cikgu PejalTeacher at SMK Aminuddin Baki Kuala Lumpur (Official)

Bahan Pecutan Akhir Add Math SPM

SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah 
SULIT 
1 
MAJLIS PENGETUA SEKOLAH MALAYSIA 
NEGERI KEDAH DARUL AMAN 
MODUL PENINGKATAN PRESTASI TINGKATAN LIMA 2014 
MATEMATIK TAMBAHAN 
KERTAS 2 
MODUL 2 
2 
1 
2 jam 
Dua jam tiga puluh minit 
JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU 
1. This question paper consists of three sections : Section A, Section B and Section C. 
2. Answer all questions in Section A, four questions from Section B and two questions from 
Section C. 
3. Give only one answer/solution to each question. 
4. Show your working. It may help you to get your marks. 
5. The diagrams provided are not drawn according to scale unless stated. 
6. The marks allocated for each question and sub - part of a question are shown in brackets. 
7. You may use a non-programmable scientific calculator. 
8. A list of formulae is provided in page 2 and 3. 
Kertas soalan ini mengandungi 18 halaman bercetak dan 2 halaman kosong.
SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 
SULIT 
2 
The following formulae may be helpful in answering the questions. The symbols given are the ones 
commonly used. 
ALGEBRA 
1. 
2 4 
2 
b b ac 
x 
a 
   
 8. 
a 
b 
b 
c 
c 
a 
log 
log 
log  
2. am an  amn 9. T n  a  (n 1)d 
3. m n m n a a a    
10. [ 2 ( 1) ] 
2 
a n d 
n 
S n    
4. ( ) m n mn a  a 11. 1  n 
T n ar 
5. log a mn  log a m  log a n 
12. 
r 
a r 
r 
a r 
S 
n n 
n 
 
 
 
 
 
 
1 
(1 ) 
1 
( 1) 
, r ≠ 1 
6. log log log a a a 
m 
m n 
n 
  13. 
r 
a 
S 
 
  
1 
, r < 1 
7. m n a m 
n 
log a  log 
CALCULUS 
1. y = uv, 
dx 
du 
v 
dx 
dv 
u 
dx 
dy 
  
4 Area under a curve 
=  
b 
a 
y dx or 
=  
b 
a 
x dy 
2. y = 
v 
u 
, 
2 v 
dx 
dv 
u 
dx 
du 
v 
dx 
dy 
 
 
5. Volume of revolution 
=  
b 
a 
y dx 2  or 
=  
b 
a 
x dy 2  
3. 
dx 
du 
du 
dy 
dx 
dy 
  
GEOMETRY 
1. Distance = 2 
2 1 
2 
( x2  x1 )  ( y  y ) 
4. Area of triangle 
= 1 2 2 3 3 1 2 1 3 2 1 3 
1 
( ) ( ) 
2 
x y  x y  x y  x y  x y  x y 
2. Mid point 
( x , y ) =  
 
 
   
2 
, 
2 
x1 x2 y1 y2 
5. 2 2 r  x  y 
3. Division of line segment by a point 
( x , y ) =   
 
 
  
 
 
 
 
 
 
m n 
ny my 
m n 
nx1 mx2 1 2 , 
6. 
2 2 
ˆ 
xi yj 
r 
x y 
 
 

SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah 
SULIT 
3 
STATISTICS 
1. 
N 
x 
x 
 
 7 
 
 
 
i 
i i 
W 
W I 
I 
2. 
 
 
 
f 
fx 
x 8 
( )! 
! 
n r 
n 
Pr 
n 
 
 
3. 
N 
 x  x 
 
2 ( ) 
 = 2 
2 
x 
N 
x 
 
 9 
( )! ! 
! 
n r r 
n 
Cr 
n 
 
 
4. 
 
  
 
f 
f x x 2 ( ) 
 = 2 
2 
x 
f 
fx 
 
 
 
10 P(AB) = P(A) + P(B) – P(AB) 
11 P ( X = r ) = r n r 
r 
n C p q  , p + q = 1 
5. m = L + C 
f 
N F 
m   
 
 
 
  
 
 
  
2 
1 
12 Mean ,  = np 
13   npq 
6. 100 
0 
 1  
Q 
Q 
I 14 Z = 
 
X   
TRIGONOMETRY 
1. Arc length, s = r 8. sin ( A  B ) = sin A cos B  cos A sin B 
2. Area of sector, A =  2 
2 
1 
r 
9. cos ( A  B ) = cos A cos B sin A sin B 
3. sin ² A + cos² A = 1 
10 tan ( A  B ) = 
A B 
A B 
1 tan tan 
tan tan 
 
 
4. sec ² A = 1 + tan ² A 
11 tan 2A = 
A 
A 
2 1 tan 
2 tan 
 
5. cosec ² A = 1 + cot ² A 
12 
C 
c 
B 
b 
A 
a 
sin sin sin 
  
6. sin 2A = 2sin A cos A 13 a² = b² + c² – 2bc cos A 
7. cos 2A = cos ² A – sin ² A 
= 2 cos ² A – 1 
= 1 – 2 sin ² A 
14 Area of triangle = 
1 
sin 
2 
ab C
SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 
SULIT 
4 
Section A 
Bahagian A 
[ 40 marks ] 
[ 40 markah ] 
Answer all questions. 
Jawab semua soalan. 
1 Solve the simultaneous equations x  2y 1 and 2 2 x  (2y 1)  50. [5 marks] 
Selesaikan persamaan serentak x  2y 1 dan 2 2 x  (2y 1)  50. [5 markah] 
2 
Diagram 2 shows part of a structure made up of rectangular blocks. The first column has one 
block. For each of the other columns, the number of blocks is doubled the previous column. 
(a) Find the number of blocks in the 8 th columns, [2 marks] 
(b) Calculate 
(i) the total volume of the blocks if there are 10 columns of blocks. 
(ii) the total cost of the 10 columns of blocks if each block cost RM080 . [5 marks] 
Rajah 2 menunjukkan susunan suatu struktur yang terdiri daripada blok yang berbentuk segi 
empat tepat. Lajur pertama mempunyai satu blok. Bagi setiap lajur berikutnya, bilangan blok 
adalah dua kali ganda daripada lajur sebelumnya. 
(a) Carikan bilangan blok bagi lajur ke 8. [2 markah] 
(b) Hitungkan 
(i) jumlah isipadu blok jika terdapat 10 lajur bagi struktur itu. 
(ii) jumlah kos bagi 10 lajur blok jika setiap blok RM080 . [5 markah] 
Diagram 2 / Rajah 2 
5 cm 
3 cm 
7 cm
SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah 
SULIT 
5 
3 ( a ) Sketch the graph of y  cos3x for 0  x  . [3 marks] 
(b) Hence, using the same axes, sketch a suitable straight line to find the number of solutions 
for the equation x  cos3x  0for 0  x  . 
State the number of solutions. [3 marks] 
(a) Lakar graf bagi y  cos3x untuk 0  x  . [3 markah] 
(b) Seterusnya, dengan menggunakan paksi yang sama, lakar satu garis lurus yang sesuai 
untuk mencari bilangan penyelesaian bagi persamaan x  cos3x  0 untuk 0  x  . 
Nyatakan bilangan penyelesaian itu. 
[3 markah] 
4 (a) Given that a set X has score 1 2 3 10 x , x , x ...............x . The mean and standard deviation of 
set X are 10 and 4 respectively. Find  x and  2 x for set X . [4 marks] 
(b) Another set Y has score 1 2 3 10 3 3 3 3 
, , ................ 
2 2 2 2 
x  x  x  x  
. 
Find the mean and variance for set Y . [3 marks] 
(a) Diberi bahawa set X mempunyai skor 1 2 3 10 x , x , x ...............x . Min dan sisihan piawai 
ialah 10 dan 4 masing-masing. Carikan  x and  2 x bagi set X . [4 markah] 
(b) Satu lagi set Y mempunyai skor 1 2 3 10 3 3 3 3 
, , ................ 
2 2 2 2 
x  x  x  x  
. 
Carikan min dan varians bagi set Y . [3 markah]
SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 
SULIT 
6 
5 (a) Given that 5 125 log K log V 1, express V in terms of K. [3 marks] 
(b) Given that the function f : xk  2mx , and 1 1 
: 3 
8 
f x x    , calculate 
(i) the value of k and of m , 
(ii) the value of p if 1 1 
( ) 
2 
f p   . [5 marks] 
(a) Diberi bahawa 5 125 log K log V 1, ungkapkan V dalam sebutan K. [3 markah] 
(b) Diberi bahawa fungsi f : xk  2mx , dan 1 1 
: 3 
8 
f x x    , hitungkan 
(i) nilai-nilai bagi k dan m , 
(ii) nilai bagi p jika 1 1 
( ) 
2 
f p   . [5 markah] 
6 (a) Given that 
2 9 1 
( ) 
3 1 
x 
f x 
x 
 
 
 
, find f '(x). [2 marks] 
(b) A curve has a gradient function of 2 kx 3x , the tangent to the curve at the point 
(2,12) is parallel to the straight line 2y  4x  9 , find 
(i) the value of k, 
(ii) the equation of the normal to the curve at point (2,12) . [5 marks] 
(a) Diberi bahawa 
2 9 1 
( ) 
3 1 
x 
f x 
x 
 
 
 
, cari f '(x). [2 markah] 
(b) Fungsi kecerunan suatu lengkung ialah 2 kx 3x , tangen pada lengkung di titik (2,12) 
adalah selari kepada garis lurus 2y  4x  9 , cari 
(i) nilai bagi k, 
(ii) persamaan normal pada lengkung di titik (2,12) . [5 markah]
SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah 
SULIT 
7 
Section B 
Bahagian B 
[ 40 marks ] 
[ 40 markah ] 
Answer four questions from this section. 
Jawab empat soalan daripada bahagian ini. 
7 Use graph paper to answer this question. 
Gunakan kertas graf untuk menjawab soalan ini. 
x 1 2 3 4 5 6 
y 35 220 675 1520 2875 4860 
Table 7/ Jadual 7 
Table 7 shows the values of two variables, x and y, obtained from an experiment. Variables x 
and y are related by the equation 3 2 x 
k 
p 
y  kx  , where k and p are constants. 
(a) Plot 
2 x 
y 
against x , using a scale of 2 cm to 1 unit on the x  axis and 1 cm to 1 unit 
on the 
2 x 
y 
- axis. Hence, draw the line of best fit. [4 marks] 
(b) Use the graph in 7 (a) to find the value of 
(i) k 
(ii) p 
(iii) y when x = 25 . [6 marks] 
Jadual 7 menunjukkan nilai-nilai bagi dua pembolehubah, x dan y, yang diperoleh daripada 
satu eksperimen. Pembolehubah x dan y dihubungkan oleh persamaan 3 2 x 
k 
p 
y  kx  , 
dengan keadaan k dan p ialah pemalar. 
(a) Plot 2 x 
y 
melawan x , dengan menggunakan skala 2 cm kepada 1 unit pada paksi x dan 
1 cm kepada 1 unit pada paksi- 
2 x 
y 
. Seterusnya, lukis garis lurus penyuaian terbaik. 
[4 markah] 
(b) Gunakan graf di 7(a) untuk mencari nilai 
(i) k, 
(ii) p, 
(iii) y apabila x = 25 . [6 markah]
SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 
SULIT 
8 
8 
Diagram 8 shows a quadrilateral PQRT and a triangle RST . M is a midpoint of TR. 
PQ=9x , PT =8y , 2 PQ=3TS and PT = 2QR . 
(a) Express the following vectors in terms of x and y . 
(i) TR 
(ii) PS 
(iii) MS 
Hence, Show that P, M and S are collinear. 
[6 marks] 
(b) It is given that 
1 
2 
x  and 
3 
4 
y  , find PS . [4 marks] 
Rajah 8 menunjukkan sebuah sisiempat PQRT dan segitiga RST. M ialah titik tengah TR. 
PQ= 9x , PT = 8y , 2 PQ=3TS dan PT = 2QR . 
(a) Ungkapkan vektor yang berikut dalam sebutan x dan y 
(i) TR 
(ii) SR 
(iii) MS 
Seterusnya, tunjukkan bahawa P, M dan S adalah segaris. [6 markah] 
(b) Diberi bahawa 
1 
2 
x  dan 
3 
4 
y  , cari PS . [4 markah] 
S 
P 
Q 
R 
T 
M 
Diagram 8/ Rajah 8
SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah 
SULIT 
9 
9 
Diagram 9 shows the straight line y = 3x + 4 intersecting the curve y = x2 at the points K. 
Find 
(a) the coordinates of K, [3 marks] 
(b) the area of the shaded region B, [3 marks] 
(c) the volume generated, in terms of π , when the shaded region A is revolved through 360o about the y-axis. 
[4 marks] 
Rajah 9 menunjukkan garis lurus y = 3x +4 yang menyilang lengkung y = x2 pada titik K. 
Cari 
(a) koordinat K, [3 markah] 
(b) luas rantau berlorek B, [3 markah] 
(c) isipadu janaan, dalam sebutan π , apabila rantau berlorek A dikisarkan melalui 360o pada paksi-y. 
[4 markah] 
Diagram 9/Rajah 9 
O 
y 
x 
y = x 2 
y = 3x + 4 
K B 
A
SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 
SULIT 
10 
10 
Diagram 10 shows a semicircle ABC with centre O and a sector ABO with centre A. The radius 
of semicircle ABC and sector ABO is 8 cm. 
[ Use π = 3142] 
Calculate 
(a) the value of  , in radian, [2 marks] 
(b) the perimeter, in cm, of shaded region , [4 marks] 
(c) the area, in cm2 , of the shaded region . [4 marks] 
Rajah 10 menunjukkan sebuah semi bulatan ABC dengan pusat O dan sector ABO dengan 
pusat A. Jejari bagi semi bulatan ABC dan sektor bulatan ABO ialah 8 cm. 
[ Guna π = 3142] 
Hitung 
(a) nilai  , dalam radian, [2 markah] 
(b) perimeter, dalam cm, kawasan berlorek , [4 markah] 
(c) luas, dalam cm2, kawasan berlorek. [4 markah] 
B 
 
A C 
O 
Diagram 10 / Rajah 10
SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah 
SULIT 
11 
11 
(a) In an examination, 85% of the candidates passed Mathematics. If a sample of 6 candidates is chosen at random, find the probability that 
(i) all the candidates passed Mathematics, 
(ii) at least 2 candidates failed Mathematics. 
[5 marks] 
(b) The body mass of 500 students in a school follows a normal distribution with a mean of 52 kg and a standard deviation of 10 kg. 
(i) If a student is chosen at random, find the probability that his body mass is between 40 kg and 60 kg. 
(ii) Calculate the number of students whose body mass are between 40 kg and 60 kg. 
[5 marks] 
(a) Dalam suatu peperiksaan, 85 % calon lulus Matematik. Jika 6 calon dipilih secara rawak, cari kebarangkalian bahawa 
(i) kesemua calon itu lulus Matematik, 
(ii) sekurang-kurangnya 2 calon gagal Matematik. 
[5 markah] 
(b) Jisim badan 500 pelajar sebuah sekolah adalah mengikut taburan normal dengan min 52 kg dan sisihan piawai 10 kg. 
(i) Jika seorang pelajar dipilih secara rawak, carikan kebarangkalian bahawa jisim badannya berada di antara 40 kg dan 60 kg. 
(ii) Hitung bilangan pelajar yang mempunyai jisim badan di antara 40 kg dan 60 kg. 
[5 markah]
SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 
SULIT 
12 
Section C 
Bahagian C 
[ 20 marks ] 
[ 20 markah ] 
Answer any two questions from this section. 
Jawab mana-mana dua soalan daripada bahagian ini. 
12 A particle moves along a straight line from a fixed point O. Its velocity, v ms-1, is given by 
v = kt – 3t2 , where k is a constant and t is the time, in seconds, after leaving the point O. The 
velocity of the particle is maximum when t = 25 s . 
[Assume motion to the right is positive.] 
Find 
(a) the value of k, [2 marks] 
(b) the value of t when the particle passes O again, [3 marks] 
(c) the time, in seconds, when the particle stops instantaneously, [2 marks] 
(d) the distance travelled, in m, by the particle in the first 7 seconds. [3 marks] 
Suatu zarah bergerak di sepanjang suatu garis lurus dari satu titik tetap O. Halajunya, v ms-1, 
diberi oleh v = kt – 3t2 , dengan keadaan k ialah pemalar dan t ialah masa, dalam saat, 
selepas meninggalkan titik O. Halaju zarah itu adalah maksimum pada t = 25 s 
[Anggapkan gerakan ke arah kanan sebagai positif.] 
Cari 
(a) nilai k, [2 markah] 
(b) nilai bagi t apabila zarah itu melalui titik O semula 
, [3 markah] 
(c) masa, dalam saat, apabila zarah berhenti seketika, [2 markah] 
(d) jarak yang dilalui, dalam m, oleh zarah itu dalam tujuh saat pertama. [3 markah]
SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah 
SULIT 
13 
13 Diagram 13 shows a quadrilateral KLMN. 
Diagram 13/Rajah 13 
Calculate 
(a) the length, in cm, of KM,. [2 marks] 
(b) KMN, [2 marks] 
(c) LKM, [3 marks] 
(d) the area, in cm2, of quadrilateral KLMN. [3 marks] 
Rajah 13 menunjukkan sisiempat KLMN. 
Hitungkan 
(a) panjang, dalam cm, KM, [2 markah] 
(b) KMN, [2 markah] 
(c) LKM, [3 markah] 
(d) luas, dalam cm2, bagi sisiempat KLMN. [3 markah] 
N 
5 3 cm 
M 
115 
K 
6 6 cm 
3 0 cm 
L 
85
SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 
SULIT 
14 
14 Table 14 shows the prices and the price indices of five components P, Q, R, S and T needed to 
produce a certain type of digital camera. Pie chart 14 shows the relative quantity of 
components needed in producing the camera. 
Component 
Komponen 
Price (RM) 
per unit 
Harga (RM) 
per unit 
Price index for the year 
2012 based on the year 
2010 
Indeks harga pada tahun 
2012 berasaskan tahun 
2010 
2010 2012 
P 1·10 1·21 110 
Q 1·80 x 120 
R 3·20 4·00 150 
S 2·50 3.05 122 
T 2·00 2·80 y 
Table 14 / Jadual 14 
Pie chart 14 / Carta pai 14 
80º 
35º 
160º 
40º 
P 
Q 
R 
S 
T
SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah 
SULIT 
15 
(a) Find the value of x and y. [4 marks] 
(b) Calculate the composite index for the production cost of the camera in the year 2012 based on the year 2010. [3 marks] 
(c) The price of each component increases by 10% from the year 2012 to the year 2014. Given that the production cost of the camera in year 2010 is RM500, calculate the corresponding cost in year 2014. [3 marks] 
Jadual 14 menunjukkan harga dan indeks harga bagi lima komponen P, Q, R, S dan T yang diperlukan untuk menghasilkan sejenis kamera digital. Carta pai 14 menunjukkan kuantiti relatif bagi komponen yang diperlukan dalam penghasilan kamera digital itu. 
(a) Cari nilai x dan y. [4 markah] 
(b) Hitungkan indeks gubahan bagi kos penghasilan kamera digital itu pada tahun 2012 berasaskan tahun 2010. [3 markah] 
(c) Harga setiap komponen meningkat 10% dari tahun 2012 ke tahun 2014. Diberi kos penghasilan kamera digital itu dalam tahun 2010 ialah RM500, hitungkan kosnya yang sepadan pada tahun 2014. [3 markah]
SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 
SULIT 
16 
15 
Use a graph paper to answer this question. 
A factory produces two types of pillow, type A and type B. In a day, it can produce x pillows of type A and y pillows of type B. The time taken to produce a pillow of type A is 20 minutes and a pillow of type B is 30 minutes. 
The production of the pillow per day is based on the following constraints. 
I. : The time taken to make pillows of type A is not more than the time taken to make pillows of type B. 
II. : The total number of pillows produced is not more than 500. 
III. : The number of pillows of type B must exceed the number of pillows of type A by at most 200. 
(a) Write three inequalities, other than which satisfy all the above constraints. [3 marks] 
(b) By using the scale of 2 cm to 100 pillows on both axes, construct and shade the region R which satisfies all the above constraints. [3 marks] 
(c) Use graph from 15(b), to find 
(i) the maximum number of pillows of type A if 280 of pillows of type B produced. 
(ii) maximum profit that can be obtained, if the profit of selling pillow A is RM20 and pillow B is RM12 
00. [4 marks]
SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah 
SULIT 
17 
END OF QUESTION PAPER 
KERTAS SOALAN TAMAT 
Gunakan kertas graf untuk menjawab soalan ini. 
Sebuah kilang menghasilkan 2 jenis bantal, jenis A dan jenis B. Dalam satu hari, kilang itu boleh menghasilkan x biji bantal jenis A dan y biji bantal jenis B. Masa yang diambil untuk menghasilkan sebiji bantal jenis A ialah 20 minit dan sebiji bantal jenis B ialah 30 minit. 
Pengeluaran bantal dalam satu hari adalah berdasarkan kekangan yang berikut: 
I: Masa yang diambil untuk membuat bantal A tidak melebihi masa yang diambil untuk membuat bantal jenis B. 
II: Jumlah bantal yang dihasilkan tidak melebihi 500 bji. 
III: Bilangan bantal jenis B mesti melebihi bilangan bantal jenis A selebih-lebihnya 200 biji. 
(a) Tulis tiga ketaksamaan, selain , yang memenuhi semua kekangan di atas. [3 markah] 
(b) Menggunakan skala 2 cm kepada 100 biji bantal pada kedua-dua paksi, bina dan lorek rantau R yang memenuhi semua kekangan di atas. [3 markah] 
(c) Gunakan graf anda daripada 15(b) untuk mencari 
(i) bilangan maksimum bantal jenis A jika 280 biji bantal jenis B dihasilkan. 
(ii) keuntungan maksimum yang boleh diperolehi, jika keuntungan jualan bagi bantal A ialah RM20 dan bantal B ialah RM12 
00. 
[4markah]
SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 
SULIT 
18 
THE UPPER TAIL PROBABILITY Q(z) FOR THE NORMAL DISTRIBUTION N(0,1) 
KEBARANGKALIAN HUJUNG ATAS Q(z) BAGI TABURAN NORMAL N(0, 1) 
z 0 1 2 3 4 5 6 7 8 9 
1 2 3 4 5 6 7 8 9 
Minus / Tolak 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5000 
0.4602 
0.4207 
0.3821 
0.3446 
0.4960 
0.4562 
0.4168 
0.3783 
0.3409 
0.4920 
0.4522 
0.4129 
0.3745 
0.3372 
0.4880 
0.4483 
0.4090 
0.3707 
0.3336 
0.4840 
0.4443 
0.4052 
0.3669 
0.3300 
0.4801 
0.4404 
0.4013 
0.3632 
0.3264 
0.4761 
0.4364 
0.3974 
0.3594 
0.3228 
0.4721 
0.4325 
0.3936 
0.3557 
0.3192 
0.4681 
0.4286 
0.3897 
0.3520 
0.3156 
0.4641 
0.4247 
0.3859 
0.3483 
0.3121 
4 
4 
4 
4 
4 
8 
8 
8 
7 
7 
12 
12 
12 
11 
11 
16 
16 
15 
15 
15 
20 
20 
19 
19 
18 
24 
24 
23 
22 
22 
28 
28 
27 
26 
25 
32 
32 
31 
30 
29 
36 
36 
35 
34 
32 
0.5 
0.6 
0.7 
0.8 
0.9 
0.3085 
0.2743 
0.2420 
0.2119 
0.1841 
0.3050 
0.2709 
0.2389 
0.2090 
0.1814 
0.3015 
0.2676 
0.2358 
0.2061 
0.1788 
0.2981 
0.2643 
0.2327 
0.2033 
0.1762 
0.2946 
0.2611 
0.2296 
0.2005 
0.1736 
0.2912 
0.2578 
0.2266 
0.1977 
0.1711 
0.2877 
0.2546 
0.2236 
0.1949 
0.1685 
0.2843 
0.2514 
0.2206 
0.1922 
0.1660 
0.2810 
0.2483 
0.2177 
0.1894 
0.1635 
0.2776 
0.2451 
0.2148 
0.1867 
0.1611 
3 
3 
3 
3 
3 
7 
7 
6 
5 
5 
10 
10 
9 
8 
8 
14 
13 
12 
11 
10 
17 
16 
15 
14 
13 
20 
19 
18 
16 
15 
24 
23 
21 
19 
18 
27 
26 
24 
22 
20 
31 
29 
27 
25 
23 
1.0 
1.1 
1.2 
1.3 
1.4 
0.1587 
0.1357 
0.1151 
0.0968 
0.0808 
0.1562 
0.1335 
0.1131 
0.0951 
0.0793 
0.1539 
0.1314 
0.1112 
0.0934 
0.0778 
0.1515 
0.1292 
0.1093 
0.0918 
0.0764 
0.1492 
0.1271 
0.1075 
0.0901 
0.0749 
0.1469 
0.1251 
0.1056 
0.0885 
0.0735 
0.1446 
0.1230 
0.1038 
0.0869 
0.0721 
0.1423 
0.1210 
0.1020 
0.0853 
0.0708 
0.1401 
0.1190 
0.1003 
0.0838 
0.0694 
0.1379 
0.1170 
0.0985 
0.0823 
0.0681 
2 
2 
2 
2 
1 
5 
4 
4 
3 
3 
7 
6 
6 
5 
4 
9 
8 
7 
6 
6 
12 
10 
9 
8 
7 
14 
12 
11 
10 
8 
16 
14 
13 
11 
10 
19 
16 
15 
13 
11 
21 
18 
17 
14 
13 
1.5 
1.6 
1.7 
1.8 
1.9 
0.0668 
0.0548 
0.0446 
0.0359 
0.0287 
0.0655 
0.0537 
0.0436 
0.0351 
0.0281 
0.0643 
0.0526 
0.0427 
0.0344 
0.0274 
0.0630 
0.0516 
0.0418 
0.0336 
0.0268 
0.0618 
0.0505 
0.0409 
0.0329 
0.0262 
0.0606 
0.0495 
0.0401 
0.0322 
0.0256 
0.0594 
0.0485 
0.0392 
0.0314 
0.0250 
0.0582 
0..0475 
0.0384 
0.0307 
0.0244 
0.0571 
0.0465 
0.0375 
0.0301 
0.0239 
0.0559 
0.0455 
0.0367 
0.0294 
0.0233 
1 
1 
1 
1 
1 
2 
2 
2 
1 
1 
4 
3 
3 
2 
2 
5 
4 
4 
3 
2 
6 
5 
4 
4 
3 
7 
6 
5 
4 
4 
8 
7 
6 
5 
4 
10 
8 
7 
6 
5 
11 
9 
8 
6 
5 
2.0 
2.1 
2.2 
2.3 
0.0228 
0.0179 
0.0139 
0.0107 
0.0222 
0.0174 
0.0136 
0.0104 
0.0217 
0.0170 
0.0132 
0.0102 
0.0212 
0.0166 
0.0129 
0.00990 
0.0207 
0.0162 
0.0125 
0.00964 
0.0202 
0.0158 
0.0122 
0.00939 
0.0197 
0.0154 
0.0119 
0.00914 
0.0192 
0.0150 
0.0116 
0.00889 
0.0188 
0.0146 
0.0113 
0.00866 
0.0183 
0.0143 
0.0110 
0.00842 
0 
0 
0 
0 
3 
2 
1 
1 
1 
1 
5 
5 
1 
1 
1 
1 
8 
7 
2 
2 
1 
1 
10 
9 
2 
2 
2 
1 
13 
12 
3 
2 
2 
2 
15 
14 
3 
3 
2 
2 
18 
16 
4 
3 
3 
2 
20 
16 
4 
4 
3 
2 
23 
21 
2.4 0.00820 0.00798 0.00776 0.00755 0.00734 
0.00714 
0.00695 
0.00676 
0.00657 
0.00639 
2 
2 
4 
4 
6 
6 
8 
7 
11 
9 
13 
11 
15 
13 
17 
15 
19 
17 
2.5 
2.6 
2.7 
2.8 
2.9 
0.00621 
0.00466 
0.00347 
0.00256 
0.00187 
0.00604 
0.00453 
0.00336 
0.00248 
0.00181 
0.00587 
0.00440 
0.00326 
0.00240 
0.00175 
0.00570 
0.00427 
0.00317 
0.00233 
0.00169 
0.00554 
0.00415 
0.00307 
0.00226 
0.00164 
0.00539 
0.00402 
0.00298 
0.00219 
0.00159 
0.00523 
0.00391 
0.00289 
0.00212 
0.00154 
0.00508 
0.00379 
0.00280 
0.00205 
0.00149 
0.00494 
0.00368 
0.00272 
0.00199 
0.00144 
0.00480 
0.00357 
0.00264 
0.00193 
0.00139 
2 
1 
1 
1 
0 
3 
2 
2 
1 
1 
5 
3 
3 
2 
1 
6 
5 
4 
3 
2 
8 
6 
5 
4 
2 
9 
7 
6 
4 
3 
11 
9 
7 
5 
3 
12 
9 
8 
6 
4 
14 
10 
9 
6 
4 
3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00104 0.00100 0 1 1 2 2 2 3 3 4 
Q(z) 
z 
f (z) 
O 
Example / Contoh: 
If X ~ N(0, 1), then P(X > k) = Q(k) 
Jika X ~ N(0, 1), maka P(X > k) = Q(k) 
 
 
 
 
  2 
2 
1 
exp 
2 
1 
f (z) z 
 
 
 
 
k 
Q(z) f (z) dz
SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah 
SULIT 
19 
HALAMAN KOSONG
SULIT 3472/2 
August 2014 
3472/2 Additional Mathematics Paper 2 
SULIT 
20 
HALAMAN KOSONG

Recommended

Trial kedah 2014 spm add math k2 skema by
Trial kedah 2014 spm add math k2 skemaTrial kedah 2014 spm add math k2 skema
Trial kedah 2014 spm add math k2 skemaCikgu Pejal
2.1K views13 slides
Contoh cover, rumus, maklumat kepada calon matematik tambahan kertas 2 (1) by
Contoh cover, rumus, maklumat kepada calon matematik tambahan kertas 2 (1)Contoh cover, rumus, maklumat kepada calon matematik tambahan kertas 2 (1)
Contoh cover, rumus, maklumat kepada calon matematik tambahan kertas 2 (1)Pauling Chia
710 views7 slides
Add math sbp 2012 by
Add math sbp 2012Add math sbp 2012
Add math sbp 2012ammarmeek
1.6K views63 slides
Skema SPM SBP Add Maths Paper 2012 by
Skema SPM SBP Add Maths Paper 2012Skema SPM SBP Add Maths Paper 2012
Skema SPM SBP Add Maths Paper 2012Tuisyen Geliga
8.4K views18 slides
Trial kedah 2014 spm add math k1 skema by
Trial kedah 2014 spm add math k1 skemaTrial kedah 2014 spm add math k1 skema
Trial kedah 2014 spm add math k1 skemaCikgu Pejal
2.2K views6 slides
Rumus matematik-tambahan by
Rumus matematik-tambahanRumus matematik-tambahan
Rumus matematik-tambahanShuYe Lee
22.8K views2 slides

More Related Content

What's hot

Teknik menjawab matematik tambahan 1 by
Teknik menjawab matematik tambahan 1Teknik menjawab matematik tambahan 1
Teknik menjawab matematik tambahan 1Aidil-Nur Zainal
3.2K views195 slides
Test 1 f4 add maths by
Test 1 f4 add mathsTest 1 f4 add maths
Test 1 f4 add mathsSazlin A Ghani
17.7K views14 slides
Additional Mathematics Project 2014 Selangor Sample Answers by
Additional Mathematics Project 2014 Selangor Sample AnswersAdditional Mathematics Project 2014 Selangor Sample Answers
Additional Mathematics Project 2014 Selangor Sample AnswersDania
17.7K views13 slides
Modul bimbingan add maths by
Modul bimbingan add mathsModul bimbingan add maths
Modul bimbingan add mathsSasi Villa
6.1K views49 slides
F2 t2 squares, square roots, cubes &amp; cube roots by
F2 t2   squares, square roots, cubes &amp; cube rootsF2 t2   squares, square roots, cubes &amp; cube roots
F2 t2 squares, square roots, cubes &amp; cube rootsCikgu Ho SMK Tunku Putra Batu Pahat
1.5K views6 slides
Add Maths 1 by
Add Maths 1Add Maths 1
Add Maths 1morabisma
3.1K views5 slides

What's hot(20)

Teknik menjawab matematik tambahan 1 by Aidil-Nur Zainal
Teknik menjawab matematik tambahan 1Teknik menjawab matematik tambahan 1
Teknik menjawab matematik tambahan 1
Aidil-Nur Zainal3.2K views
Additional Mathematics Project 2014 Selangor Sample Answers by Dania
Additional Mathematics Project 2014 Selangor Sample AnswersAdditional Mathematics Project 2014 Selangor Sample Answers
Additional Mathematics Project 2014 Selangor Sample Answers
Dania 17.7K views
Modul bimbingan add maths by Sasi Villa
Modul bimbingan add mathsModul bimbingan add maths
Modul bimbingan add maths
Sasi Villa6.1K views
Add Maths 1 by morabisma
Add Maths 1Add Maths 1
Add Maths 1
morabisma3.1K views
Jawapan matriks spM LATIH TUBI 2015 by aloysiusapat
Jawapan matriks spM LATIH TUBI 2015Jawapan matriks spM LATIH TUBI 2015
Jawapan matriks spM LATIH TUBI 2015
aloysiusapat2K views
Kem akademik sept 16 by SMK Mukah
Kem akademik  sept 16Kem akademik  sept 16
Kem akademik sept 16
SMK Mukah2.5K views
Koleksi soalan matematik spm by ruhanaahmad
Koleksi soalan matematik spmKoleksi soalan matematik spm
Koleksi soalan matematik spm
ruhanaahmad39.9K views
276443264 peperiksaan-penggal-1-2015-matematik-tambahan-tingkatan-4-baru by afiq paya
276443264 peperiksaan-penggal-1-2015-matematik-tambahan-tingkatan-4-baru276443264 peperiksaan-penggal-1-2015-matematik-tambahan-tingkatan-4-baru
276443264 peperiksaan-penggal-1-2015-matematik-tambahan-tingkatan-4-baru
afiq paya150 views
add maths module 5 by Sasi Villa
add maths module 5add maths module 5
add maths module 5
Sasi Villa1.1K views
Ahs sec 4 em prelim p2 by Cindy Leong
Ahs sec 4 em prelim p2Ahs sec 4 em prelim p2
Ahs sec 4 em prelim p2
Cindy Leong410 views
Ahs sec 4 em prelim p2 solutions by Cindy Leong
Ahs sec 4 em prelim p2 solutionsAhs sec 4 em prelim p2 solutions
Ahs sec 4 em prelim p2 solutions
Cindy Leong350 views
5 indices & logarithms by linusshy
5  indices & logarithms5  indices & logarithms
5 indices & logarithms
linusshy22.1K views
Numeros reales, inecuaciones y desigualdades by DanielaAngulo25
Numeros reales, inecuaciones y desigualdadesNumeros reales, inecuaciones y desigualdades
Numeros reales, inecuaciones y desigualdades
DanielaAngulo25387 views
Mathematics Mid Year Form 4 Paper 2 2010 by sue sha
Mathematics Mid Year Form 4 Paper 2 2010Mathematics Mid Year Form 4 Paper 2 2010
Mathematics Mid Year Form 4 Paper 2 2010
sue sha36.9K views
add maths module 4 by Sasi Villa
add maths module 4add maths module 4
add maths module 4
Sasi Villa1.8K views
F4 02 Quadratic Expressions And by guestcc333c
F4 02 Quadratic Expressions AndF4 02 Quadratic Expressions And
F4 02 Quadratic Expressions And
guestcc333c2.1K views

Viewers also liked

nota-ekpress-pmr-sains by
nota-ekpress-pmr-sainsnota-ekpress-pmr-sains
nota-ekpress-pmr-sainsTrac Marc
12.3K views10 slides
Pmr.mathematical formulae by
Pmr.mathematical formulaePmr.mathematical formulae
Pmr.mathematical formulaeNazira Arshad
3.1K views2 slides
Skema k2 trial pahang spm 2014 physics by
Skema k2 trial pahang spm 2014 physicsSkema k2 trial pahang spm 2014 physics
Skema k2 trial pahang spm 2014 physicsCikgu Pejal
3.8K views10 slides
Trial pahang spm 2014 physics k2 by
Trial pahang spm 2014 physics k2Trial pahang spm 2014 physics k2
Trial pahang spm 2014 physics k2Cikgu Pejal
5.2K views26 slides
Rumus matematik examonline spa by
Rumus matematik examonline spaRumus matematik examonline spa
Rumus matematik examonline spaMohammad Hafiz Bin Hamzah, M. Sc.
36.4K views9 slides
Sejarah & Perkembangan Matematik (MTE 3102) by
Sejarah & Perkembangan Matematik (MTE 3102)Sejarah & Perkembangan Matematik (MTE 3102)
Sejarah & Perkembangan Matematik (MTE 3102)Izzati Zamburi
26.1K views66 slides

Viewers also liked(7)

nota-ekpress-pmr-sains by Trac Marc
nota-ekpress-pmr-sainsnota-ekpress-pmr-sains
nota-ekpress-pmr-sains
Trac Marc12.3K views
Pmr.mathematical formulae by Nazira Arshad
Pmr.mathematical formulaePmr.mathematical formulae
Pmr.mathematical formulae
Nazira Arshad3.1K views
Skema k2 trial pahang spm 2014 physics by Cikgu Pejal
Skema k2 trial pahang spm 2014 physicsSkema k2 trial pahang spm 2014 physics
Skema k2 trial pahang spm 2014 physics
Cikgu Pejal3.8K views
Trial pahang spm 2014 physics k2 by Cikgu Pejal
Trial pahang spm 2014 physics k2Trial pahang spm 2014 physics k2
Trial pahang spm 2014 physics k2
Cikgu Pejal5.2K views
Sejarah & Perkembangan Matematik (MTE 3102) by Izzati Zamburi
Sejarah & Perkembangan Matematik (MTE 3102)Sejarah & Perkembangan Matematik (MTE 3102)
Sejarah & Perkembangan Matematik (MTE 3102)
Izzati Zamburi26.1K views

Similar to Trial kedah 2014 spm add math k2

Melaka Trial Paper 1 2010 by
Melaka Trial Paper 1 2010Melaka Trial Paper 1 2010
Melaka Trial Paper 1 2010sooklai
1.3K views18 slides
Trial 2018 kedah add math k2 by
Trial 2018 kedah add math k2Trial 2018 kedah add math k2
Trial 2018 kedah add math k2salasiahismail2
98 views27 slides
Q addmaths 2011 by
Q addmaths 2011Q addmaths 2011
Q addmaths 2011Nur Amira Maisarah
475 views10 slides
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme by
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_schemeChanged pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_schemePratima Nayak ,Kendriya Vidyalaya Sangathan
1.5K views14 slides
Add mth f4 final sbp 2008 by
Add mth f4 final sbp 2008Add mth f4 final sbp 2008
Add mth f4 final sbp 2008Shaila Rama
1.4K views43 slides
Kertas Percubaan SPM Kedah add-maths p2 2017 by
Kertas Percubaan SPM Kedah add-maths p2 2017Kertas Percubaan SPM Kedah add-maths p2 2017
Kertas Percubaan SPM Kedah add-maths p2 2017Tuisyen Geliga
1.2K views18 slides

Similar to Trial kedah 2014 spm add math k2(20)

Melaka Trial Paper 1 2010 by sooklai
Melaka Trial Paper 1 2010Melaka Trial Paper 1 2010
Melaka Trial Paper 1 2010
sooklai1.3K views
Add mth f4 final sbp 2008 by Shaila Rama
Add mth f4 final sbp 2008Add mth f4 final sbp 2008
Add mth f4 final sbp 2008
Shaila Rama1.4K views
Kertas Percubaan SPM Kedah add-maths p2 2017 by Tuisyen Geliga
Kertas Percubaan SPM Kedah add-maths p2 2017Kertas Percubaan SPM Kedah add-maths p2 2017
Kertas Percubaan SPM Kedah add-maths p2 2017
Tuisyen Geliga1.2K views
MID YEAR ADD MATH P1P2 F4 2020 (2).docx by SalmiahSamsudin
MID YEAR ADD MATH P1P2 F4  2020 (2).docxMID YEAR ADD MATH P1P2 F4  2020 (2).docx
MID YEAR ADD MATH P1P2 F4 2020 (2).docx
SalmiahSamsudin24 views
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA by Gautham Rajesh
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
Gautham Rajesh1.1K views
Notes and Formulae Mathematics SPM by Zhang Ewe
Notes and Formulae Mathematics SPM Notes and Formulae Mathematics SPM
Notes and Formulae Mathematics SPM
Zhang Ewe67.3K views
Notes and-formulae-mathematics by Ah Ching
Notes and-formulae-mathematicsNotes and-formulae-mathematics
Notes and-formulae-mathematics
Ah Ching1.5K views
Notes and formulae mathematics by Zainonie Ma'arof
Notes and formulae mathematicsNotes and formulae mathematics
Notes and formulae mathematics
Zainonie Ma'arof19.3K views
H 2008 2011 by sjamaths
H 2008   2011H 2008   2011
H 2008 2011
sjamaths85 views
Higher papers 2007 - 2013 by sjamaths
Higher papers 2007 -  2013Higher papers 2007 -  2013
Higher papers 2007 - 2013
sjamaths196 views
Paper 1 add mth trial spm 2013 by Smk Gelam
Paper 1 add mth trial spm 2013Paper 1 add mth trial spm 2013
Paper 1 add mth trial spm 2013
Smk Gelam13.5K views
129215 specimen-paper-and-mark-schemes by King Ali
129215 specimen-paper-and-mark-schemes129215 specimen-paper-and-mark-schemes
129215 specimen-paper-and-mark-schemes
King Ali473 views

More from Cikgu Pejal

Trial terengganu 2014 spm add math k2 by
Trial terengganu 2014 spm add math k2Trial terengganu 2014 spm add math k2
Trial terengganu 2014 spm add math k2Cikgu Pejal
2.9K views17 slides
Trial terengganu 2014 spm add math k2 skema by
Trial terengganu 2014 spm add math k2 skemaTrial terengganu 2014 spm add math k2 skema
Trial terengganu 2014 spm add math k2 skemaCikgu Pejal
3.2K views10 slides
Trial terengganu 2014 spm add math k1 skema [scan] by
Trial terengganu 2014 spm add math k1 skema [scan]Trial terengganu 2014 spm add math k1 skema [scan]
Trial terengganu 2014 spm add math k1 skema [scan]Cikgu Pejal
1.8K views6 slides
Trial terengganu 2014 spm add math k1 [scan] by
Trial terengganu 2014 spm add math k1 [scan]Trial terengganu 2014 spm add math k1 [scan]
Trial terengganu 2014 spm add math k1 [scan]Cikgu Pejal
1.2K views15 slides
Trial sbp spm 2014 add math k2 by
Trial sbp spm 2014 add math k2Trial sbp spm 2014 add math k2
Trial sbp spm 2014 add math k2Cikgu Pejal
2.1K views21 slides
Trial sbp spm 2014 add math k1 by
Trial sbp spm 2014 add math k1Trial sbp spm 2014 add math k1
Trial sbp spm 2014 add math k1Cikgu Pejal
1.9K views26 slides

More from Cikgu Pejal(20)

Trial terengganu 2014 spm add math k2 by Cikgu Pejal
Trial terengganu 2014 spm add math k2Trial terengganu 2014 spm add math k2
Trial terengganu 2014 spm add math k2
Cikgu Pejal2.9K views
Trial terengganu 2014 spm add math k2 skema by Cikgu Pejal
Trial terengganu 2014 spm add math k2 skemaTrial terengganu 2014 spm add math k2 skema
Trial terengganu 2014 spm add math k2 skema
Cikgu Pejal3.2K views
Trial terengganu 2014 spm add math k1 skema [scan] by Cikgu Pejal
Trial terengganu 2014 spm add math k1 skema [scan]Trial terengganu 2014 spm add math k1 skema [scan]
Trial terengganu 2014 spm add math k1 skema [scan]
Cikgu Pejal1.8K views
Trial terengganu 2014 spm add math k1 [scan] by Cikgu Pejal
Trial terengganu 2014 spm add math k1 [scan]Trial terengganu 2014 spm add math k1 [scan]
Trial terengganu 2014 spm add math k1 [scan]
Cikgu Pejal1.2K views
Trial sbp spm 2014 add math k2 by Cikgu Pejal
Trial sbp spm 2014 add math k2Trial sbp spm 2014 add math k2
Trial sbp spm 2014 add math k2
Cikgu Pejal2.1K views
Trial sbp spm 2014 add math k1 by Cikgu Pejal
Trial sbp spm 2014 add math k1Trial sbp spm 2014 add math k1
Trial sbp spm 2014 add math k1
Cikgu Pejal1.9K views
Trial sbp 2014 spm matematik tambahan k1 k2 dan skema by Cikgu Pejal
Trial sbp 2014 spm matematik tambahan k1 k2 dan skemaTrial sbp 2014 spm matematik tambahan k1 k2 dan skema
Trial sbp 2014 spm matematik tambahan k1 k2 dan skema
Cikgu Pejal10.7K views
Trial penang 2014 spm matematik tambahan k2 [scan] by Cikgu Pejal
Trial penang 2014 spm matematik tambahan k2 [scan]Trial penang 2014 spm matematik tambahan k2 [scan]
Trial penang 2014 spm matematik tambahan k2 [scan]
Cikgu Pejal3.2K views
Trial penang 2014 spm matematik tambahan k1 k2 skema [scan] by Cikgu Pejal
Trial penang 2014 spm matematik tambahan k1 k2 skema [scan]Trial penang 2014 spm matematik tambahan k1 k2 skema [scan]
Trial penang 2014 spm matematik tambahan k1 k2 skema [scan]
Cikgu Pejal4.1K views
Trial penang 2014 spm matematik tambahan k1 [scan] by Cikgu Pejal
Trial penang 2014 spm matematik tambahan k1 [scan]Trial penang 2014 spm matematik tambahan k1 [scan]
Trial penang 2014 spm matematik tambahan k1 [scan]
Cikgu Pejal919 views
Trial pahang 2014 spm add math k2 dan skema [scan] by Cikgu Pejal
Trial pahang 2014 spm add math k2 dan skema [scan]Trial pahang 2014 spm add math k2 dan skema [scan]
Trial pahang 2014 spm add math k2 dan skema [scan]
Cikgu Pejal1.2K views
Trial pahang 2014 spm add math k1 dan skema [scan] by Cikgu Pejal
Trial pahang 2014 spm add math k1 dan skema [scan]Trial pahang 2014 spm add math k1 dan skema [scan]
Trial pahang 2014 spm add math k1 dan skema [scan]
Cikgu Pejal1.5K views
Trial n. sembilan 2014 spm add math k2 dan skema by Cikgu Pejal
Trial n. sembilan 2014 spm add math k2 dan skemaTrial n. sembilan 2014 spm add math k2 dan skema
Trial n. sembilan 2014 spm add math k2 dan skema
Cikgu Pejal3.5K views
Trial n. sembilan 2014 spm add math k1 dan skema by Cikgu Pejal
Trial n. sembilan 2014 spm add math k1 dan skemaTrial n. sembilan 2014 spm add math k1 dan skema
Trial n. sembilan 2014 spm add math k1 dan skema
Cikgu Pejal3.3K views
Trial mrsm 2014 spm add math k2 skema [scan] by Cikgu Pejal
Trial mrsm 2014 spm add math k2 skema [scan]Trial mrsm 2014 spm add math k2 skema [scan]
Trial mrsm 2014 spm add math k2 skema [scan]
Cikgu Pejal6.4K views
Trial mrsm 2014 spm add math k2 no skema [scan] by Cikgu Pejal
Trial mrsm 2014 spm add math k2 no skema [scan]Trial mrsm 2014 spm add math k2 no skema [scan]
Trial mrsm 2014 spm add math k2 no skema [scan]
Cikgu Pejal789 views
Trial mrsm 2014 spm add math k1 skema [scan] by Cikgu Pejal
Trial mrsm 2014 spm add math k1 skema [scan]Trial mrsm 2014 spm add math k1 skema [scan]
Trial mrsm 2014 spm add math k1 skema [scan]
Cikgu Pejal6.5K views
Trial mrsm 2014 spm add math k1 no skema [scan] by Cikgu Pejal
Trial mrsm 2014 spm add math k1 no skema [scan]Trial mrsm 2014 spm add math k1 no skema [scan]
Trial mrsm 2014 spm add math k1 no skema [scan]
Cikgu Pejal632 views
Trial kedah 2014 spm add math k1 by Cikgu Pejal
Trial kedah 2014 spm add math k1Trial kedah 2014 spm add math k1
Trial kedah 2014 spm add math k1
Cikgu Pejal832 views
Skema k2 trial sbp spm 2014 add math by Cikgu Pejal
Skema k2 trial sbp spm 2014 add mathSkema k2 trial sbp spm 2014 add math
Skema k2 trial sbp spm 2014 add math
Cikgu Pejal1.9K views

Recently uploaded

Essay On Econ by
Essay On EconEssay On Econ
Essay On EconAshley Fisher
121 views89 slides
The Future of Micro-credentials: Is Small Really Beautiful? by
The Future of Micro-credentials:  Is Small Really Beautiful?The Future of Micro-credentials:  Is Small Really Beautiful?
The Future of Micro-credentials: Is Small Really Beautiful?Mark Brown
121 views35 slides
Education of marginalized and socially disadvantages segments.pptx by
Education of marginalized and socially disadvantages segments.pptxEducation of marginalized and socially disadvantages segments.pptx
Education of marginalized and socially disadvantages segments.pptxGarimaBhati5
52 views36 slides
GSoC 2024 .pdf by
GSoC 2024 .pdfGSoC 2024 .pdf
GSoC 2024 .pdfShabNaz2
45 views15 slides
What is Digital Transformation? by
What is Digital Transformation?What is Digital Transformation?
What is Digital Transformation?Mark Brown
46 views11 slides
Java Simplified: Understanding Programming Basics by
Java Simplified: Understanding Programming BasicsJava Simplified: Understanding Programming Basics
Java Simplified: Understanding Programming BasicsAkshaj Vadakkath Joshy
676 views155 slides

Recently uploaded(20)

The Future of Micro-credentials: Is Small Really Beautiful? by Mark Brown
The Future of Micro-credentials:  Is Small Really Beautiful?The Future of Micro-credentials:  Is Small Really Beautiful?
The Future of Micro-credentials: Is Small Really Beautiful?
Mark Brown121 views
Education of marginalized and socially disadvantages segments.pptx by GarimaBhati5
Education of marginalized and socially disadvantages segments.pptxEducation of marginalized and socially disadvantages segments.pptx
Education of marginalized and socially disadvantages segments.pptx
GarimaBhati552 views
GSoC 2024 .pdf by ShabNaz2
GSoC 2024 .pdfGSoC 2024 .pdf
GSoC 2024 .pdf
ShabNaz245 views
What is Digital Transformation? by Mark Brown
What is Digital Transformation?What is Digital Transformation?
What is Digital Transformation?
Mark Brown46 views
Ask The Expert! Nonprofit Website Tools, Tips, and Technology.pdf by TechSoup
 Ask The Expert! Nonprofit Website Tools, Tips, and Technology.pdf Ask The Expert! Nonprofit Website Tools, Tips, and Technology.pdf
Ask The Expert! Nonprofit Website Tools, Tips, and Technology.pdf
TechSoup 67 views
Artificial Intelligence and The Sustainable Development Goals (SDGs) Adoption... by BC Chew
Artificial Intelligence and The Sustainable Development Goals (SDGs) Adoption...Artificial Intelligence and The Sustainable Development Goals (SDGs) Adoption...
Artificial Intelligence and The Sustainable Development Goals (SDGs) Adoption...
BC Chew40 views
OOPs - JAVA Quick Reference.pdf by ArthyR3
OOPs - JAVA Quick Reference.pdfOOPs - JAVA Quick Reference.pdf
OOPs - JAVA Quick Reference.pdf
ArthyR376 views
Guess Papers ADC 1, Karachi University by Khalid Aziz
Guess Papers ADC 1, Karachi UniversityGuess Papers ADC 1, Karachi University
Guess Papers ADC 1, Karachi University
Khalid Aziz109 views
Pharmaceutical Analysis PPT (BP 102T) by yakshpharmacy009
Pharmaceutical Analysis PPT (BP 102T) Pharmaceutical Analysis PPT (BP 102T)
Pharmaceutical Analysis PPT (BP 102T)
yakshpharmacy009118 views
Peripheral artery diseases by Dr. Garvit.pptx by garvitnanecha
Peripheral artery diseases by Dr. Garvit.pptxPeripheral artery diseases by Dr. Garvit.pptx
Peripheral artery diseases by Dr. Garvit.pptx
garvitnanecha135 views
Research Methodology (M. Pharm, IIIrd Sem.)_UNIT_IV_CPCSEA Guidelines for Lab... by RAHUL PAL
Research Methodology (M. Pharm, IIIrd Sem.)_UNIT_IV_CPCSEA Guidelines for Lab...Research Methodology (M. Pharm, IIIrd Sem.)_UNIT_IV_CPCSEA Guidelines for Lab...
Research Methodology (M. Pharm, IIIrd Sem.)_UNIT_IV_CPCSEA Guidelines for Lab...
RAHUL PAL45 views

Trial kedah 2014 spm add math k2

  • 1. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah SULIT 1 MAJLIS PENGETUA SEKOLAH MALAYSIA NEGERI KEDAH DARUL AMAN MODUL PENINGKATAN PRESTASI TINGKATAN LIMA 2014 MATEMATIK TAMBAHAN KERTAS 2 MODUL 2 2 1 2 jam Dua jam tiga puluh minit JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU 1. This question paper consists of three sections : Section A, Section B and Section C. 2. Answer all questions in Section A, four questions from Section B and two questions from Section C. 3. Give only one answer/solution to each question. 4. Show your working. It may help you to get your marks. 5. The diagrams provided are not drawn according to scale unless stated. 6. The marks allocated for each question and sub - part of a question are shown in brackets. 7. You may use a non-programmable scientific calculator. 8. A list of formulae is provided in page 2 and 3. Kertas soalan ini mengandungi 18 halaman bercetak dan 2 halaman kosong.
  • 2. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 SULIT 2 The following formulae may be helpful in answering the questions. The symbols given are the ones commonly used. ALGEBRA 1. 2 4 2 b b ac x a     8. a b b c c a log log log  2. am an  amn 9. T n  a  (n 1)d 3. m n m n a a a    10. [ 2 ( 1) ] 2 a n d n S n    4. ( ) m n mn a  a 11. 1  n T n ar 5. log a mn  log a m  log a n 12. r a r r a r S n n n       1 (1 ) 1 ( 1) , r ≠ 1 6. log log log a a a m m n n   13. r a S    1 , r < 1 7. m n a m n log a  log CALCULUS 1. y = uv, dx du v dx dv u dx dy   4 Area under a curve =  b a y dx or =  b a x dy 2. y = v u , 2 v dx dv u dx du v dx dy   5. Volume of revolution =  b a y dx 2  or =  b a x dy 2  3. dx du du dy dx dy   GEOMETRY 1. Distance = 2 2 1 2 ( x2  x1 )  ( y  y ) 4. Area of triangle = 1 2 2 3 3 1 2 1 3 2 1 3 1 ( ) ( ) 2 x y  x y  x y  x y  x y  x y 2. Mid point ( x , y ) =       2 , 2 x1 x2 y1 y2 5. 2 2 r  x  y 3. Division of line segment by a point ( x , y ) =             m n ny my m n nx1 mx2 1 2 , 6. 2 2 ˆ xi yj r x y   
  • 3. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah SULIT 3 STATISTICS 1. N x x   7    i i i W W I I 2.    f fx x 8 ( )! ! n r n Pr n   3. N  x  x  2 ( )  = 2 2 x N x   9 ( )! ! ! n r r n Cr n   4.     f f x x 2 ( )  = 2 2 x f fx    10 P(AB) = P(A) + P(B) – P(AB) 11 P ( X = r ) = r n r r n C p q  , p + q = 1 5. m = L + C f N F m            2 1 12 Mean ,  = np 13   npq 6. 100 0  1  Q Q I 14 Z =  X   TRIGONOMETRY 1. Arc length, s = r 8. sin ( A  B ) = sin A cos B  cos A sin B 2. Area of sector, A =  2 2 1 r 9. cos ( A  B ) = cos A cos B sin A sin B 3. sin ² A + cos² A = 1 10 tan ( A  B ) = A B A B 1 tan tan tan tan   4. sec ² A = 1 + tan ² A 11 tan 2A = A A 2 1 tan 2 tan  5. cosec ² A = 1 + cot ² A 12 C c B b A a sin sin sin   6. sin 2A = 2sin A cos A 13 a² = b² + c² – 2bc cos A 7. cos 2A = cos ² A – sin ² A = 2 cos ² A – 1 = 1 – 2 sin ² A 14 Area of triangle = 1 sin 2 ab C
  • 4. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 SULIT 4 Section A Bahagian A [ 40 marks ] [ 40 markah ] Answer all questions. Jawab semua soalan. 1 Solve the simultaneous equations x  2y 1 and 2 2 x  (2y 1)  50. [5 marks] Selesaikan persamaan serentak x  2y 1 dan 2 2 x  (2y 1)  50. [5 markah] 2 Diagram 2 shows part of a structure made up of rectangular blocks. The first column has one block. For each of the other columns, the number of blocks is doubled the previous column. (a) Find the number of blocks in the 8 th columns, [2 marks] (b) Calculate (i) the total volume of the blocks if there are 10 columns of blocks. (ii) the total cost of the 10 columns of blocks if each block cost RM080 . [5 marks] Rajah 2 menunjukkan susunan suatu struktur yang terdiri daripada blok yang berbentuk segi empat tepat. Lajur pertama mempunyai satu blok. Bagi setiap lajur berikutnya, bilangan blok adalah dua kali ganda daripada lajur sebelumnya. (a) Carikan bilangan blok bagi lajur ke 8. [2 markah] (b) Hitungkan (i) jumlah isipadu blok jika terdapat 10 lajur bagi struktur itu. (ii) jumlah kos bagi 10 lajur blok jika setiap blok RM080 . [5 markah] Diagram 2 / Rajah 2 5 cm 3 cm 7 cm
  • 5. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah SULIT 5 3 ( a ) Sketch the graph of y  cos3x for 0  x  . [3 marks] (b) Hence, using the same axes, sketch a suitable straight line to find the number of solutions for the equation x  cos3x  0for 0  x  . State the number of solutions. [3 marks] (a) Lakar graf bagi y  cos3x untuk 0  x  . [3 markah] (b) Seterusnya, dengan menggunakan paksi yang sama, lakar satu garis lurus yang sesuai untuk mencari bilangan penyelesaian bagi persamaan x  cos3x  0 untuk 0  x  . Nyatakan bilangan penyelesaian itu. [3 markah] 4 (a) Given that a set X has score 1 2 3 10 x , x , x ...............x . The mean and standard deviation of set X are 10 and 4 respectively. Find  x and  2 x for set X . [4 marks] (b) Another set Y has score 1 2 3 10 3 3 3 3 , , ................ 2 2 2 2 x  x  x  x  . Find the mean and variance for set Y . [3 marks] (a) Diberi bahawa set X mempunyai skor 1 2 3 10 x , x , x ...............x . Min dan sisihan piawai ialah 10 dan 4 masing-masing. Carikan  x and  2 x bagi set X . [4 markah] (b) Satu lagi set Y mempunyai skor 1 2 3 10 3 3 3 3 , , ................ 2 2 2 2 x  x  x  x  . Carikan min dan varians bagi set Y . [3 markah]
  • 6. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 SULIT 6 5 (a) Given that 5 125 log K log V 1, express V in terms of K. [3 marks] (b) Given that the function f : xk  2mx , and 1 1 : 3 8 f x x    , calculate (i) the value of k and of m , (ii) the value of p if 1 1 ( ) 2 f p   . [5 marks] (a) Diberi bahawa 5 125 log K log V 1, ungkapkan V dalam sebutan K. [3 markah] (b) Diberi bahawa fungsi f : xk  2mx , dan 1 1 : 3 8 f x x    , hitungkan (i) nilai-nilai bagi k dan m , (ii) nilai bagi p jika 1 1 ( ) 2 f p   . [5 markah] 6 (a) Given that 2 9 1 ( ) 3 1 x f x x    , find f '(x). [2 marks] (b) A curve has a gradient function of 2 kx 3x , the tangent to the curve at the point (2,12) is parallel to the straight line 2y  4x  9 , find (i) the value of k, (ii) the equation of the normal to the curve at point (2,12) . [5 marks] (a) Diberi bahawa 2 9 1 ( ) 3 1 x f x x    , cari f '(x). [2 markah] (b) Fungsi kecerunan suatu lengkung ialah 2 kx 3x , tangen pada lengkung di titik (2,12) adalah selari kepada garis lurus 2y  4x  9 , cari (i) nilai bagi k, (ii) persamaan normal pada lengkung di titik (2,12) . [5 markah]
  • 7. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah SULIT 7 Section B Bahagian B [ 40 marks ] [ 40 markah ] Answer four questions from this section. Jawab empat soalan daripada bahagian ini. 7 Use graph paper to answer this question. Gunakan kertas graf untuk menjawab soalan ini. x 1 2 3 4 5 6 y 35 220 675 1520 2875 4860 Table 7/ Jadual 7 Table 7 shows the values of two variables, x and y, obtained from an experiment. Variables x and y are related by the equation 3 2 x k p y  kx  , where k and p are constants. (a) Plot 2 x y against x , using a scale of 2 cm to 1 unit on the x  axis and 1 cm to 1 unit on the 2 x y - axis. Hence, draw the line of best fit. [4 marks] (b) Use the graph in 7 (a) to find the value of (i) k (ii) p (iii) y when x = 25 . [6 marks] Jadual 7 menunjukkan nilai-nilai bagi dua pembolehubah, x dan y, yang diperoleh daripada satu eksperimen. Pembolehubah x dan y dihubungkan oleh persamaan 3 2 x k p y  kx  , dengan keadaan k dan p ialah pemalar. (a) Plot 2 x y melawan x , dengan menggunakan skala 2 cm kepada 1 unit pada paksi x dan 1 cm kepada 1 unit pada paksi- 2 x y . Seterusnya, lukis garis lurus penyuaian terbaik. [4 markah] (b) Gunakan graf di 7(a) untuk mencari nilai (i) k, (ii) p, (iii) y apabila x = 25 . [6 markah]
  • 8. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 SULIT 8 8 Diagram 8 shows a quadrilateral PQRT and a triangle RST . M is a midpoint of TR. PQ=9x , PT =8y , 2 PQ=3TS and PT = 2QR . (a) Express the following vectors in terms of x and y . (i) TR (ii) PS (iii) MS Hence, Show that P, M and S are collinear. [6 marks] (b) It is given that 1 2 x  and 3 4 y  , find PS . [4 marks] Rajah 8 menunjukkan sebuah sisiempat PQRT dan segitiga RST. M ialah titik tengah TR. PQ= 9x , PT = 8y , 2 PQ=3TS dan PT = 2QR . (a) Ungkapkan vektor yang berikut dalam sebutan x dan y (i) TR (ii) SR (iii) MS Seterusnya, tunjukkan bahawa P, M dan S adalah segaris. [6 markah] (b) Diberi bahawa 1 2 x  dan 3 4 y  , cari PS . [4 markah] S P Q R T M Diagram 8/ Rajah 8
  • 9. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah SULIT 9 9 Diagram 9 shows the straight line y = 3x + 4 intersecting the curve y = x2 at the points K. Find (a) the coordinates of K, [3 marks] (b) the area of the shaded region B, [3 marks] (c) the volume generated, in terms of π , when the shaded region A is revolved through 360o about the y-axis. [4 marks] Rajah 9 menunjukkan garis lurus y = 3x +4 yang menyilang lengkung y = x2 pada titik K. Cari (a) koordinat K, [3 markah] (b) luas rantau berlorek B, [3 markah] (c) isipadu janaan, dalam sebutan π , apabila rantau berlorek A dikisarkan melalui 360o pada paksi-y. [4 markah] Diagram 9/Rajah 9 O y x y = x 2 y = 3x + 4 K B A
  • 10. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 SULIT 10 10 Diagram 10 shows a semicircle ABC with centre O and a sector ABO with centre A. The radius of semicircle ABC and sector ABO is 8 cm. [ Use π = 3142] Calculate (a) the value of  , in radian, [2 marks] (b) the perimeter, in cm, of shaded region , [4 marks] (c) the area, in cm2 , of the shaded region . [4 marks] Rajah 10 menunjukkan sebuah semi bulatan ABC dengan pusat O dan sector ABO dengan pusat A. Jejari bagi semi bulatan ABC dan sektor bulatan ABO ialah 8 cm. [ Guna π = 3142] Hitung (a) nilai  , dalam radian, [2 markah] (b) perimeter, dalam cm, kawasan berlorek , [4 markah] (c) luas, dalam cm2, kawasan berlorek. [4 markah] B  A C O Diagram 10 / Rajah 10
  • 11. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah SULIT 11 11 (a) In an examination, 85% of the candidates passed Mathematics. If a sample of 6 candidates is chosen at random, find the probability that (i) all the candidates passed Mathematics, (ii) at least 2 candidates failed Mathematics. [5 marks] (b) The body mass of 500 students in a school follows a normal distribution with a mean of 52 kg and a standard deviation of 10 kg. (i) If a student is chosen at random, find the probability that his body mass is between 40 kg and 60 kg. (ii) Calculate the number of students whose body mass are between 40 kg and 60 kg. [5 marks] (a) Dalam suatu peperiksaan, 85 % calon lulus Matematik. Jika 6 calon dipilih secara rawak, cari kebarangkalian bahawa (i) kesemua calon itu lulus Matematik, (ii) sekurang-kurangnya 2 calon gagal Matematik. [5 markah] (b) Jisim badan 500 pelajar sebuah sekolah adalah mengikut taburan normal dengan min 52 kg dan sisihan piawai 10 kg. (i) Jika seorang pelajar dipilih secara rawak, carikan kebarangkalian bahawa jisim badannya berada di antara 40 kg dan 60 kg. (ii) Hitung bilangan pelajar yang mempunyai jisim badan di antara 40 kg dan 60 kg. [5 markah]
  • 12. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 SULIT 12 Section C Bahagian C [ 20 marks ] [ 20 markah ] Answer any two questions from this section. Jawab mana-mana dua soalan daripada bahagian ini. 12 A particle moves along a straight line from a fixed point O. Its velocity, v ms-1, is given by v = kt – 3t2 , where k is a constant and t is the time, in seconds, after leaving the point O. The velocity of the particle is maximum when t = 25 s . [Assume motion to the right is positive.] Find (a) the value of k, [2 marks] (b) the value of t when the particle passes O again, [3 marks] (c) the time, in seconds, when the particle stops instantaneously, [2 marks] (d) the distance travelled, in m, by the particle in the first 7 seconds. [3 marks] Suatu zarah bergerak di sepanjang suatu garis lurus dari satu titik tetap O. Halajunya, v ms-1, diberi oleh v = kt – 3t2 , dengan keadaan k ialah pemalar dan t ialah masa, dalam saat, selepas meninggalkan titik O. Halaju zarah itu adalah maksimum pada t = 25 s [Anggapkan gerakan ke arah kanan sebagai positif.] Cari (a) nilai k, [2 markah] (b) nilai bagi t apabila zarah itu melalui titik O semula , [3 markah] (c) masa, dalam saat, apabila zarah berhenti seketika, [2 markah] (d) jarak yang dilalui, dalam m, oleh zarah itu dalam tujuh saat pertama. [3 markah]
  • 13. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah SULIT 13 13 Diagram 13 shows a quadrilateral KLMN. Diagram 13/Rajah 13 Calculate (a) the length, in cm, of KM,. [2 marks] (b) KMN, [2 marks] (c) LKM, [3 marks] (d) the area, in cm2, of quadrilateral KLMN. [3 marks] Rajah 13 menunjukkan sisiempat KLMN. Hitungkan (a) panjang, dalam cm, KM, [2 markah] (b) KMN, [2 markah] (c) LKM, [3 markah] (d) luas, dalam cm2, bagi sisiempat KLMN. [3 markah] N 5 3 cm M 115 K 6 6 cm 3 0 cm L 85
  • 14. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 SULIT 14 14 Table 14 shows the prices and the price indices of five components P, Q, R, S and T needed to produce a certain type of digital camera. Pie chart 14 shows the relative quantity of components needed in producing the camera. Component Komponen Price (RM) per unit Harga (RM) per unit Price index for the year 2012 based on the year 2010 Indeks harga pada tahun 2012 berasaskan tahun 2010 2010 2012 P 1·10 1·21 110 Q 1·80 x 120 R 3·20 4·00 150 S 2·50 3.05 122 T 2·00 2·80 y Table 14 / Jadual 14 Pie chart 14 / Carta pai 14 80º 35º 160º 40º P Q R S T
  • 15. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah SULIT 15 (a) Find the value of x and y. [4 marks] (b) Calculate the composite index for the production cost of the camera in the year 2012 based on the year 2010. [3 marks] (c) The price of each component increases by 10% from the year 2012 to the year 2014. Given that the production cost of the camera in year 2010 is RM500, calculate the corresponding cost in year 2014. [3 marks] Jadual 14 menunjukkan harga dan indeks harga bagi lima komponen P, Q, R, S dan T yang diperlukan untuk menghasilkan sejenis kamera digital. Carta pai 14 menunjukkan kuantiti relatif bagi komponen yang diperlukan dalam penghasilan kamera digital itu. (a) Cari nilai x dan y. [4 markah] (b) Hitungkan indeks gubahan bagi kos penghasilan kamera digital itu pada tahun 2012 berasaskan tahun 2010. [3 markah] (c) Harga setiap komponen meningkat 10% dari tahun 2012 ke tahun 2014. Diberi kos penghasilan kamera digital itu dalam tahun 2010 ialah RM500, hitungkan kosnya yang sepadan pada tahun 2014. [3 markah]
  • 16. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 SULIT 16 15 Use a graph paper to answer this question. A factory produces two types of pillow, type A and type B. In a day, it can produce x pillows of type A and y pillows of type B. The time taken to produce a pillow of type A is 20 minutes and a pillow of type B is 30 minutes. The production of the pillow per day is based on the following constraints. I. : The time taken to make pillows of type A is not more than the time taken to make pillows of type B. II. : The total number of pillows produced is not more than 500. III. : The number of pillows of type B must exceed the number of pillows of type A by at most 200. (a) Write three inequalities, other than which satisfy all the above constraints. [3 marks] (b) By using the scale of 2 cm to 100 pillows on both axes, construct and shade the region R which satisfies all the above constraints. [3 marks] (c) Use graph from 15(b), to find (i) the maximum number of pillows of type A if 280 of pillows of type B produced. (ii) maximum profit that can be obtained, if the profit of selling pillow A is RM20 and pillow B is RM12 00. [4 marks]
  • 17. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah SULIT 17 END OF QUESTION PAPER KERTAS SOALAN TAMAT Gunakan kertas graf untuk menjawab soalan ini. Sebuah kilang menghasilkan 2 jenis bantal, jenis A dan jenis B. Dalam satu hari, kilang itu boleh menghasilkan x biji bantal jenis A dan y biji bantal jenis B. Masa yang diambil untuk menghasilkan sebiji bantal jenis A ialah 20 minit dan sebiji bantal jenis B ialah 30 minit. Pengeluaran bantal dalam satu hari adalah berdasarkan kekangan yang berikut: I: Masa yang diambil untuk membuat bantal A tidak melebihi masa yang diambil untuk membuat bantal jenis B. II: Jumlah bantal yang dihasilkan tidak melebihi 500 bji. III: Bilangan bantal jenis B mesti melebihi bilangan bantal jenis A selebih-lebihnya 200 biji. (a) Tulis tiga ketaksamaan, selain , yang memenuhi semua kekangan di atas. [3 markah] (b) Menggunakan skala 2 cm kepada 100 biji bantal pada kedua-dua paksi, bina dan lorek rantau R yang memenuhi semua kekangan di atas. [3 markah] (c) Gunakan graf anda daripada 15(b) untuk mencari (i) bilangan maksimum bantal jenis A jika 280 biji bantal jenis B dihasilkan. (ii) keuntungan maksimum yang boleh diperolehi, jika keuntungan jualan bagi bantal A ialah RM20 dan bantal B ialah RM12 00. [4markah]
  • 18. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 SULIT 18 THE UPPER TAIL PROBABILITY Q(z) FOR THE NORMAL DISTRIBUTION N(0,1) KEBARANGKALIAN HUJUNG ATAS Q(z) BAGI TABURAN NORMAL N(0, 1) z 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 Minus / Tolak 0.0 0.1 0.2 0.3 0.4 0.5000 0.4602 0.4207 0.3821 0.3446 0.4960 0.4562 0.4168 0.3783 0.3409 0.4920 0.4522 0.4129 0.3745 0.3372 0.4880 0.4483 0.4090 0.3707 0.3336 0.4840 0.4443 0.4052 0.3669 0.3300 0.4801 0.4404 0.4013 0.3632 0.3264 0.4761 0.4364 0.3974 0.3594 0.3228 0.4721 0.4325 0.3936 0.3557 0.3192 0.4681 0.4286 0.3897 0.3520 0.3156 0.4641 0.4247 0.3859 0.3483 0.3121 4 4 4 4 4 8 8 8 7 7 12 12 12 11 11 16 16 15 15 15 20 20 19 19 18 24 24 23 22 22 28 28 27 26 25 32 32 31 30 29 36 36 35 34 32 0.5 0.6 0.7 0.8 0.9 0.3085 0.2743 0.2420 0.2119 0.1841 0.3050 0.2709 0.2389 0.2090 0.1814 0.3015 0.2676 0.2358 0.2061 0.1788 0.2981 0.2643 0.2327 0.2033 0.1762 0.2946 0.2611 0.2296 0.2005 0.1736 0.2912 0.2578 0.2266 0.1977 0.1711 0.2877 0.2546 0.2236 0.1949 0.1685 0.2843 0.2514 0.2206 0.1922 0.1660 0.2810 0.2483 0.2177 0.1894 0.1635 0.2776 0.2451 0.2148 0.1867 0.1611 3 3 3 3 3 7 7 6 5 5 10 10 9 8 8 14 13 12 11 10 17 16 15 14 13 20 19 18 16 15 24 23 21 19 18 27 26 24 22 20 31 29 27 25 23 1.0 1.1 1.2 1.3 1.4 0.1587 0.1357 0.1151 0.0968 0.0808 0.1562 0.1335 0.1131 0.0951 0.0793 0.1539 0.1314 0.1112 0.0934 0.0778 0.1515 0.1292 0.1093 0.0918 0.0764 0.1492 0.1271 0.1075 0.0901 0.0749 0.1469 0.1251 0.1056 0.0885 0.0735 0.1446 0.1230 0.1038 0.0869 0.0721 0.1423 0.1210 0.1020 0.0853 0.0708 0.1401 0.1190 0.1003 0.0838 0.0694 0.1379 0.1170 0.0985 0.0823 0.0681 2 2 2 2 1 5 4 4 3 3 7 6 6 5 4 9 8 7 6 6 12 10 9 8 7 14 12 11 10 8 16 14 13 11 10 19 16 15 13 11 21 18 17 14 13 1.5 1.6 1.7 1.8 1.9 0.0668 0.0548 0.0446 0.0359 0.0287 0.0655 0.0537 0.0436 0.0351 0.0281 0.0643 0.0526 0.0427 0.0344 0.0274 0.0630 0.0516 0.0418 0.0336 0.0268 0.0618 0.0505 0.0409 0.0329 0.0262 0.0606 0.0495 0.0401 0.0322 0.0256 0.0594 0.0485 0.0392 0.0314 0.0250 0.0582 0..0475 0.0384 0.0307 0.0244 0.0571 0.0465 0.0375 0.0301 0.0239 0.0559 0.0455 0.0367 0.0294 0.0233 1 1 1 1 1 2 2 2 1 1 4 3 3 2 2 5 4 4 3 2 6 5 4 4 3 7 6 5 4 4 8 7 6 5 4 10 8 7 6 5 11 9 8 6 5 2.0 2.1 2.2 2.3 0.0228 0.0179 0.0139 0.0107 0.0222 0.0174 0.0136 0.0104 0.0217 0.0170 0.0132 0.0102 0.0212 0.0166 0.0129 0.00990 0.0207 0.0162 0.0125 0.00964 0.0202 0.0158 0.0122 0.00939 0.0197 0.0154 0.0119 0.00914 0.0192 0.0150 0.0116 0.00889 0.0188 0.0146 0.0113 0.00866 0.0183 0.0143 0.0110 0.00842 0 0 0 0 3 2 1 1 1 1 5 5 1 1 1 1 8 7 2 2 1 1 10 9 2 2 2 1 13 12 3 2 2 2 15 14 3 3 2 2 18 16 4 3 3 2 20 16 4 4 3 2 23 21 2.4 0.00820 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639 2 2 4 4 6 6 8 7 11 9 13 11 15 13 17 15 19 17 2.5 2.6 2.7 2.8 2.9 0.00621 0.00466 0.00347 0.00256 0.00187 0.00604 0.00453 0.00336 0.00248 0.00181 0.00587 0.00440 0.00326 0.00240 0.00175 0.00570 0.00427 0.00317 0.00233 0.00169 0.00554 0.00415 0.00307 0.00226 0.00164 0.00539 0.00402 0.00298 0.00219 0.00159 0.00523 0.00391 0.00289 0.00212 0.00154 0.00508 0.00379 0.00280 0.00205 0.00149 0.00494 0.00368 0.00272 0.00199 0.00144 0.00480 0.00357 0.00264 0.00193 0.00139 2 1 1 1 0 3 2 2 1 1 5 3 3 2 1 6 5 4 3 2 8 6 5 4 2 9 7 6 4 3 11 9 7 5 3 12 9 8 6 4 14 10 9 6 4 3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00104 0.00100 0 1 1 2 2 2 3 3 4 Q(z) z f (z) O Example / Contoh: If X ~ N(0, 1), then P(X > k) = Q(k) Jika X ~ N(0, 1), maka P(X > k) = Q(k)       2 2 1 exp 2 1 f (z) z     k Q(z) f (z) dz
  • 19. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 [Lihat halaman sebelah SULIT 19 HALAMAN KOSONG
  • 20. SULIT 3472/2 August 2014 3472/2 Additional Mathematics Paper 2 SULIT 20 HALAMAN KOSONG